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18 À AUBR Y

milieu. Or, précisément, une approximation plus poussée des
sciences physiques a conduit récemment certains savants à préférer

d'autres géométries à celle d'Euclide, parce qu'elles expriment
plus commodément encore — dans certains cas du moins — les
phénomènes de notre univers. C'est ainsi qu'une même question
de physique mathématique est traitée par les uns et les autres à
1 aide des géométries réelles ou imaginaires, à trois ou quatre
dimensions, d'Euclide, de Lobatschefski, de Minkowski, de
MM. Wilson et Lewis. On ne saurait mieux montrer qu'il n'y a là
qu'une question de pure commodité; et, en présence des conceptions

nouvelles, le tranquille philosophe géomètre est en droit de
conclure : « Nous avions adopté une convention parce qu'elle nous
semblait commode et nous disions que rien ne pourrait nous
contraindre à l'abandonner. Aujourd'hui certains physiciens veulent
adopter une convention nouvelle; ils jugent cette convention nouvelle

plus commode, voilà tout; et ceux qui ne sont pas de cet
avis peuvent légitimement conserver l'ancienne pour ne pas troubler

leurs vieilles habitudes 1 ».
L. Rough:h (Lyon).

ÉGALITÉS MULTIPLES2 DE G. TARRY

Par suite de L'abondance des matières, nous avons dû retarder La publication.

de cette intéressante Note du regretté G. Takry. En nous envoyant Le

manuscrit, M. Aubry nous écrit : « J'ai l'honneur de vous adresser ci-joint
une étude de M. G. Tarry qui me paraît des plus intéressantes et résultant
de fragments d'une correspondance active que nous avons depuis quelque
temps, fragments que j'ai réunis, coordonnés et présentés aussi clairement
que j'ai pu. M. Tarry étant malade se désintéressait de cette étude et j'ai
jugé qu'il serait regrettable qu'elle restât inconnue, aussi je lui ai demandé
de m'autoriser â en solliciter l'insertion dans l'a Ens. math... » — On sait
que M. Tarry mourut le 21 juin 1913. N. de la Réd.

Définition. — L'égalité de plusieurs quantités est dite /?uple

quand elle a lieu, en même temps pour les carrés de ces quantités,

1 H. Foi Ne a m':, Dernières pensées, p. 54.
2 Toute cette théorie est due à M. G. Tarry, dont on connaît les beaux travaux, si originaux

et si suggestifs, sur la géométrie générale, la géométrie de situation, les carrés magiques, la
géométrie modulaire et les imaginaires de Galois. Je n'ai fait que rédiger, sous forme didactique

et avec son autorisation, ces curieuses démonstrations, aux résultats à la fois si élémentaires

et si généraux, dont il avait bien voulu me faire part. J'y ai en outre ajouté, à titre
d'application, le cas particulier des égalités doubles (Note .1.) A. Aubry, Dijon.
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pour leurs cubes,... pour leurs nèmes puissances1. On indique une
telle égalité par la notation

n

a -f- ~ a -|-

On ne s'occupera ici que des égalités completes, c'est-à-dire
d'un même nombre de termes dans chaque membre; les termes
sont supposés entiers et positifs.

Lemme 1. On ne change pas la nature d'une égalité nuple en
multipliant tous ses termes par un même nombre. On supposera, en
conséquence, que tous les termes sont débarrassés de leurs
facteurs communs (Frolow).

Lemme II. La somme, membre à membre, de deux égalités nuPles

est elle-même une égalité nuple (Frolow).
Lemme III. On ci une nouvelle égalité nuple en ajoutant un même

nombre positif ou négatif h à tous les termes d'une égalité nuple

(Frolow). Soit en effet

& 4. b + a + [3 +•
Posons

[a + h)k ak + Art*-1 + Brt*-2 -f

A, B, désignant des quantités indépendantes de a ; il viendra

(rt hf (b 4- hf 4" ••• Ä (a 4~ à)* 4~ (ß ~F à)* 4~

d'où

(rt 4" b) 4~ [b 4- h) 4- ••• — (a 4" b) 4- ([3 4* b)

Lemme IY. D'une équation (n — l)uple, on peut déduire une èqua-
n—1

tion nuple d'un nombre double de termes. En effet, de a-\- =a-\-
on tire, à cause de II et de III, l'égalité

a -f 4 (« 4 b)'1 4~ ••• — cn 4~ ••• ~4 (a ~4 b)1 4-

Théorème L — Les 2n premiers entiers fournissent une égalité
(n — ijupie. On a, en effet,

(«) 1 + 4 243
d'où, à cause du lemme 1Y,

1 4_ 4 4- (2 4- 4) 4- (3 + 4) 4 2 4- 3 4- (1 -4 4) 4- (4 4- 4)

ou bien
J 4~ 4b 4~ 6 4~ 7 —24-34-54-8

1 Elle est dite aussi multigrade ou aux n premiers degrés.
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De même

1 + 4 + 6 + 7 + (2 + 8) + (3 + 8) + (5 + 8) + (8 + 8)

2 + 3 + 5 + 8 + (1 + 8) + (4 + 8) + (6 + 8) + (7 + 8)

et ainsi de suite.
Corollaire I. Si on ne s'astreint pas à n'avoir que des entiers

consécutifs, on peut obtenir des égalités bien plus simples. Ainsi
en faisant successivement h 3, 5, 7, 4, 1, au lieu de 4, 8, 16,
en partant de [a) on trouve

(ß) 1 + 5 + 6 2 + 3 + 7

(y) 1 + 5 + 8 + 12 2 + 3 + 10 + 11

(8) 1 + 5 + 9 +17+ 18 2 + 3 + 11 + 15 + 19

+ 1 + 6 + 7 + 17 + 18 + 23 2+ 3 + 11 + 13 + 21 + 22

l 1 + 4 + 6 + 12 + 14 +_ 1 2 + 2 + 8 + 11 + 13
(l

+ 17 + 18 + 23 + 23 + 18 + 19 + 21 + 24

Le choix de la valeur de h se détermine par l'examen des
différences des termes de la précédente égalité. Ainsi pour l'égalité
quadruple (â), on a les deux groupes de différences

4 8 16 17 1 9 13 17

4 12 13 8 12 16

8 9 4 8

1 4

La différence 4 étant répétée le plus grand nombre de fois, en
prenant h 4, on aura, pour l'égalité quintuple (s) la disparition
du plus grand nombre possible de termes.

II. Soit l'identité
1

(a — b) + 5 [a — c) + c

traitée de même, elle donne en faisant h — a — 2b,

2

(2a — 3b) + {a — c) + c (2« — 25 — c) + (a — 25 + c) + 5 ;

celle-ci, pour h a — 2c, donne

(3a — 35 — 2c) + (2a — Se) + (a — 25 + c) + 5

3

(3# — 2b — 3c) + (2a — 35) + (a + 5 — 2c) + c
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Et ainsi cle suite. On pourrait d'ailleurs, en attribuant à A d'autres
valeurs, obtenir une infinité d'autres formules particulières.

Théorème II. — Les n 4(2k+l) premiers entiers peuvent se

partage}' en deux suites formant une égalité double. On suppose
k>0. Disposons les termes comme dans l'exemple ci-dessous

28 27 26 25 24 23 22 21 20 19 18 17 16 15

1 2 3 4 5 6 7 8 9 10 11 12 13 14

on aura un nombre impair de quadrilles de la forme

A B ?i — h + 1 7i — h

ou
C D +-si

et tels qu'on aura

(A + D) — (B + G) 2 (A2 + D2) - (B2 + C2) const.

On peut donc écrire :

(a) •
23 —[— .2 —{— 26 —{— 4 —}— 23 —j— 5 —|— 21 -|- 7

27 + 1 + 25 + 3 + 24 + 6 + 22 + 8

Or, pour le dernier quadrille, qui est de la forme

5$ + CO a + 2

a a + 1

on voit aisément que la valeur de (A2 -f B2) — (C2 + D'2) est le
double de celle de (A2 D2) — (B2 + C2). Donc on a :

(20s + 10») - (19* + 92) + (18s + 122) - (17» + 11») (16*+ 15») - (132 + 14»)

et de là

(P) 20 + 18 + 14 + 13 + 12 + 10 19 + 17 + 16 + 15 + 11 + 9

ce qui, avec (oc), démontre le théorème.
Corollaire. Pour A 0, on n'aurait qu'un quadrille, ce qui ne

pourrait conduire à une égalité telle que (a), ni à une autre telle
que (ß).

Pour k i? on a une égalité analogue à (jf},
Pour /i-> l, on a une égalité (ß) et k— 1 égalités [a).
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D'ailleurs, pour qu'une égalité entre les n premiers entiers
puisse avoir lieu, il faut que n soit non seulement pair, mais
encore multiple de 4, car la somme des 2m premiers entiers est
impaire en même temps que m.

Théorème III. — Supposons, dans le lemme IV, que a, a,
désignent les 4/z, les 8/z, les 16/z, premiers entiers; en faisant
successivement h kn, 8/z, 16/z, on verra, à cause du lemme V.

que les 4(24: -f- 1), les 8 [2k -)- 1), premiers entiers donnent des
égalités respectivement doubles, triples, quadruples, Par
conséquent, les 2m(2k —|— 1 premiers entiers peuvent se grouper en
deux suites formant une égalité muple.

Note I. — Egalités doubles.

Théorème I. — Une égalité double doit avoir plus de deux termes
dans ehaque membre.

Théorème II. — On ne saurait avoir x -|- x x — y -f- z -f- \v.
Théorème III. — Les trois termes ne sauraient être à la fois en

progression arithmétique ou géométrique dans les deux membres.
2

1

Problême I. Résoudre x yr + z' -f- w'. Changeons y', z' et w'
en X — z/, y — z et z; la question revient à la résolution de

2

x — [x — y) -j- [y — z) -|- ^ ou simplement de x2 (x — y)"2 -f-
[y — z)"2 £2, d'où on tire

J r- 5+-y
Posons en conséquence z — tv, y ut, u et v étant premiers entre
eux ; il viendra

At.
x ~ ut — vt -I a ou t — su

u

et par suite

x — (u'— r -f- r2).s r — u2 s z — uvs ;

d'où, en négligeant le facteur commun s. la formule

(w3 — u\> -j- A) zz: vU> — u) — u 0' — u) -[- iw

qui donne une infinité de solutions, u et v restant arbitraires.

Cor. [/égalité proposée peut s'écrire 0 + 0 -j- x y' -f- z' -f- m',

ou, en ajoutant — x à chaque terme, — x — .v (y — .r) -f-
(z —x) -j- (w—-.r), ce qui fournit cette autre relation

(W — iA — A) -f- {uv — (A — v2) zz: iA -f- A -p i u — v:2



ÉGALITÉS MULTIPLES 23

2

Probleme IL Résoudre — x + x y' -(- z' — wl. Ecrivons ainsi
cette égalité

— .X- + x — [x — y — z) + (— x — r + z) + (2y)

ou x2 + P — + — J — + + (— *' — / + + + +)* '

d'où, en simplifiant et continuant comme au précédent problème,

t zz: sv y — su z sx 2.x zz: 3su' + sx

et, en négligeant le coefficient s,
2

— (3m2 -j- v2) + (3m2 —j— /) (3m2— y2— 2m^) + (— 3m2 -j- x — 2Mi') -f rmv

2

Cor. I. L'égalité proposée peut encore s'écrire — x -f- *' —
— y'—z' — wr : elle a donc toujours au moins deux solutions.

2 2

Ainsi — 7 -|- 7 — — 3 — 5 + 8 peut encore s'écrire — 7 + 7 —
3 + 5 — 8, ou bien, en ajoutant 7 partout,

7 + 14 2 + 4 + 15 — 1 + 10 + 12

IL Ajoutant x à tous les termes de l'égalité ainsi complétée
2 2

0 — x + x ~ + + + + +, on trouve x + 2x y" + z" + w" : on
a donc en même temps la solution de cette nouvelle égalité.

Théorème IV. — Posons

m2 + \r — [a fhf + ib + ghf + (fh — gh)~

il viendra

(a) fa — gb zz: [f* + g*—fg) h

Donc si a et b sont liés par la. relation [a) on aura

a + h zzz [a — fh) -j- (b + gh) -f (fh — bh)

Ainsi, les suppositions f= 2, gz=z !; f— 1, g= — 1 ; f= 3, g= 1 ;

f=3, g 2; donnent ces théorèmes :

2

si 2a — b =z 3h on aura : a + b — (a — 2h) + [b + h) + h

si a + b — oh on aura : a + b (a — h) + (b — h) + 2h :

2

si 3m — b — 7h on aura : a + b — (a — 3h) + (b + h) + 2/i
2

si 3m — 2b — 7h on aura : a + b z=z (a — 3h) + (b + 2/z) -f- h
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Probleme III. Formale générale de l'égalité double. Posons

x -j- y zzz (y -|- t) -)- z -j- \v ;

on aura
.r9 zu + z2 + u'9 + 2tz + 2tw + 2«»*' 2yl + f + z* + w*

d'où
tz —|— tw —{- zw — yt

ce qui demande qu'on puisse poser zw=tu. Ecrivons en
conséquence

z zzz ah (v — cd t — hd u — ac

il viendra
2

(|3) [ah -f- hd -f- ccl) -f- (ah -f- ac cd) zzz [ah -j- ac -|- hd -j- cd) -)- ah -f- cd

Cor. L On peut tirer de là une infinité d'égalités doubles. Par
exemple posons c — b et ajoutons aux six termes — compris le
terme zéro — le nombre hb — ab — bd ; il viendra la formule

2

[h — a — d) -j- (h -f- a) -j- (h + d) zzz {h 4- a -j- d) -j- (h — a) -|- (h — d)

qui se simplifie, tout en restant symétrique en y faisant d=2a.
2

II. Résolution de A + B — # -f- V + Assimilant à (ß)1 on voit
qu'on a à résoudre

A.2 B2 z= (A -f- ac)* + (B — ac — cd)* -f- (ccl)*

d'où
Ba — A# -f- Be?

IT) a* -j- d* + ad

Ainsi soit A =17, Bzz3; on voit, après quelques tâtonnements,
que e est entier pour a zzz 2, d 3. On trouve en conséquence

6- zz: — 1 h
A~~cd

— 4
a —j— d

2

et par suite l'égalité double cherchée 3 + 17 — 3 + 8 -f- 15.
Le problème a autant de solutions qu'il y a de valeurs de a et

de d qui rendent entière la valeur du second membre de (y).
On remarquera que (y) fournit les théorèmes 1Y.

2

III. Pour que l'équation A + B x-(-y + z soit résoluble, il
faut et il suffit que le nombre A2 -f- B2 — AB, s'il n'est pas divisible
par 3, ait au moins deux facteurs premiers de la forme 6h-)- l1.

1 Ce théorème et le suivant m'ont été communiqués sans démonstration par M. O. Tarry.
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Si cette équation est résoluble, 011 doit pouvoir écrire :

A ~ ab -{- bd -j- cd B — ab ac -f- cd

Or on a dans ce cas :

À2 + B2 — AB [a2 + d2 -f ad)(b2 + c2 + bc)

Ainsi la condition nécessaire et suffisante est que le nombre
A2 -+ B"2—AB puisse se décomposer en deux facteurs de forme
x2 -f- y- -|- xy, expressson qui ne peut avoir pour facteurs que 3 ou
des nombres premiers de forme 6A + 1.

Si le nombre A2 B2 — AB — (A -f- B)2 — 3AB est divisible
par 3, il en est de même de A -f- B ; or ce cas a été traité plus
haut. (Théorème 1Y.)

ÎY, Supposons qu'on puisse écrire A2 -j- B2 — AB X'2-f V — XX ;

en posant x — 2X — Y, y 2Y — X, on aura :

K n
2 A + B ± ;r A + B ± y A + B + x + y

A + B
3 + 3 + V •

En effet, cette relation revient à

(s) 1 (A2 + fh — ABl rz: x2 -j- y- + xy

ou bien à

A2 + B2 — AB (2++)3- 2++ ++'.
(f) donne {x — y)* -|- 3xy 0 (mod 3), d'où x y et 2,r + y 0.
D'ailleurs on a :

(A + B)2 — (X -{- Y)2 ;E2 (2X — Y)2 EE x2 EE y2

Ainsi si A -|- C est un non-multiple de 3, il en est de même der
et de y, et on prendra, pour les signes de x et de y, ceux qui
donnent pour (d) des nombres entiers.

V. L'équation x -f- y — z -+ A + B est toujours soluble, et elle a
même, en généralquatre solutions. On n'a, pour s'en assurer,
qu'à changer dans (ß) a et &, 1° en ± ci et ± b, 2° en ±b et -h a.

Note II. — Carrés panmagiques de module An.

Soit n~=3. Considérons, par exemple, l'égalité entre les 12
premiers entiers

1 + 11 + 3 + 9 + 8 + 7 — 12 + 2 + 10 + 4 + 5 + 6
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dont les ternies sont assujettis à cette condition que dans le même
membre, il n'y ait pas de nombres complémentaires à 13; et
formons avec ces nombres la figure ci-dessous

1 1 11 11 3 3 9 9 8 8 7 7

12 12 2 2 10 10 4 4 5 5 6 6

de quadrilles différents disposés horizontalement et tels que les
nombres inférieurs soient les compléments à 13 des nombres
supérieurs. Répétons identiquement cinq fois cette rangée sous la
première : nous aurons évidemment un carré panmagique (c'est-à-
dire tel qu'il reste magique en le séparant par une verticale ou
une horizontale et assemblant autrement le carré, ou encore tel
que toutes ses lignes1 soient magiques).

De même, construisons la colonne ci-contre d'une manière
analogue à l'aide de l'égalité

12 36 + 48 + 60 + 108 + 132 0 -f 24 -f 72 -f 84 + 96 + 120

et répétons la colonne cinq fois cote à côte: on obtiendra un
second carré panmagique.

Additionnons, nombre à nombre, les deux carrés,
il en résultera un troisième carré panmagique des
144 premiers entiers, dont voici ci-dessous un
fragment :

12 120

12 120

36 96

36 96

48 84

OO 84

60 72

60 72

108 24

108 24

132 0

132 0

13 121 23 131

24 132 14 122

37 97 47 107

48 108 38 98

On remarque que, par sa construction, tout carré
de quatre nombres de ce dernier est magique, ce

qu'on désigne en disant qu'il est à grille carrée de 4.

On ne connaissait pas de méthode simple de
construction de tels carrés. Quant à ceux de module

1 On appelle ligne arithmétique dans un carré magique, de module n,
l'ensemble des n nombres d'une même horizontale, d'une même verticale,
d'une môme diagonale, ou d'une même parallèle à une diagonale, cette
parallèle se composant de deux parties aboutissant aux extrémités d'une
même verticale : on l'appelle aussi diagonale brisée.
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4/2 + 2, M. G. Tarry1 doit bientôt faire voir que ces carrés sont
doués de 2rt lignes magiques et pas davantage.

M. G. Tarry est en outre Fauteur d'une foule de remarques,
extensions, méthodes et découvertes sur les carrés magiques,
théorie qu'il a poussée jusqu'à ses dernières limites, par ses
constellations2 et ses carrés magiques aux n premiers degrés, dont il
publiera sous peu la construction.

A. Aubry (Dijon).

SUR L'INTEGRATION DES EQUATIONS
DU

MOUVEMENT D UNE PLANÈTE AUTOUR DU SOLEIL

Les équations différentielles du mouvement d'un point matériel

/Z2, assujetti à l'action d'une force centrale newtonienne, sont :

j
d2x mx d2 r my
dt2 r?> dt2 r?'

/2 — X2 + t 2

J'introduis une nouvelle variable indépendante 6' par l'équation

dt — r ds

1 A lire du même savant, sur le même sujet :

N. A., 1899, Sur tes lignes arithmétiques. — A. F., 1900, Le prob, des 36 officiers, solution
longtemps cherchée de la célèbre question d'Euler. — A. F., 1903, Carrés panmagiques de
base 3n, figures longtemps crues impossibles. — A. F., 1904, Carrés cabalistiques (panmagiques
et aux deux premiers degrés) eulétiens (ou des S2/i2 officiers) de base Sn. — A. F,, 1905, Le
carré trimagique de 128 (magique aux trois premiers degrés). — C. H., 1906, Sur un carré
magique, note présentée par H. Poincaré et annonçant la possibilité de construire des carrés
n magiques (magiques aux n premiers degrés). — Soc. Philom., 1907, La magie arith. dévoilée.
— Soc. math., 1911, Sur la magie arith.

2 iur un carré magique supposé répété à droite et à gauche, au-dessus et au-dessous, on
promène un carton percé de fenêtres de la dimension des cases. Il y a des dispositions de ces
fenêtres telles que la somme des nombres vus on même temps est constante quelle que soit
la position du carton sur le carré magique: une semblable disposition est une constellation,
qui, par conséquent, constitue la magie la plus générale qui puisse être imaginée, surtout si
on étend cette conception aux espaces supérieurs. M. Tarry a calculé qu'un carré magique
de module n comporte {n — 1)! constellations différentes et ((n — 1) !]wl~l s'il est oénéralisé
dans l'espace cà m dimensions. (Voir O. An nous, Espaces arith., p. 75 et seq.j
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