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L'UTILISATION
DE LA

GÉOMÉTRIE NON-EUCLIDIENNE

DANS LA PHYSIQUE DE LA RELATIVITÉ

Henri Poincaré a montré que l'espace représentatif n'est ni
homogène, ni isotrope, ni forcément à trois dimensions; qu'il
peut s'adapter à une foule de géométries différentes, et qu'il est
simplement commode de raisonner sur lui comme s'il était un
continu mathématique à trois dimensions auquel on applique la
métrique d'Enclide. Ce choix de la géométrie euclidienne à trois
dimensions, parmi toutes les autres possibles, se légitime par des
raisons de simplicité mathématique et d'opportunisme physique.
La géométrie d'Euclide est plus simple que la géométrie de
Lobatschefski et de Riemann comme un polynôme du premier
degré est moins compliqué qu'un polynôme du second; et les
solides naturels — en particulier notre corps — avec lesquels nous
effectuons nos mesures se comportent, à peu près, dans leurs
déplacements comme les substitutions du groupe euclidien. Mais
l'expérience ne nous impose pas pour cela notre géométrie : elle
nous montre seulement qu'elle est la plus commode.

On pourrait à la rigueur se servir des géométries cle Lobatschefski
et de Riemann pour construire la mécanique et la physique.
L'affirmation même que la géométrie d'Euclide est mathématiquement

la plus simple ne se passe pas de commentaires. Le principe
de dualité qui est évident dans la géométrie de Riemann et dans
la géométrie analytique de Lobatschefski, ne l'est pas clans celle
d'Euclide ; la théorie de l'équivalence des figures planes, aisée
en géométrie non-euclidienne est compliquée en géométrie ordinaire

dès que l'on veut se donner la peine d'être rigoureux.
L'assertion de Poincaré ne se défend que par une interprétation
particulière — très remarquable d'ailleurs — de la géométrie
non-euclidienne. Considérons les coordonnées rectangulaires
euclidiennes x, y, z cl'un point et les coordonnées correspondantes

$, 7, £ en géométrie lobatsehefskienne : savoir le sinus des
rapports des distances de ces trois points aux trois plans coor-
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donnés à la constante lobatschefskienne 2k. Posons

2 kx
__

2 hy 2 k
' ~ **+?* +z*—k* ' V—xt+f + z' — P' * + y- + :-2 — k- '

ou, en prenant le radical positivement,

v » .r ~ ' ,r — v CV1'^ "t b~ — P — rr — 1

on trouvera alors qu'à tout point (£, 27, £) de l'espace lobatschef-
skien correspond un point de l'espace euclidien situé au-dessus
du plan fondamental ^ 0 ; au plan et à la droite du premier
espace, une sphère et 1.111 cercle coupant Orthogonalement le plan
fondamental ; à la sphère, au cercle et à l'angle lobatschefskiens,
une sphère, un cercle et un angle euclidiens ; à la distance
lobatschefskienne de deux points, le logarithme du rapport anharmo-
nique de ces deux points et des intersections du plan fondamental
avec un cercle passant par ces deux points et le coupant
orthogonalement, etc. La transformation ainsi obtenue des propriétés
de l'espace lobatschefskien en propriétés d'un demi-espace euclidien,

leur confère une apparence compliquée : à certaines expressions

lobaischefskiennes du premier degré, correspondent des
expressions euclidiennes du second. En ce sens, ce n'est pas à

proprement parler, la géométrie lobatschefskienne mais seulement
sa transformée euclidienne qui est moins simple que la géométrie
ordinaire.

Il y a plus. On peut se demander si, réellement, les mouvements
de nos solides naturels se comportent, à peu près, suivant les
substitutions du groupe euclidien, et non, par exemple, suivant
celles du groupe de Lobatschefski Les raisons d'opportunisme
physique invoquées en faveur de la géométrie du savant grec se
retourneraient alors au bénéfice de celle du savant russe. C'est
précisément la révolution que vient d'opérer, selon M. Vladimir
Varicak1, la substitution de la nouvelle physique de la relativité
à l'ancienne.

À première vue, les analogies entre cette physique nouvelle et
la géométrie non-euclidienne sont frappantes. Dans l'une comme
clans l'autre intervient un certain paramètre, appelé respectivement

courbure spatiale et vitesse de la lumière, tels que l'on est
tout naturellement conduit à mesurer le rayon de courbure spatiale
par la vitesse de la lumière. Dans l'une comme dans l'autre, ce

paramètre est une grandeur finie ; et, pour une valeur infinie

1 Physikalische Zeitschrift 11, pp. 93, 287, 586, 1910; 12, pp. 169, 1911 — Sitzungsberichte der
K. serbischen Akademie zu Belgrad, p. 88, 1911 —Jahresbericht der deutschen Mathematiker-
Vereinigung, 1912 — Wiadomosci matematyczne, 4, 1913 — Primjedbe o teoriji relativnosti,
prestampano iz 1908. Kerjige « Rada » Jugoslavenske akademije znanosli i umjetnosti, 1913.
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qu'on lui accorde, on retrouve, respectivement, la géométrie d'Eu-
clide et la mécanique de Newton comme cas limites. A la contraction

de Lorentz dans la physique de la relativité correspond la
déformation des largeurs dans l'interprétation euclidienne fournie

par Poincaré de la géométrie lobatschefskienne, où l'élément
dslinéaire cl<s — ne se peut déplacer, en général, sans subir de
y

déformations. Dans la physique de la relativité, la règle du
parallélogramme des vitesses cesse d'être valable : il n'y a pas de
parallélogramme dans la géométrie de Lobatschefski. Le
développement de celle-ci s'est heurté à de nombreuses antinomies
apparentes : il en est de même du développement de celle-là avec
les paradoxes d'Ehrenfest et de Born.

Ces analogies conduisirent M. Vladimir Yaricàk à exprimer les
équations de la physique d'Einstein à l'aide de la géométrie de
Lobatschefski. 11 lui apparut bien vite que, non seulement les
formules se simplifiaient, mais qu'elles acquéraient une signification
géométrique en absolue corrélation avec l'interprétation de la
théorie classique au moyen de la géométrie d'Eu elide. Cette
similitude va si loin qu'il n'y a pas lieu, parfois, de modifier l'énoncé
des théorèmes de la théorie classique, à la seule condition de
substituer aux figures euclidiennes les figures correspondantes
de la géométrie lobatschefskienne, en prenant pour constante
spatiale le paramètre c — 3 tO10 cm. La géométrie de Lobatschefski

se présente ainsi comme l'instrument le plus adéquatement
approprié au traitement mathématique de la physique de la
relativité. Elle revendique pour son compte la précellence attribuée
jusqu'à nos jours à celle d'Euclide.

Définition et représentation graphique des vitesses. — La vitesse de
la lumière joue clans la physique nouvelle le rôle de la vitesse infinie

dans la mécanique ancienne. M. Vladimir Va rie à k commence
par définir la vitesse de manière à représenter celle de la lumière
par une grandeur infinie. Comme unité cle longueur, il prend
c 3 iO10 cm, c'est-à-dire le parcours de la lumière en une
seconde, et il pose

(1) - z= th -Ih
c ' c

à la vitesse v correspond le segment U dont la longueur est mesurée
par le nombre u d'après la relation

(2) u — Lh—1 V
c

Suivant la manière d'écrire anglaise, (2) représente la fonction
inverse de la tangente hyperbolique. Cette définition ne diffère
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pas considérablement de la conception ordinaire que nous nous
faisons des vitesses. Pour représenter des mouvements uniformes
on se sert, dans la mécanique classique, de vecteurs proportionnels

aux vitesses en question. Dans les limites de notre expérience
ordinaire, la formule (2) conduit aux mêmes résultats. C'est seulement

pour des vitesses de l'ordre de celle de la lumière, que se
révèle une divergence croissante qui tend bien vite à l'infini.

Nous avons posé

(3)
U r i- u — - + -c c 6 +

Prenons maintenant v 1 km./sec., on obtient alors

1,1 1

" - ;F~n7* + ï3" 1015 5 35 101'6 +

Si nous négligeons les termes de la série à droite du premier,
nous commettrons une erreur qui n'influera pas sur la dixième
décimale. Nous aurons alors un vecteur de ikm. pour représenter
une vitesse de 1 km./sec. Si l'on considère des vitesses, énormes
pour la mécanique ordinaire, de 100 km./sec., on aura

1 1

3 102
1

3 33 109
1

5 3S 10+
1

+

et le segment U ne dépassera 100km. que d'environ 3mm. La
différence n'est pas encore pratiquement appréciable. A la vitesse de
100,000 km./sec. correspondra un segment de 103,990 km. ce qui
constitue, déjà, une différence notable. Mais si nous considérons
les vitesses des rayons ß qui, d'après la célèbre expérience de
Kaufmann, s'élèvent à 216,000 et 279,780 km./sec., les vecteurs qui
les représentent seront de 272,400 et 503,400 km. Enfin pour
v — c on aura th. u — 1, d'où U co

Fig. 1. Fig. 2.

On peut représenter ces rapports graphiquement d'une façon

fort simple. En prenant a comme abscisse et — comme ordonnée,
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(2) sera représenté par la courbe K. L'évaluation habituelle
correspond à la droite P, c'est-à-dire au premier membre cle la série
infinie (3). Cette droite est la tangente de K au point d'inflexion O ;

à mesure qu'on s'éloigne de l'origine la courbe K s'en écarte
toujours davantage.

La loi cÉaddition des vitesses d'Einstein. — L'addition vectorielle

des vitesses se retrouve dans la physique de la relativité.
Considérons deux vitesses Pi et v2 qui comprennent entre elles
un angle a. Les segments U1 et U2 leur correspondent, que mesurent
les nombres ui et

'

m2 suivant la relation

z f, ri r2
(4) - zz: th Ut — — In u2

c c

On porte le segment OA zzr U1 dans la direction de vi à partir
du point O, et l'on place sous l'angle a le segment AB U2. La
résultante est exprimée par le vecteur OB — U. Le triangle lobat-
schefskien OAB comprend la relation

(5) ch u ch ui ch u2 -j- sh «ish u2 cos a

Si l'on pose

(6) ch u

on obtient

/ > o 11 tt, - ^—— —

vM.)'

JTZTTf^EAï V7

V \c / ^
*'!c2 cos a

et, après quelques transformations,

-(-) -o• i

CiC-2 cos a\-
I „2

+ '1

r2 \ (Vic2\ « 2ciC2 cos a+ (-)-( V) .11 -cos-'a) +

d'où suit finalement

,j
CiC2 cos «

4 /,,2 i (.2 i q (ri c2 sin aY2

y v± + 2 + eos a — (—-L—1
J

i'ic2 cos a
I

_ 9
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C'est la loi d'Einstein pour la composition des vitesses.
Si vi et sont faibles par rapport à la vitesse de la lumière on

peut négliger le dernier membre dans le numérateur et le
dénominateur de l'expression (7), et on retrouvera la formule ordinaire

(8) c \/V + t'I + 21'^ oos

Si l'on accorde au paramètre c une valeur infinie, on retombe
dans la géométrie d'Euclide, et la formule (7) se réduit exactement

à (9).
Si les vitesses v1 et v2 comprennent l'angle a — 0, elles ont la

même direction, et l'on a, d'après (5), 11 11^ n2. La vitesse
résultante v se déduit de la formule

tli -j— ih 11%

1 —j— ih k-± t h 1I2

*'i + *'2

OU

(9)

La résultante est certes arithmétiquement plus petite que la
somme des composantes, mais elle est représentée, comme dans
la théorie classique, par un segment qui équivaut à la somme des

segments représentant les composantes. Si l'on compose deux
vitesses égales U1 dans la même direction, la résultante sera
représentée par le segment 2U2.

Non commit tativité de l'addition vectorielle des vitesses. — Dans
la géométrie de Lobatschefski il n'y a pas de parallélogramme. La
résultante de deux vitesses ne peut donc être représentée par la
diagonale d'un parallélogramme. 11 s'ensuit que les composantes
ne sont pas com imitatives. Pour plus de simplicité, prenons deux

vitesses qui forment l'angle a ~ D'après la formule (5) nous

avons

(10) ch u — ch ifi ch Ui

d'où l'on tire facilement

lh2 u t=. lh8 ui -f- th2 — ih2 ut ih2 u2

OU

(11) ••=v/<+'î-(r)*
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Dans la figure (3) nous avons

OA Ui > AB m u2 OB ir u

Dans la géométrie hyperbolique, la somme des angles d un

triangle est toujours plus petite que deux droits. Dans le triangle
OAB on a par conséquent

al + a2
0

u
2

B

Portons le segment u.2 dans la
direction OC normalement à OA,
et plaçons sous l'angle droit le
segment ni : nous atteignons le
point D, qui est différent de B.
Dans l'ancienne mécanique ces
deux points coïncident. Si l'on
compose les vitesses suivant l'ordre
inverse, on obtient une résultante de même grandeur, mais de
direction différente. La différence de direction

U
1

Fis- 3.

D

(12) o — <L BOD A — (ai _j_ a2)

peut facilement se représenter comme une fonction des composantes.

Si l'on introduit dans la formule

(13) cotg o :
tg ai + 1g a2

1 — t g at tg a2

la valeur tirée du triangle lobatschefskien OAB

on obtient

(14)

th ut
1 g a.i — -—tli u2

tg a2
th u2

th u±

th ut sh u± -4- th u2 sh u±
cotg 0

s h ut s h u2 — th Ui th u2

ce qui, par suite de (1) et de (6) se transforme en

(15) cotg B zzz

Dans la géométrie de Lobatscbefski il n'y a pas de figures
semblables. 11 n'y a pas davantage, dans la théorie de la relativité,
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de similitude cinématique. Quand on multiplie toutes les composantes

par le nombre k, la résultante est k fois plus grande dans
l'ancienne mécanique, mais non dans la nouvelle. On doit dessiner
toutes les figures avec leur grandeur absolue, et, comme l'unité
de longueur est trop grande, on ne peut en donner qu'une
représentation schématique et tronquée.

Les coordonnées de Weierstrass. — Convenons maintenant de

prendre comme unité de longueur i cm., et de mesurer le temps
de façon que la vitesse de la lumière soit 1 cm. par unité de temps.
Nous désignerons ce temps nouveau par l, et nous considérerons
une montre comme un simple instrument de mesure, propre à

indiquer combien de fois un même phénomène s'est reproduit,
toujours dans les mêmes conditions, depuis un événement déter¬

miné choisi pour origine des

temps. Nous exprimerons
ainsi l'indication du temps
d'une montre déterminée
toujours par un seul nombre

l et.
Un événement élémentaire

sera représenté par un
système de quatre valeurs .r, y,
r., I que nous considérerons
comme les coordonnées
homogènes de Weierstrass d'un
point dans un espace lobat-
schefskien à trois dimensions.

Par le point M (fig*. 4)

menons trois arcs d'horicycles
normaux aux plans des
coordonnées; abaissons du même
point trois perpendiculaires

S, 37, £ sur ces plans, et soient N, R, S les pieds des trois
perpendiculaires,

X OP Y — PN Z — NM

Fig. 4.

seront les coordonnées lobatschefskiennes, et

(16)

x — sh Ç — sh X ch Y cli Z

v sh y] — sh Y ch Z

r- ~ sht ~ sh Z

l ch X ch X chY ch Z
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les coordonnées weierstrassiennes, exprimées en fonction des

premières, da point M. On trouve alors facilement que les arcs
d'horicycles MA, MB et MC sont les xf y, z en question, et que les
coordonnées weierstrassiennes de chaque point satisfont à l'équation

quadratique
(17) P — .x-2 — y2 — z2 1

On sait le rôle de cet invariant dans l'interprétation imaginaire
à quatre dimensions de Minkowski.

Le groupe de transformations de Lo refitz- Lins te in. — Le groupe
cle Newton

(18) x' — x — vt y' — y z' — z tf — t

-exprime une translation le long de la ligne des x dans la géométrie
euclidienne. Le groupe de Lorentz-Einstein

s'interprète également comme une translation le long de l'axe des
x dans la géométrie de Lobatsehefski.

Si nous demeurons dans le plan, nous pouvons dire : le groupe
de transformations de Lorentz-Einstein définit un mouvement le
long des hypercycles qui ont l'axe des x comme ligne médiane.

L'hypercycle Y — h est le lieu des points qui sont à une
distance constante b de la ligne des x. La longueur de son arc compris

entre deux points M et M' est (fig. 5)

(20) 5 (X — X'jch b

La translation du segment s le long de l'hypercycle dans le
sens négatif est donnée par les équations

(21) X' X — JL V Y :

en 6

pour le passage du point M' au point
M" on a

(22) X" X - t±Y y" Y ;

eh b
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d'où résulte la propriété qu'ont les translations le long d'un
hypereycle de former un groupe.

Soit ti la projection NN' de l'arc MM' sur Taxe des x. On a alors

(23) X' X — u Y" Y

donc
sh X' n sh X ch u — ch X sh u

124)
sh Y' s (Ii Y

En multipliant la première équation par ch Y' — chY, on obtient

(25) sh X' ch Y' sh X ch Y ch u — ch X ch Y sh u sh Y' — sh Y

D'après la figure (5) on a de plus

(26) ch OM' — cli X' ch Y' ou ch r — ch (X — u) ch Y

c'est-à-dire

(27) ch r' — ch X ch Y ch u — sh X ch Y sh u

Jusqu'à présent nous avons appliqué les coordonnées lobai-
schefskiennés. Si nous voulons passer aux coordonnées weier-
strassiennes, nous devons nous servir des formules de transformation

(16) qui permettent d'écrire les équations (26) et (27) sous
la forme

(28) xf zzz xch u — / sh u y' zzz y /' — / ch u — X sli u

Si Ton pose d'après la formule (6)
V

1
1

c
ch u — —. sh u —

v/'-œ*
et / — cY, on obtient aussitôt le groupe de transformations de
Eorentz-Einstein sous son aspect habituel (19). Nous voyons ainsi
que la transformation de l'espace et du temps entraînée par un
mouvement uniforme de vitesse n, est complètement caractérisé
par la translation du point M représentant un événement
élémentaire.

Dans l'espace, on obtient les hypercycles qui ont l'axe des x
pour ligne médiane comme lignes d'intersections de deux hyper-
spheres

y — d% — 0 - — d2 — 0

dont les plans médians sont les plans des coordonnées XY et
XZ. Ee groupe de transformations de Lorentz-Einstein (28), auquel
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s'applique l'équation IJ — Z, se peut interpréter alors : comme

une translation le long de la ligne d'intersection de ces deux

hyperspheres. La trajectoire d'un point d un corps solide enrpoité
d'un mouvement de translation le long de laxe des x, est un

hypercycle. Les dimensions transversales clu corps restent
invariables dans ce déplacement.

Si nous prenons le paramètre c — ce la géométrie de Lobat-
schefski se changera clans celle d'Euclide ; les horicycles xy y, .s

deviendront des lignes droites ; les coordonnées de Weierstrass
se transformeront clans les coordonnées cartésiennes ordinaires ;

les hypercycles se trouveront être des parallèles à 1 axe des x ; au

groupe de transformations (28) ou (19) se substituera celui de

Newton (18}«
La forme infinitésimale du groupe de Lorentz-Linstein est

,-»1

Une première sorte d'invariants est formée par les hypercycles
Y b

(30) o)(l, x) — L2 — x2 — r2 colli2 b — 0

Les normales à l'axe des x sont des invariants de seconde sorte

(31) toil, x) —— — -colli il — 0
1

X

car on a

U(to) — 1 A~ 0)2 — F (w) •

Avec les coordonnées rectangulaires lobatschefskiennes l'équation
de ces normales est X u.

Temps local. — Si deux observateurs sont animés de vitesses
uniformes mais différentes suivant des directions parallèles, chacun

d'eux peut prétendre avec le même bon droit qu'il est en
repos vis-à-vis de l'autre. Géométriquement parlant, cela veut
dire que nous pouvons toujours considérer un point d'un plan
comme en repos, moyennant un changement convenable du
système de coordonnées. Il suffît pour cela d'abaisser la normale
de ce point sur l'axe des x, et de prendre cette normale comme
nouvel axe des ordonnées. Mais clans cette transformation le
paramètre du temps est modifié.

L'unité de temps de l'observateur en un point déterminé doit
être représentée par le cosinus hyperbolique de l'abscisse lobat-
schefskienne de ce point. Si clans un premier système {fig. 6),
l'unité de temps de l'observateur en 0 ou en M est égale à (1),
l'unité de temps de l'observateur en 0' ou M' sera égale à ch u,
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quand 011 pose 00' u. 11 semble alors à l'observateur en repos
en 0, que la montre qui se meut avec la vitesse u reste avec la
sienne dans le rapport ch a : 1. Dans revaluation de la durée d'un
événement avec la montre mobile, l'observateur en repos doit
trouver un nombre plus petit. La relation suivante se vérifie

(32) V
ch u

tf V'-Q'
en 0' est égal à «1

N\0'

Mais, dans le second système, l'unité de temps de l'observateur
pendant que l'unité de temps de l'observateur

en O est égal à ch u. Les deux
systèmes sont entièrement
équivalents. On ne saurait donc parler
d'une durée en soi. 11 n'est pas
davantage permis, en conséquence,
d'accorder à la simultanéité de
deux événements une signification
absolue. Tel est bien le résultat
des recherches d'Einstein sur la
nouvelle notion, purement locale,
du temps.

Fîg. 6. Conclusions. — Sans qu'il soit
besoin de poursuivre l'exposé
beaucoup plus complet de M. Va-

ricâk, qui s'étend à divers phénomènes d'optique et à la solution
des paradoxes d'Ehrenfest et de Born, les exemples précédents
suffisent à montrer comment la géométrie de Lobatschefski se
substitue naturellement à celle d'Euclide dans la physique de la
relativité. C'est en partant d'elle que M. Emile. Borel est parvenu
à mettre en lumière des conséquences qui avaient jusqu'alors
échappé aux plus sagaces relativistes 1

: les observateurs qu'emporte

un système peuvent le tenir pour constamment en translation,

tandis qu'il apparaît animé d'un mouvement de rotation à

des observateurs extérieurs ; d'où la possibilité de rendre compte
des mouvements de rotation qui apparaissent à des observateurs
en repos par des hypothèses où les mouvements intrinsèques sont
uniquement des mouvements de translation.

A quoi tient cette convenance de la géométrie non-euclidienne
à la physique de la relativité M. Varicàk semble l'interpréter par
une anisotropic géométrique de l'espace, qui rendrait compte en
particulier, de la contraction cle Lorentz. Mais l'espace est un
continuum amorphe ; il est dénué par lui-même d'efficace et de
forme, et seuls les corps qui y sont plongés, ou le réseau de lignes

1 C. R., 20 janvier 1913.
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et de surfaces qu'on convient d'y tracer, lui en donnent une par
métaphore. La géométrie métrique est, non pas l'étude des

propriétés de l'espace, mais celle de la structure du groupe des

mouvements des corps solides et des groupes dérivés que l'on
peut former avec ce groupe fondamental. Alors, à s'en tenir au

point de vue purement descriptif d'Einstein, on voit que la notion
du corps solide ordinaire disparaît dans la physique de la
relativité. Le groupe de transformations de Lorentz-Einstein correspond

non à des déplacements euclidiens, mais à des déplacements
hyperboliques. Au point de vue explicatif de Lorentz, les corps
se contractent dans le sens de leur mouvement et la variation de

leur forme est entraînée par l'équilibre entre les actions
électromagnétiques des électrons qui les composent et la pression constante

et uniforme de l'éther sur eux. •

Est-ce à dire que la géométrie de Lobatsehefski soit physiquement

vraie et celle d'Euclide fausse? La proposition n'a pas de

sens. On peut conserver la géométrie ordinaire pour traiter de la
physique de la relativité, et c'est ce qu'ont fait Lorentz et
Einstein ; on peut aux trois coordonnées d'espace habituelles ajouter
une quatrième dimension imaginaire, et c'est ce qu'a fait
Minkowski ; on peut enfin se servir, si bon semble, de nouvelles
géométrie s comme celle que MM. Wilson et Lewis 1 se sont accordés

à construire. Chacune de ces interprétations a ses avantages
particuliers. Celle de M. Varicâk, à l'aide de la géométrie de
Lobatsehefski, sauvegarde le parallélisme entre les énoncés euclidiens

de l'ancienne physique et ceux de la nouvelle. Le langage
d'univers de Minkowski révèle des analogies insoupçonnées : il y
a bien des manières de projeter l'espace à quatre dimensions
Ce, ;//, .y, t) sur l'espace à trois dimensions /r, y, ^ et le temps t ;
des phénomènes ambigus et contradictoires dans un certain mode
de projection deviennent simples et harmonieux avec un autre
Enfin, l'interprétation même de Minkowski conduit naturellement

à la géométrie de MM. Wilson et Lewis, qui permet de
retrouver comme autant de théorèmes, en partie, les invariants
physiques dont la présence en mécanique et en électromagnétisme

est entraînée par le principe de relativité.
Il y a là une confirmation surprenante, après coup, des thèses

philosophiques d'Henri Poincaré sur la commodité géométrique.
Les axiomes de la géométrie ne sont pas des vérités nécessaires
qui s'imposeraient analytiquement à l'esprit ou synthétiquement
a priori à l'expérience, mais ce sont des conventions commodes
en vertu de certaines particularités de notre corps et de notre

1 Proceedings of the american Academy of Arts and Sciences, nov. 1912. — Cf.. à un entre
point de vue, l'article de M. Cailler (Genève) sur les équations du principe de Relativité et de
la Géométrie : Archives des Sciences physiques et naturelles, t. XXXV, fév. 1013.

L'Enseignement m a thém., 16e année; 1914
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milieu. Or, précisément, une approximation plus poussée des
sciences physiques a conduit récemment certains savants à préférer

d'autres géométries à celle d'Euclide, parce qu'elles expriment
plus commodément encore — dans certains cas du moins — les
phénomènes de notre univers. C'est ainsi qu'une même question
de physique mathématique est traitée par les uns et les autres à
1 aide des géométries réelles ou imaginaires, à trois ou quatre
dimensions, d'Euclide, de Lobatschefski, de Minkowski, de
MM. Wilson et Lewis. On ne saurait mieux montrer qu'il n'y a là
qu'une question de pure commodité; et, en présence des conceptions

nouvelles, le tranquille philosophe géomètre est en droit de
conclure : « Nous avions adopté une convention parce qu'elle nous
semblait commode et nous disions que rien ne pourrait nous
contraindre à l'abandonner. Aujourd'hui certains physiciens veulent
adopter une convention nouvelle; ils jugent cette convention nouvelle

plus commode, voilà tout; et ceux qui ne sont pas de cet
avis peuvent légitimement conserver l'ancienne pour ne pas troubler

leurs vieilles habitudes 1 ».
L. Rough:h (Lyon).

ÉGALITÉS MULTIPLES2 DE G. TARRY

Par suite de L'abondance des matières, nous avons dû retarder La publication.

de cette intéressante Note du regretté G. Takry. En nous envoyant Le

manuscrit, M. Aubry nous écrit : « J'ai l'honneur de vous adresser ci-joint
une étude de M. G. Tarry qui me paraît des plus intéressantes et résultant
de fragments d'une correspondance active que nous avons depuis quelque
temps, fragments que j'ai réunis, coordonnés et présentés aussi clairement
que j'ai pu. M. Tarry étant malade se désintéressait de cette étude et j'ai
jugé qu'il serait regrettable qu'elle restât inconnue, aussi je lui ai demandé
de m'autoriser â en solliciter l'insertion dans l'a Ens. math... » — On sait
que M. Tarry mourut le 21 juin 1913. N. de la Réd.

Définition. — L'égalité de plusieurs quantités est dite /?uple

quand elle a lieu, en même temps pour les carrés de ces quantités,

1 H. Foi Ne a m':, Dernières pensées, p. 54.
2 Toute cette théorie est due à M. G. Tarry, dont on connaît les beaux travaux, si originaux

et si suggestifs, sur la géométrie générale, la géométrie de situation, les carrés magiques, la
géométrie modulaire et les imaginaires de Galois. Je n'ai fait que rédiger, sous forme didactique

et avec son autorisation, ces curieuses démonstrations, aux résultats à la fois si élémentaires

et si généraux, dont il avait bien voulu me faire part. J'y ai en outre ajouté, à titre
d'application, le cas particulier des égalités doubles (Note .1.) A. Aubry, Dijon.
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