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22 A. AUBRY

D’ailleurs, pour qu’'une égalité entre les n premiers entiers
puisse avoir lieu, il faut que n soit non seulement pair, mais en-
core multiple de 4, car la somme des 2m premiers entiers est im-
paire en méme temps que .

Tutoreme III. — Supposons, dans le lemme 1V, que a, ... «, .
désignent les 4n, les 8n, les 16n, ... premiers entiers; en faisant
successivement 2 ==4n, 8n, 16n, ... on verra, a cause du lemme V,
que les 4(2k 4 1), les 82k 4 1), ... premiers entiers donnent des
égalités respectivement doubles, triples, quadruples, ... Par con-
séquent, les 2m(2k + 1) premiers entiers peuvent se grouper en
deux suites formant une égalité m*,

Note I. — Egalités doubles.

Tuioreye 1. — Une égalité double doit avoir plus de dewr termes
dans chagque membre.
)
Turoreme . — On ne saurait avoir x + x +x =y + z 4 w.
Tutoreme [II. — Les trois termes ne sauraient étre a la fois en

progression arithmetique ou géométrique dans les dewx membres.
2

Probieme 1. Résoudre x =y’ 4+ ' + w’. Changeons y', 2" et o'

en £+ —y, y—=z et z; la question revient a la résolution de
2

r=1{x —y + [y —z) + z ou simplement de 2?= (v — y)* +
(y — z)* + 22, d’oli on tire

.1':)‘—;—}—

19

= n

Posons en conséquence z =ty, y = ut, « et y étant premiers entre

eux; il viendra
2
it ..
x = ut — vt + — d'on t = su
g u

et par suite

x = (W —v -+ s y=u's , T = s

d’ol, en négligeant le facteur commun s, la formule

5
s W — uy + vV = vy — ) —u(y — u) uy
)

qui donne une infinité de solutions, « et ¢ restant arbitraires.

2
Cor. 1.’égalité proposée peut s’écrive 0 404 v =y’' 4+ 3" + o',
: P)
ou, en ajoutant — x a chaque terme, — o — v =(y — ) +

(z —x) + (w—x), ce qui fournit cette autre relation

2

(0o — w?— %) 4+ (uy — > — V) = @+ (u—v®
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2
Probleme 1. Résoudre — x 4+ =y’ 4+ 2" — w’. Ecrivons ainsi
cette égalité

2
—xtx=(r—y—z)+ (—x—y+z 4+ (Zy)
ou PFat=(r—r—z3)+ (—x—r—+3z+ (2v)?

d’oti, en simplifiant et continuant comme au précédent probleme,

t — sv P = sl , z = sv*, 20 == 3su® + sv? |

et, en négligeant le coeflicient s,

‘ 2
— (3u® 4 %) + (Be® + v°) = (3 — v — 2uy) + (— 3w 4 v* — 2up) + duv .

2
Cor. 1. L’égalité proposée peut encore s’écrire — x -+ v =
—y' —z'—w': elle a donc toujours au moins deux solutions.
2 . 2
Ainsi —7+47=—3 — 5-+ 8 peut encore s’écrire — 747 =
3+ 5—8, ou bien, en ajoutant 7 partout,

2 2
T4t =2+44+15 = —1--10-+12 .

II. Ajoutant x & tous les termes de l'égalité ainsi complétée
2

2
O0—x+x=y +3z 4w, on trouve &+ 22 =y + 3"+ w": on
adonc en méme temps la solution de cette nouvelle égalité.
Tuéoreme IV. — Posons

a4+ 0= (a—fh)?+ (b+ gh)?* -+ (fh — gh)? ,
il viendra

(o) fo —gb = (f*+ g*—fg)h .
Donc si a et b sont liés par la relation (a) on aura
2
a-+b=(a—fh)+ (b4 gh)+ (fh — bh) .

Ainsi, les suppositions /=2, g=1; f=1, g=—1; =3, g=1;
/=3, g=2; ... donnent ces théoremes :
2
si 2a— b =23, on aura: a—+b=(a—2h)+ b+ hy+ h.
si a+ b=3h, onaura: a—{—l;i (@— h)+{(b— h)+ 20 :

2
si 3a— b 7k, onmaura: a-+b={(a—3h)+(b+ k) -+ 2k .

I

2
si 3a—2b="7h, omaura: a-—4b=(a—3k) 4 (b+2h)+ h .
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A. AUBRY

Probleme 111. Formule generale de légalite double. Posons

x )= w+ 4 z+w;
on aura
2= 0 2wt 2 4 24w A 220 = 29 - 2 et
d’ont
lz 4 tw 4 z0 = 1t

ce ui demande qu’on puisse poser zw=—tu. Ecrivons en consé-
quence

35— uab , w=-cd , t = bd u = ac ,
il viendra ‘

(B (ab+ bd+cd) + (ab + ac + cd) ; (ab+ac+bd 4 cd) 4+ ab + cd .

or. 1. On peut tirer de la une infinité d’égalités doubles. Par
exemple posons ¢ =10 et ajoutons aux six termes — compris le
terme zéro — le nombre Ab — ab — bd ; 1l viendra la formule

(h—a—d)+ (h+ a)+ h—l—-d) (h+a-+d)4 (h—a)+ (h —d)

qui se smlphﬁe tout en 1“estant symétrique en y faisant d—=—2a«.

II. Résolution de A + B = x 4+ y + z. Assimilant a (§), on voit

qu'on a a résoudre

A* - B = (A + ac)®*+ (B —ac— cd)® + (cd)?
d’ou
Ba — Aa + Bd
@+ d* + ad

() ¢ =

17, B=23; on voit, apres quelques tditonnements,
que ¢ est entier pour e =2, d =23. On trouve en conséquence

o __A—cd A
c=-—1, b = Wi d =
et par suite ’égalité double cherchée 3 4 17 == — 3 4+ 8 + 15.

l.e probleme a autant de solutions qu’il y a de valeurs de « et
de d qui rendent entiére la valeur du second membre de (y).
On remarquera que (y) fournit les théoremes 1V.

2
HI. Pour que léquation A+ B = x4y + z soit résoluble, il
faut et il suffit que le nombre A* 4+ B? — AB, s’il n’est pas divisible
par 3, ait an moins deux facteurs premiers de la forme 6h + 11,

1 Ce théoréme et le suivant m’ont été communiqués sans démonstration par M, G. Tarry.
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Si cette équation est résoluble, on doit pouvoir écrire :
A::ab—}—bd—l—cd, B=ab+ ac + cd .
Or on a dans ce cas:
A2 + B2 — AB = (@ + d? + ad)(b® + ¢ + be) .

Ainsi la condition nécessaire et suffisante est que le nombre
A? 4 B2 — AB puisse se décomposer en deux facteurs de forme
2% 4 y* 4 2y, expressson qui ne peut avoir pour facteurs que 3 ou
des nombres premiers de jorme 64 - 1.

Si le nombre A? -+ B2— AB = (A ++ B)?-— 3AB est divisible
par 3, il en est de méme de A+ B; or ce cas a été traité plus
haut. (Théoreme 1V.)

1V. Supposons qi’on puisse écrire A* 4 B2 —AB=X24+Y?—XY;
en posant x=2X —Y, y=2Y — X, on aura:

n A_{_B;A‘*‘?i—i'_{_A-"‘?iT_I_A'*‘Bi*:xiy,

3] 3} D]

En effet, cette relation revient a
(¢) 3(A? + B? — AB) = % 4+ y* + ay

ou bien a

Qx N 2 . 2\ 3 . - 2y 7
A2+B2_AB:<.T‘—)|—Q>+(2:)—|—7>w2.%—|—) ‘w:}—a.
3]

3 3 3

() donne (x — y)* 4 3xy = 0 (mod 3), d'ot x =y et 22 4y =0.
D’ailleurs on a:

A4+ BP=X+Y?2=02X —Y2=a>=)2.

Aiasi si A + C est un non-multiple de 3, il en est de méme de
et de y, et on prendra, pour les signes de 2 et de y, ceux qui
donnent pour (d) des nombres entiers.

V. L’équation x+y =1z-+ A+ B est toujours soluble, et elle a
meme, en genéral, quatre solutions. On n’a, pour s’en assurer,
qu'a changer dans (8) @ et b, 1° en &=« et =5, 2° en =+ b et 4 a.

Note II. — Carrés panmagiques de module 4.

Soit n=23. Considérons, par exemple, I’égalité entre les 12 pre-
miers entiers

1411 4+84+94847=12 L 2410444546
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