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L'UTILISATION
DE LA

" GEOMETRIE NON-EUCLIDIENNE
DANS LA PHYSIQUE DE LA RELATIVITE

Henri Poincaré a montré que lespace représentatif n’est ni
homogene, ni isotrope, ni forcémenl a trois dimensions; qu’il
peut s’adapter & une foule de géométries différentes, et qu’il est
simplement commode de raisonner sur lui comme s’il était un
continu mathématique a trois dimensions auquel on applique la
métrique d’Euclide. Ce choix de la géométrie euclidienne a trois
dimensions, parmi toutes les autres possibles, se légitime par des
raisons de simplicité mathématique et d’opportunisme physique.
L.a géométrie d’Euclide est plus simple que la géométrie de
LLobatschefski et de Riemann comme un polyndme du premier
degré est moins compliqué qu’un polyndme du second; et les
solides naturels — en particulier notre corps — avec lesquels nous
effectuons nos mesures se comportent, a peu pres, dans leurs
déplacements comme les substitutions du groupe euclidien. Mais
I’expérience ne nous impose pas pour cela notre géométrie : elle
nous montre seulement qu’elle est la plus commode

On pourrait ala rigueur se servir des géométries de L.obatschefski
et de Riemann pour construire la mécanique et la physique. L'af-
firmation méme que la géoméirie d’Euclide est mathématique-
ment la plus simple ne se passe pas de commentaires. [.e principe
de dualité qui est évident dans la géométrie de Riemann et dans
la géométrie analytique de l.obatschefski, ne 'est pas dans celle
d’Euclide ; la théorie de 'équivalence des figures planes, aisée
en géométrie non-euclidienne est compliquée en géométrie ordi-
naire des que 'on veut se donner la peine d’étre rigoureux. 1. as-
sertion de Poincaré ne se défend que par une interprétation
particuliere — tres remarquable d’ailleurs — de la géométrie
non-euclidienne. Considérons les coordonnées rectangulaires
euclidiennes z, y, z d’'un point et les coordonnées correspon-
dantes &, », ¢ en géométrie lobatschefskienne : savoir le sinus des
rapports des distances de ces trois points aux trois plans coor-
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donnés a la constante lobatschefskienne 2/4. Posons
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ou, en prenant le radical positivement,
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on trouvera alors qu’a tout point (&, », | de U'espace lobatschef-
skien correspond un point de l'espace euclidien situé au-dessus
du plan fondamental {=0; au plan et a la droite du premier
espace, une sphere et un cercle coupant orthogonalement le plan
fondamental ; a la spheére, au cercle et a 'angle lobatschefskiens,
une spheére, un cercle et un angle euclidiens; a la distance lobat-
schefskienne de deux points, le logarithme du rapport anharmo-
nique de ces deux points et des iniersections du plan fondamental
avec un cercle passant par ces deux points et le coupant ortho-
gonalement, etc. La transformation ainsi obtenue des propriétés
de 'espace lobatschefskien en propriétés d’'un demi-espace eucli-
dien, leur confére une apparence compliquée : & certaines expres-
sions lobatschefskiennes du premier degré, correspondent des
expressions euclidiennes du second. En ce sens, ce n'est pas a
proprement parler, la géométrie lobatschefskienne mais seulement
sa transformée euclidienne qui est moins simple que la géométrie
ordinaire.

Il y a plus. On peut se demander si, réellement, les mouvements
de nos solides naturels se comportent, a peu prés, suivant les
substitutions du groupe euclidien, et non, par exemple, suivant
celles du groupe de Lobatschefski? Les raisons d’opportunisme
physique invoquées en faveur de la géométrie du savant grec se
retourneraient alors au bénéfice de celle du savant russe. Clest
précisément la révolution que vient d’opérer, selon M. Vladimir
Varicak !, la substitution de la nouvelle physique de la relativité
a ’ancienne.

A premicre vue, les analogies entre cette physique nouvelle et
la géométrie non-euclidienne sont frappantes. Dans l'une comme
dans l'autre intervient un certain parvametre, appelé respective-
ment courbure spatiale et vitesse de la lumitre, tels que 'on est
tout naturellement conduit & mesurer le rayon de courbure spatiale
par la vitesse de la lumiere. Dans 'une comme dans l'autre, ce
parametre est une grandeur finie; et, pour une valeur infinie

1 Physikalische Zeitschrift 11, pp. 93, 287, 586, 1910; 12, pp. 169, 1911 — Sitzungsberichte der
K. serbischen Akademie zu Belgrad, p. 88, 1911 — Jahresbericht der deutschen Mathematiker-
Vereinigung, 1912 — Wiadomosci matematyczne, 4, 1913 — Primjedbe o teoriji relativnosti,
prestampano iz 1908. Kerjige « Rada » Jugoslavenske akademije znanosti i umjetnosti, 1913.
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qu’on lui accorde, on retrouve, respectivement, la géométrie d’Eu-
clide et la mécanique de Newton comme cas limites. A la contrac-
tion de Lorentz dans la physique de la relativité correspond la
déformation des largeurs dans l'interprétation euclidienne four-
nie par Poincaré de la géométrie lobatschefskienne, ou I'élément
linéaire do :f};—s ne se peut déplacer, en général, sans subir de
déformations. Dans la physique de la relativité, la regle du paral-
lélogramme des vitesses cesse d’étre valable : il n’y a pas de
parallélogramme dans la géométrie de Lobatschefski. Le déve-
loppement de celle-ci s’est heurté a de nombreuses antinomies
apparentes : il en est de méme du développement de celle-la avec
les paradoxes d’Ehrenfest et de Born.

Ces analogies conduisirent M. Vladimir Varicak a exprimer les
équations de la physique d’Einstein a l'aide de la géométrie de
Lobatschefski. 1l lui apparut bien vite que, non seulement les for-
mules se simplifiaient, mais qu’elles acquéraient une signification
géométrique en absolue corrélation avec l'interprétation de la
théorie classique au moyen de la géométrie d’Euclide. Cette simi-
litude va si loin qu’il n’y a pas lieu, parfois, de modifier I'énoncé
des théoremes de la théorie classique, a la seule condition de
substituer aux figures euclidiennes les figures correspondantes
de la géométrie lobatschefskienne, en prenant pour constante
spatiale le parametre ¢ = 3. 10" cm. La géométrie de Lobatschef-
ski se présente ainsi comme l'instrument le plus adéquatement
approprié au traitement mathématique de la physique de la rela-
tivité. Elle revendique pour son compte la précellence attribuée
jusqu’a nos jours a celle d’Euclide.

Définition et représentation graphigue des vitesses.—l.a vitesse de
la lumiere joue dans la physique nouvelle le role de la vitesse infi-
nie dans la mécanique ancienne. M. Vladimir Varicak commence
par définir la vitesse de maniére a représenter celle de la lumiere
par une grandeur infinie. Comme unité de longueur, il prend
¢ =3 .10 em, c’est-a-dire le parcours de la lumieére en une
seconde, et il pose

14 ]

il

o =S th_—J — thu
¢ ¢

’

ala vitesse ¢ correspond le segment U dont la longueur est mesurée
par le nombre « d’apres la relation

—_ N
(2) w=—th™ "=
C

N ~ . 0N " Y .- . ' . ’ ~ .
’ Suivant la maniére d’écrire anglaise, (2) représente la fonction
inverse de la tangente hyperbolique. Cette définition ne differe
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pas considérablement de la conception ordinaire que nous nous
faisons des vitesses. Pour représenter des mouvements uniformes
on se sert, dans la mécanique classique, de vecteurs proportion-
nels aux vitesses en question. Dans les limites de notre expérience
ordinaire, la formule (2) conduit aux mémes résultats. C’est seule-
ment pour des vitesses de 'ordre de celle de la lumiere, que se
révele une divergence croissante qui tend bien vite a U'infini.
Nous avons posé

. U g L/vn3 L/ e\?
3 z:“:z+§&>+gﬁ>+-

Prenons maintenant ¢ = 1 km./sec., on obtient alors

1 1 1
3. 106’*’34.1015"Jr TR TE S

[

Si nous négligeons les termes de la série a droite du premier,
nous commettrons une erreur qui n'influera pas sur la dixiéme
décimale. Nous aurons alors un vecteur de 1 km. pour représenter
une vitesse de 1 km./sec. Si 'on considére des vitesses, énormes
pour la mécanique ordinaire, de 100 km./sec., on aura

.U 1 1 1

i S TER B COR TR S LT I A

et le segment U ne dépassera 100 km. que d’environ 3mm. La dif-
férence n’est pas encore pratiquement appréciable. A la vitesse de
100,000 km./sec. correspondra un segment de 103,990 km. ce qui
constitue, déja, une différence notable. Mais si nous considérons
les vitesses des rayons § qui, d’apres la célebre expérience de
Kaufmann, s'élevent a 216,000 et 279,780 km. /sec., les vecteurs qui
les représentent seront de 272,400 et 503,400 km. Enfin pour
p—conaurathu —=1,douU=w.

v
¢ /
7 ' /K_—_
0
U
e -7
/
Fig. 1.

On peut représenter ces rapports graphiquement d’une facon

. ) . 0 ;
fort simple. En prenant « comme abscisse et - comme ordonnée,
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(2) sera représenté par la courbe K. I’évaluation habituelle cor-
respond a la droite P, ¢’est-a-dire au premier membre de la série
infinie (3). Cette droite est la tangente de K au point d’inflexion O
a mesure qu’on s’éloigne de lorigine la courbe K s’en écarte tou-
jours davantage

La loi d’addition des yitesses dEuzstez/z — L’addition vecto-
rielle des vitesses se retrouve dans la physique de la relativité.
Considérons deux vitesses ¢, et ¢, qui comprennent entre elles
un angle a. Les segments U, et U, leur correspondent, que mesurent
les nombres «, et u, suivant la relation

(4) 2o th 77 2 — th Uy .

[ . C

On porte le segment OA = U, dans la direction de ¢, & paltlr
du point O, et 'on place sous I’ dngle o le segment AB=U,. La
résultante est exprimée par le vecteur OB =—= U. Le triangle lobat-
schefskien OAB comprend la relation

(9) ch u = ch wy ch gy 4+ sh uysh w, cos o .

Si 'on pose

(6) ch u — e . shu =

on obtient

189 COS O

14 22227

SV =T

¢

Vi‘ 2 f'g 2 {1 Vg 2
oy )
c) <1 +v1s2 (o~o'> | '
¢
<v1>"2 < > <s1v> 20195 COS o
— : (1 — cos” a) e
. A& c?

o V1 s COS (7 2
d’ou suit finalement

2 g _ 50y SIn oL\ 2
\/v1 + ¢, + 201ve cos @ — A R
- R

(7) -

i

Y1Vg COS &

1+ —=

C?
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C’est la loi d’Einstein pour la composition des vitesses.

Si ¢, et ¢, sont faibles par rapport a la vitesse de la lumiere on
peut négliger le dernier membre dans le numérateur et le déno-
minateur de 'expression (7), et on retrouvera la formule ordinaire

(8) o= \/vf + v, + 2vv, cos a .

Si l'on accorde au parameétre ¢ une valeur infinie, on retombe
dans la géométrie d’Euclide, et la formule (7) se réduit exacte-
ment a (9).

Si les vitesses ¢, et ¢, comprennent 'angle « = 0, elles ont la
méme direction, et 'on a, d’apres (5), w —=uwu, + w«,. La vitesse
résultante ¢ se déduit de la formule

th uy + th u,

th u =
“ 14 thuy thuy’

ou

9) Sk,

‘!1 ‘!

La résultante est certes arithmétiquement plus petite que la
somme des composantes, mais elle est représentée comme dans
la théorie classique, par un segment qui équivaut a la somme des
segments représentant les composantes. Si 'on compose deux
vitesses égales U, dans la méme direction, larésultante sera repré-
sentée par le %eoment 20U,

Non commutativite de Zaddzlzon vec torielle des vitesses. — Dans
la géométrie de lLobatschefski il n'y a pas de parallélogramme. La
résultante de deux vitesses ne peut donc étre représentée par la
diagonale d’un parallélogramme. Il s’ensuit ue les composantes
ne sont pas commutatives. Pour plus de simplicité, prenons deux

. . T; 2 A [ o
vitesses (qui forment 'angle a = 7 - D’apres la formule (5 nous
avons

(10) chu = chu; chu, |
d’ou l'on tire facilement

th? . — (h2u, 4+ th? 4y — th2uy th? u,

ou

(1) _\/v +v——<“—">2.
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Dans la figure (3) nous avons

OA — uy , AB = u, , OB=u .
%
Dans la géométrie h)perbohque la somme des angles d'un

triangle est toujours plus petite que deux droits. Dans le tri iangle
OAB on a par conséquent

oy - ag <

OT|

Portons le segment u«, dans la
direction OC normalement a OA,
et placons sous l'angle droit le
segment u, : nous atteignons le
point D, qui est différent de B.
Dans l'ancienne mécanique ces
deux points coincident. Si l'on
compose les vitesses suivant 'ordre
inverse, on obtient une résultante de méme grandeur, mais de
direction différente. l.a différence de direction

(12) = <4 BOD = — (og = o)

NI S|

peut facilement se représenter comme une fonction des compo-
santes. ‘

Silon introduit dans la formule

lgay 4 1g o,

13 \ cotg 0 —
(1s) cotgo 1 — tgoytga,

la valeur tirée du triangle lobatschefskien OAB

' th U4 ¢ th Us
By o —e o ,
8% th u, 5% th u,
‘on obtient
th w, shu th ugy shu
(14) colgo = i L+ . !

shuy; shuy — thuy thug '’

ce qui, par suite de (1) et de (6) se transforme en

\/ : >+\/1*<>

(15) colg 6 — i .
(\/"“ 1_22>
E ¢

Dans la géométrie de Lobatschefski il n’y a pas de figures
semblables. ll n’y a pas davantage, dans la théorie de la relativité,
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de similitude cinématique. Quand on multiplie toutes les compo-
santes par le nombre %, la résultante est /& fois plus grande dans
I'ancienne mécanique, mais non dans la nouvelle. On doit dessiner
toutes les figures avec leur grandeur absolue, et, comme 'unité
de longueur est trop grande, on ne peut en donner qu’une repré-
sentation schématique et tronquée.

Les coordonnées de Weierstrass. — Convenons maintenant de
prendre comme unité de longueur 1 cm., et de mesurer le temps
de facon que la vitesse de la lumiere soit'1 cm. par unité de temps.
Nous désignerons ce temps nouveau par /, et nous considérerons
une montre comme un simple instrument de mesure, propre a
indiquer combien de fois un méme phénomene s’est reproduit,
toujours dans les mémes conditions, depuis un événement déter-

miné choisi pour origine des
Z B temps. Nous exprimerons

5 ainsi l'indication du temps
d'une montre déterminée

toujours par un seul nom-

% M teme de quatre valeurs 2, v,

. : s, [ que nous considérerons

_r_ v - X comme les coordonnées ho-

0,__/ X P mogenes de Weierstrass d'un

J/ Z point dans un espace lobat-

/ schefskien a trois dimen-
sions.

T Par le point M (fig. 4) me-

N nons trois arcs d’horicycles

c normaux aux plans des coor-

Fig. 4. données; abaissons du méme

point trois perpendl(‘ulalre%

£ n, { sur ces plans et soient N, R, S les pieds des trois perpen-

diculaires,

|
| bre { = ct.
t Un événement élémentaire
A N sera repreésenté par un sys-
T T
l

%.1

/

%

X — OP , Y — PN | 7 — NM
seront les coordonnées lobatschefskiennes, et

x —=sht =shXchYchZ
y=shny=shY ¢hZ |
(16)

s = sh{ =shZ

b

[ =chk=1chXchYchZ,
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les coordonnées weierstrassiennes, exprimées en fonction des
premiéres, du point M. On trouve alors facilement que les arcs
d’horicycles MA, MB et MC sont les &, y, z en question, et que les
coordonnées weierstrassiennes de chaque point satistont a I’équa-
tion quadratique

o

(17) P —a? — P — =1

On sait le role de cet invariant dans 'interprétation imaginaire
a quatre dimensions de Minkowski.

Le groupe de transformations de Lorentz-FEinstein. — Le groupe
de Newton

(18) ' =x — vt g = p y =g =t

» ’

1

°

exprime une translation le long de la ligne des .r dans la géomé-
trie euclidienne. e groupe de Lorentz-Einstein
f — =0

' x — vt 2
(19) x = v o= =’ z ! —

s'interprete également comme une translation le long de I'axe des
« dans la géométrie de Lobatschefski.

Si nous demeurons dans le plan, nous pouvons dire : le groupe
de transformations de Lorentz-FEinstein définit un mouvement le
long des hypercycles qui ont Uaxe des x comme ligne médiane.

L’hypercycle Y = & est le lieu des points qui sont a une dis-
tance constante b de la ligne des x. l.a longueur de son arc com-
pris entre deux points M et M’ est (fig. 5)

(20) s = (X — X’jch b .

La translation du segment s le long de I'hypercycle dans le
sens négatif est donnée par les équations

) Y
21 X=X — Y =Y ; . ,
(21) : e’ L =1 M
PA ;\\M
pour le passage du point M’ au point £ ™~
M" on a
, %
S
XH — “/ —_— n f— /
cho’ ! R
a i
ou \2 2 X
, 0 N )
122) x":}\__stl“ Y =Y . &
cno
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d’out résulte la propriété qu'ont les translations le long d’un
hypercycle de former un groupe.
Soit « la projection NN" de 'arc MM’ sur I'axe des 4. On a alors
(23) V=X—u. Y=Y,

done
shX' = shX chu — chX shu

shY —shY

’

(24)

En multipliant la premiére équation par ch Y’ = ch Y, on obtient
(25) shX' ¢chY —mshXe¢hYchu —chXehYshu, shY —=shY
D’apres la figure (5) on a de plus
(26) ch OM’ = ¢h X" ch Y’ | oun ch? = ch(X — ujchY

cest-a-dire

(27) ch?”” = chXchYchu —shX chYshwu .

Jusqu'a présent nous avons appliqué les coordonnées lobat-
schefskiennes. Si nous voulons passer aux coordonnées weier-
strassiennes, nous devons nous servir des formules de transfor-
mation (16) qui permettent d’écrire les équations (26) et (27) sous
la forme

(28) x' = axchu — [shu , V=1, " =lchu — xshu
Si l'on pose d’apres la formule (6)
Y

1 ¢

—— , sh —m ——

Vi-G V()
Cc c

et [ = ¢t, on obtient aussitot le groupe de transformations de
l.orentz- hmstem sous son aspect habituel (19). Nous voyons ainsi
que la transformation de I'espace et du temps entrainée par un
mouvement uniforme de vitesse «, est complétement caractérisé
par la translation du point M représentant un événement élé-
mentaire.

Dans 'espace, on obtient les hypercycles qui ont l'axe des .r
pour ligne médiane comme lignes d’ mtersectlons de deux hyper-
spheres

chu =

9‘—6[2:0, :"'_d2:0)

dont les plans médians sont les plans des coordonnées XY et
XZ. L.e groupe de transformations de Lorentz-Einstein (28], auquel
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s'applique Déquation Z' = Z, se peut interpreter alors : comme
une (lranslation le long de la ligne d'intersection de ces deux
hyperspheres. La trajectoire d’'un point d’un corps solide emporté
d’'un mouvement de translation le long de l'axe des &, est un
hypercycle. l.es dimensions transversales du corps restent inva-
riables dans ce déplacement.

Si nous prenons le parameétre ¢ = «, la géométrie de Lobat-
schefski se changera dans celle d’Euclide; les horicycles .z, y, =
deviendront des lignes droites; les coordonnées de Welerstrass
se transformeront dans les coordonnées cartésiennes ordinaires ;
les hypercycles se trouveront étre des paralleles a l'axe des .v; au
groupe de transformations (28) ou (19) se substituera celui de
Newton (18).

La forme infinitésimale du groupe de Lorentz-Einstein est

) of  of
2 Uf= — 1l -~ —ax= .
291 = ox ol

Une premiere sorte d'invariants est formée par les hypereycles
Y == B )

(30) o(l,x) = — x*— 12 coth®b =0 .

[.es normales a I’axe des .« sont des invariants de seconde sorte

l
(31 wl{l,2) = — — cothu =20
2

car on a
Ulw) = —1 4+ 0w = F{w)

Avec les coordonnées rectangulaires lobatschefskiennes I'équation
de ces normales est X — w.

Temps local. — Si deux observateurs sont animés de vitesses
uniformes mais différentes suivant des directions paralleles, cha-
cun d’eux peut prétendre avec le méme bon droit qu’il est en
repos vis-a-vis de l'autre. Géométriquement parlant, cela veut
dire que nous pouvons toujours considérer un point d’'un plan
comme en repos, moyennant un changement convenable du
systeme de coordonnées. Il suffit pour cela d’abaisser la normale
de ce point sur 'axe des 2, et de prendre cette normale comme
nouvel axe des ordonnées. Mais dans cette transformation le para-
metre du temps est modifié.

[’'unité de temps de 1'observateur en un point déterminé doit
etre représentée par le cosinus hyperbolique de I'abscisse lobat-
schefskienne de ce point. Si dans un premier systéme (fig. 6),
'unité de temps de I'observateur en O ou en M est égale a (1)

;2

I'unité de temps de I'observateur en O’ ou M’ sera égale a chu,
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quand on pose 00" = «. Il semble alors & I'observateur en repos
en O, que la montre qui se meut avec la vitesse « reste avec la
sienne dans le rapport ch « : 1. Dans I’évaluation de la durée d’un
événement avec la montre mobile, I'observateur en repos doit
trouver un nombre plus petit. [.a relation suivante se vérifie

! 2
(32) oo — ou A t\/’l — (—V-> .
chu ¢

Mais, dans le second systeme, 'unité de temps de 'observatcur
en O est égal a «1», pendant que I'unité de temps de I'observateur
en O est égal a ch «. Les deux
Y Yy’ systemes sont entierement équi-
M , valents. On ne saurait donc parler
- ‘M d'une durée en soi. 1l n’est pas da-
" , vantage permis, en conséquence,
: d’accorder a la simultanéité de
! deux événements une signification
' absolue. Tel est bien le résultat
\ 3 des 1'echercl.1es d’Einstein sur la
0 3] Vo X=X" nouvelle notion, purement locale,
' du temps.
ig. 6. Conclusions. — Sans qu’il soit
besoin de poursuivre I'exposé
beaucoup plus complet de. M. Va-
ricak, qui s’étend a divers phénomenes d’optique et a la solution
des paradoxes d’Ehrenfest et de Born, les exemples précédents
suffisent a montrer comment la géométrie de lLobatschefski se
substitue naturellement a celle d’Euclide dans la physique de la
relativité. C'est en partant d’elle que M. Emile Borel est parvenu
a mettre en lumiere des conséquences (ui avaient jusqu’alors
échappé aux plus sagaces relativistes®: les observateurs qu'em-
porte un systéme peuvent le tenir pour constamment en transla-
tion, tandis qu’il apparait animé d’'un mouvement de rotation &
des observateurs extérieurs; d’ou la possibilité de rendre compte
des mouvements de rotation (ui apparaissent a des observateurs
en repos par des hypothéses ot les mouvements intrinséques sont
uniquement des mouvements de translation.
A quoi tient cetle convenance de la géométrie non-euclidienne
a la physique de la relativité ? M. Varicak semble 'interpréter par
une anisotropie géométrique de ’espace, qui rendrait compte en
particulier, de la contraction de Lorentz. Mais l'espace est un
continuum amorphe; il est dénué par lui-méme d’eflicace et de
forme, et seuls les corps quiy sont plongés, ou le réseau de lignes

1 C. R., 20 janvier 1913,
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et de surfaces qu'on convient d’'y tracer, lui en donnent une par
métaphore. La géométrie métrique est, non pas I'étude des pro-
priétés de l'espace, mais celle de la structure du groupe des
mouvements des corps solides et des groupes dérivés que Pon
peut former avec ce groupe fondamental. Alors, a s’en tenir au
point de vue purement descriptif d’Einstein, on voit que la notion
du corps solide ordinaire disparait dans la physique de la rela-
tivité. e groupe de transformations de l.orentz-Einstein corres-
pond non a des déplacements euclidiens, mais a des déplacements
hyperboliques. Au point de vue explicatif de l.orentz, les corps
se contractent dans le sens de leur mouvement et la variation de
leur forme est entrainée par 'équilibre entre les actions électro-
magnétiques des électrons qui les composent et la pression cons-
tante et uniforme de l'éther sur eux. - |

Est-ce a dire que la géométrie de Lobatschefski soit physique-
ment vraie et celle d’Ruclide fausse? La proposition n’a pas de
sens. On peut conserver la géométrie ordinaire pour traiter de la
physique de la relativité, et c’est-ce qu’ont fait Lorentz et Ein-
stein ; on peut aux trois coordonnées d’espace habituelles ajouter
une quatriéeme dimension imaginaire, et c¢’est ce qu’a fait Min-
kowski; on peut enfin se servir, si bon semble, de nouvelles
géométries comme celle que MM. Wilson et Lewis * se sont accor-
dés a construire. Chacune de ces interprétations a ses avantages
particuliers. Celle de M. Varicak, a l'aide de la géométrie de
Lobatschefski, sauvegarde le parallélisme entre les énoncés eucli-
diens de 'ancienne physique et ceux de la nouvelle. Le langage
d’univers de Minkowski révele des analogies insoupconnées: il y
a bien des maniéres de projeter l'espace a quatre dimensions
(x,1y, 7, t) sur 'espace a trois dimensions x, 7, 5, et le temps ¢
des phénomeénes ambigus et contradictoires dans un certain mode
de projection deviennent simples et harmonieux avec un autre.
Entfin, linterprétation méme de Minkowski conduit naturelle-
ment a la géométrie de MM. Wilson et Lewis, qui permet de
retrouver comme autant de théoremes, en partie, les invariants
physiques dont la présence en mécanique et en électromagné-
tisme est-entrainée par le principe de relativité.

Il y a la une confirmation surprenante, aprés coup, des theses
philosophiques d’Henri Poincaré sur Jla commodité géométrique.
Les axiomes de la géométrie ne sont pas des vérités nécessaires
qui s'imposeraient analytiquement & l'esprit ou synthétiquement
a priori a 'expérience, mais ce sont des-conventions commodes
en vertu de certaines particularités de notre corps et de notre

! Proceedings of the-american Academy of Arts and Sciences, nov. 1912, — Cf.. 4 un antre
point de vue, Larticle de M. Cailler (Geneve) sur les équations du principe de Relativité et de
la Géométrie : Archives des Sciences physiques et naturelles, t. XXXV, fév. 1913.

[’Enseignement mathém., 16¢ annce; 1914
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milieu. Or, précisément, une approximation plus poussée des
sciences physiques a conduit récemment certains savants a préfé-
rer d’autres géométries a celle d’Euclide, parce qu’elles expriment
plus commodément encore — dans certains cas du moins — les
phénomenes de notre univers. C’est ainsi qu’'une méme question
de physique mathématique est traitée par les uns et les autres a
l'aide des géométries réelles ou imaginaires, a trois ou quatre
dimensions, d’Euclide, de lLobatschefski, de Minkowski, de
MM. Wilson et Lewis. On ne saurait mieux montrer qu’il n’y a la
qu'une question de pure commodité ; et, en présence des concep-
tions nouvelles, le tranquille philosophe géometre est en droit de
conclure : « Nous avions adopté une convention parce qu’elle nous
semblait commode et nous disions que rien ne pourrait nous con-
traindre a 'abandonner. Aujourd’hui certains physiciens veulent
adopter une convention nouvelle; ils jugent cette convention nou-
velle plus commode, voila tout; et ceux qui ne sont pas de cet
avis peuvent légitimement conserver 'ancienne pour ne pas trou-
bler leurs vieilles habitudes?®
L. Roveier (Lyon).

EGALITES MULTIPLES? DE G. TARRY

Par suite de Uabondance des matiéres, nous avons di retarder la publi-
cation de cette intéressante Note du regretté G. Tavry. En nous envoyant le
manuscrit, M. Aubry nous écrit : « J'ai Uhonneur de vous adresser ci-joint
une étude de M. G. Tarry qui me parait des plus intéressantes et résultant
de fragments d’une conespondance active que nous avons depuzs quelque
temps fr(mmenls que j'ai réunis, coordonnés et présentés aussi clairement
que jai pu. M. Tarry étant malade se désintéressait de cette étude et jai
jugé qu’il serait regrettable qu’elle restdt inconnue, aussi je lui ai demandé

de m’autoriser a en solliciter Uinsertion dans '« Ens. math... » — On sait
que M. Tarry mourut le 21 juin 1913. N. pe ra Rép.
Dérinition. — légalité de plusieurs quantités est dite nvee

quand elle a lieu, en méme temps pourles carrés de ces quantités

1 H. PoiNcant, Derniéres pensées, p. 54.

2 Toute cette théorie est due a M. G. TARRY, dont on connait les beaux travaux, si originaux
et si suggeshfs, sur la geometne générale, la geometue de situation, les carvés magiques, la
géométrie modulaire et les imaginaires de Galoxs Je n’ai fait que rédiger, sous forme didac-
tique et avec son autorisation, ces curieuses démonstrations. aux résultats a la fois si élémen-
taires et si généraux, dont il avait bien voulu me faire part. J’y ai en outre ajouté, a titre
d’application, le cas particulier des égalités doubles (Note .I.) A. AuBry, Dijon.
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