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droites parallèles pr,p'r' et qs, ?V5 sa trace sur le second

bissecteur est rs, r's'qui coupe 1 en Le plan de bout p r par

exemple, coupe la droite a'p'a',en et 1 en c, donc le plan

donné suivant bc, qui rencontre pr en o. La droite to coupe enfin

Fig. 18.

pq au point m cherché, ç étant rappelé verticalement en v' sur
///•', t'v' rencontre p'q' en ?n', projection verticale cle m.

Je me bornerai à ces exemples déjà trop nombreux pour aborder
une remarque qui me paraît intéressante.

Comparaison avec le trait de perspective.

On a pris l'habitude, en France, de représenter les points A de

l'espace (fîg. 19), en perspective conique, par leurs perspectives a'
sur lé tableau T (ou plan vertical), et les perspectives a sur le
même tableau de leurs projections orthogonales a sur un plan G
perpendiculaire à T, dit plan horizontal ou géométral. Le plan T
étant celui de l'épure, celle-ci se compose, comme en géométrie
descriptive ordinaire, des deux perspectives aa' situées sur une
même ligne de rappel. Dans un grand nombre de questions
uniquement descriptives, la ligne de terre xy, intersection de G et T,
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la ligne d'horizon, les points de fuite et de distance sont inutiles;
nous ne voulons parler que de ces questions.

Les points A et 0 étant fixes, si l'on transporte le tableau ou le
géoniétrai parallèlement à lui-même, les perspectives a et a'
changent, et il en est de même de leur distance relative aa\ à

moins de lier les amplitudes des deux translations par une
relation assez compliquée. Si le point A est dans le géométral,
A« — 0, a et a' sont confondus, et réciproquement. Ainsi, tout
point dont les deux perspectives sont confondues est dans le plan
horizontal. Il est bien certain que si l'on fait subir au géométral
une translation, le point A n'y reste pas, et ses perspectives se
séparent. Mais si l'on considère une droite AB projetée en aß sur

le géométral, ses deux perspectives a'b' et ob se rencontrent en
^'^'perspective de sa trace Bß sur G. Changeons le géométral; la
trace Bß va changer, mais la perspective de la nouvelle trace jouira
de la même propriété. Ainsi donc, si l'on connaît (fig. 2) les deux
perspectives A' et A d'une droite (nous parlons ainsi pour abréger),
la trace horizontale de cette droite a pour perspective leur
intersection aary sans que le géométral et l'œil soient autrement définis.
Si donc un plan est défini en perspective par deux droites AA' et
BB' concourantes en 00' (c'est-à-dire dans l'espace concourantes
ou parallèles — sauf le cas où elles seraient parallèles entre elles
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et parallèles au tableau), on obtient sa trace horizontale ab, a'b'
sans aucune construction et sans connaître d'autres éléments.

Tout plan peut alors être défini par la perspective de sa trace
horizontale I et les perspectives d'un de ses points aa', aussi
bien que par ses traces sur le géométral et sur le tableau, comme
on le fait fréquemment ; c'est la représentation canonique du plan
en perspective. 11 est dès lors évident que les tracés précédents
s'appliquent en perspective, en prenant la précaution de remplacer
le second bissecteur par le géométral, et de considérer comme
plans projetants ceux qui passent par le point de vue O. On ne
parlera que plus tard des horizontales, réservant les notions de
point de fuite et de ligne d'horizon. Au contraire, les frontales,
parallèles à T, ne donnent lieu à aucune restriction.

Exemples. — 1° Intersection de deux plans Iaa' et \bbr (fig. 8).

Fig. 20.

En coupant par le plan OAB projetant sur le tableau la droite AB,
on obtient dans chacun des plans les droites dont les perspectives
des projections sur le géométral sont aa, bß, se rencontrant en n,
d'où n' ; l'intersection a pour perspectives mit m'n'.

2° Intersection de la droite dd' et du plan Iaa' (fig. 20) ; voir aussi
fig. 15). Dans ce plan, je trace une droite, par exemple la frontale
af, a'f' ; le plan Od projetant la projection â de la droite D sur le
géométral coupe le plan donné suivant if, i'j', rencontrant la droite
en mm', point cherché.

Lorsqu'on définira un plan au moyen de sa trace sur le géométral
et d'une frontale, comme on vient de le faire, ou de sa trace sur
le tableau (ce qui revient à dire que la ligne de terre xy est
confondue avec la perspective de la projection horizontale de la
frontale), définition classique, les élèves qui auront pris l'habitude
des tracés précédents n'auront, me semble-t-il, aucun effort à faire
pour se mettre au courant des tracés de la perspective (fig. 5) :
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— une droite du plan 1Q' sera ab, a'b'\
— une frontale, bf, bff,
exactement comme en descriptive, I étant censément la trace du
plan sur le second bissecteur. J'ajoute que sur une telle figure en
perspective, on voit véritablement les plans, les droites dans
l'espace; on les voit tout aussi bien en descriptive, malgré la
déformation résultant de l'emploi du second bissecteur.

11 faudra ensuite apprendre la représentation des horizontales,
l'usage des points de fuite et des points de distance. Mais les élèves
ne seront pas déroutés dès le début, comme cela arrive aujourd'hui

pour les notions élémentaires de perspective qui figurent
aux programmes des Grandes Ecoles, notions qu'ils connaissent
d'habitude très mal — ce qui ne répond pas au but que s'était
proposé la Commission au moment de cette innovation.

L'emploi du second bissecteur et de la représentation du plan
que j'ai signalée me paraît donc être utile parce que :

1° il donne dans un grand nombre de questions des tracés plus
simples que ceux habituellement employés, et en tous cas, jamais
plus compliqués ;

2° il établit une liaison entre le trait de la géométrie descriptive
et le trait de la' perspective.

Cependant, je dois dire en terminant que figurer toujours les
plans à l'aide de leurs traces sur le second bissecteur me
semblerait une grosse erreur. Ce serait revenir, sous une autre forme,
au cadre étroit de Monge, avec tous les inconvénients de l'exclusivité,

quelle qu'elle soit. Ce nouveau mode de représentation doit
simplement être employé avec les autres, et au même titre qu'eux,
de façon à varier les exercices et à bien faire comprendre les
principes tellement simples de la géométrie descriptive.

Ch. Halphen (Paris).
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