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22 A. AUBUY

D'ailleurs, pour qu'une égalité entre les n premiers entiers
puisse avoir lieu, il faut que n soit non seulement pair, mais
encore multiple de 4, car la somme des 2m premiers entiers est
impaire en même temps que m.

Théorème III. — Supposons, dans le lemme IV, que a, a,
désignent les 4/z, les 8/z, les 16/z, premiers entiers; en faisant
successivement h kn, 8/z, 16/z, on verra, à cause du lemme V.

que les 4(24: -f- 1), les 8 [2k -)- 1), premiers entiers donnent des
égalités respectivement doubles, triples, quadruples, Par
conséquent, les 2m(2k —|— 1 premiers entiers peuvent se grouper en
deux suites formant une égalité muple.

Note I. — Egalités doubles.

Théorème I. — Une égalité double doit avoir plus de deux termes
dans ehaque membre.

Théorème II. — On ne saurait avoir x -|- x x — y -f- z -f- \v.
Théorème III. — Les trois termes ne sauraient être à la fois en

progression arithmétique ou géométrique dans les deux membres.
2

1

Problême I. Résoudre x yr + z' -f- w'. Changeons y', z' et w'
en X — z/, y — z et z; la question revient à la résolution de

2

x — [x — y) -j- [y — z) -|- ^ ou simplement de x2 (x — y)"2 -f-
[y — z)"2 £2, d'où on tire

J r- 5+-y
Posons en conséquence z — tv, y ut, u et v étant premiers entre
eux ; il viendra

At.
x ~ ut — vt -I a ou t — su

u

et par suite

x — (u'— r -f- r2).s r — u2 s z — uvs ;

d'où, en négligeant le facteur commun s. la formule

(w3 — u\> -j- A) zz: vU> — u) — u 0' — u) -[- iw

qui donne une infinité de solutions, u et v restant arbitraires.

Cor. [/égalité proposée peut s'écrire 0 + 0 -j- x y' -f- z' -f- m',

ou, en ajoutant — x à chaque terme, — x — .v (y — .r) -f-
(z —x) -j- (w—-.r), ce qui fournit cette autre relation

(W — iA — A) -f- {uv — (A — v2) zz: iA -f- A -p i u — v:2
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2

Probleme IL Résoudre — x + x y' -(- z' — wl. Ecrivons ainsi
cette égalité

— .X- + x — [x — y — z) + (— x — r + z) + (2y)

ou x2 + P — + — J — + + (— *' — / + + + +)* '

d'où, en simplifiant et continuant comme au précédent problème,

t zz: sv y — su z sx 2.x zz: 3su' + sx

et, en négligeant le coefficient s,
2

— (3m2 -j- v2) + (3m2 —j— /) (3m2— y2— 2m^) + (— 3m2 -j- x — 2Mi') -f rmv

2

Cor. I. L'égalité proposée peut encore s'écrire — x -f- *' —
— y'—z' — wr : elle a donc toujours au moins deux solutions.

2 2

Ainsi — 7 -|- 7 — — 3 — 5 + 8 peut encore s'écrire — 7 + 7 —
3 + 5 — 8, ou bien, en ajoutant 7 partout,

7 + 14 2 + 4 + 15 — 1 + 10 + 12

IL Ajoutant x à tous les termes de l'égalité ainsi complétée
2 2

0 — x + x ~ + + + + +, on trouve x + 2x y" + z" + w" : on
a donc en même temps la solution de cette nouvelle égalité.

Théorème IV. — Posons

m2 + \r — [a fhf + ib + ghf + (fh — gh)~

il viendra

(a) fa — gb zz: [f* + g*—fg) h

Donc si a et b sont liés par la. relation [a) on aura

a + h zzz [a — fh) -j- (b + gh) -f (fh — bh)

Ainsi, les suppositions f= 2, gz=z !; f— 1, g= — 1 ; f= 3, g= 1 ;

f=3, g 2; donnent ces théorèmes :

2

si 2a — b =z 3h on aura : a + b — (a — 2h) + [b + h) + h

si a + b — oh on aura : a + b (a — h) + (b — h) + 2h :

2

si 3m — b — 7h on aura : a + b — (a — 3h) + (b + h) + 2/i
2

si 3m — 2b — 7h on aura : a + b z=z (a — 3h) + (b + 2/z) -f- h
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Probleme III. Formale générale de l'égalité double. Posons

x -j- y zzz (y -|- t) -)- z -j- \v ;

on aura
.r9 zu + z2 + u'9 + 2tz + 2tw + 2«»*' 2yl + f + z* + w*

d'où
tz —|— tw —{- zw — yt

ce qui demande qu'on puisse poser zw=tu. Ecrivons en
conséquence

z zzz ah (v — cd t — hd u — ac

il viendra
2

(|3) [ah -f- hd -f- ccl) -f- (ah -f- ac cd) zzz [ah -j- ac -|- hd -j- cd) -)- ah -f- cd

Cor. L On peut tirer de là une infinité d'égalités doubles. Par
exemple posons c — b et ajoutons aux six termes — compris le
terme zéro — le nombre hb — ab — bd ; il viendra la formule

2

[h — a — d) -j- (h -f- a) -j- (h + d) zzz {h 4- a -j- d) -j- (h — a) -|- (h — d)

qui se simplifie, tout en restant symétrique en y faisant d=2a.
2

II. Résolution de A + B — # -f- V + Assimilant à (ß)1 on voit
qu'on a à résoudre

A.2 B2 z= (A -f- ac)* + (B — ac — cd)* -f- (ccl)*

d'où
Ba — A# -f- Be?

IT) a* -j- d* + ad

Ainsi soit A =17, Bzz3; on voit, après quelques tâtonnements,
que e est entier pour a zzz 2, d 3. On trouve en conséquence

6- zz: — 1 h
A~~cd

— 4
a —j— d

2

et par suite l'égalité double cherchée 3 + 17 — 3 + 8 -f- 15.
Le problème a autant de solutions qu'il y a de valeurs de a et

de d qui rendent entière la valeur du second membre de (y).
On remarquera que (y) fournit les théorèmes 1Y.

2

III. Pour que l'équation A + B x-(-y + z soit résoluble, il
faut et il suffit que le nombre A2 -f- B2 — AB, s'il n'est pas divisible
par 3, ait au moins deux facteurs premiers de la forme 6h-)- l1.

1 Ce théorème et le suivant m'ont été communiqués sans démonstration par M. O. Tarry.
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Si cette équation est résoluble, 011 doit pouvoir écrire :

A ~ ab -{- bd -j- cd B — ab ac -f- cd

Or on a dans ce cas :

À2 + B2 — AB [a2 + d2 -f ad)(b2 + c2 + bc)

Ainsi la condition nécessaire et suffisante est que le nombre
A2 -+ B"2—AB puisse se décomposer en deux facteurs de forme
x2 -f- y- -|- xy, expressson qui ne peut avoir pour facteurs que 3 ou
des nombres premiers de forme 6A + 1.

Si le nombre A2 B2 — AB — (A -f- B)2 — 3AB est divisible
par 3, il en est de même de A -f- B ; or ce cas a été traité plus
haut. (Théorème 1Y.)

ÎY, Supposons qu'on puisse écrire A2 -j- B2 — AB X'2-f V — XX ;

en posant x — 2X — Y, y 2Y — X, on aura :

K n
2 A + B ± ;r A + B ± y A + B + x + y

A + B
3 + 3 + V •

En effet, cette relation revient à

(s) 1 (A2 + fh — ABl rz: x2 -j- y- + xy

ou bien à

A2 + B2 — AB (2++)3- 2++ ++'.
(f) donne {x — y)* -|- 3xy 0 (mod 3), d'où x y et 2,r + y 0.
D'ailleurs on a :

(A + B)2 — (X -{- Y)2 ;E2 (2X — Y)2 EE x2 EE y2

Ainsi si A -|- C est un non-multiple de 3, il en est de même der
et de y, et on prendra, pour les signes de x et de y, ceux qui
donnent pour (d) des nombres entiers.

V. L'équation x -f- y — z -+ A + B est toujours soluble, et elle a
même, en généralquatre solutions. On n'a, pour s'en assurer,
qu'à changer dans (ß) a et &, 1° en ± ci et ± b, 2° en ±b et -h a.

Note II. — Carrés panmagiques de module An.

Soit n~=3. Considérons, par exemple, l'égalité entre les 12
premiers entiers

1 + 11 + 3 + 9 + 8 + 7 — 12 + 2 + 10 + 4 + 5 + 6


	Note I. — Egalités doubles.

