Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1914)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: SUR L'OPÉRATION « TRANSPORT DE SEGMENTS RECTILIGNES »

DANS LES CONSTRUCTIONS DE LA GÉOMÉTRIE DESCRIPTIVE

Autor: Loria, Gino

Kapitel:

DOI: https://doi.org/10.5169/seals-15532

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

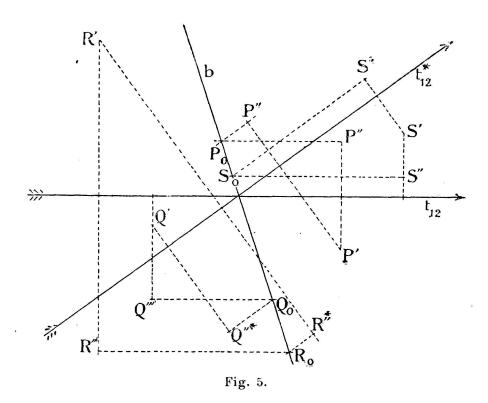
Download PDF: 13.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

directement un point: à cet effet, il suffit de considérer une droite du plan $[t_1t_2]$ et d'en construire, par le procédé exposé cidessus, la troisième trace T_3 . Or, comme droite auxiliaire il convient de choisir la droite t_1 : elle coïncide avec sa première projection t_1' , tandis que t_1'' tombe sur la droite t_1 . t_2' est le point t_1t_2 tandis que t_3'' est le point t_1t_2 tandis que t_3'' est le point t_3'' et t_3'' une construction précédente et nous obtiendrons le point t_3''' = t_3'' ; en le joignant au point t_3'' on aura de suite t_3' . La figure prouve que les deux segments rectilignes t_3'' et t_3'' sont égaux entre eux; cela suffit pour établir l'accord parfait de notre construction avec une de celles qui sont rappelées par la figure 1.

11

L'opération de transporter un segment se présente encore dans une autre catégorie de questions, c'est-à-dire dans celles relatives au changement des plans de projection dans la méthode de



Monge. Nous allons nous en occuper à cause de leur considérable importance pratique, en nous bornant, comme c'est permis de le faire, au cas dans lequel on ne change qu'un des plans auxquels on rapporte toutes les figures de l'espace, par exemple, le plan vertical. Dans ce cas, les données de la question sont les deux lignes de terre, l'ancienne t_{12} et la nouvelle t^*_{12} et ce qu'il faut trouver est la nouvelle représentation d'un point, d'une droite ou d'un plan représentés par rapport au système primitif.

Soient d'abord (fig. 5) données les deux projections P' et P'' d'un point P dans le premier système et soit P''* la nouvelle projection verticale du point P; si P_{12} et P^*_{12} sont les intersections des deux lignes de terre avec les ordonnées P' P'' et P' P''*, les deux segments P'' P_{12} et $P''* P^*_{12}$ seront égaux entre eux, car ils sont tous les deux mesurés par la côte horizontale du point donné; par suite, on dit d'ordinaire que pour trouver P'' il suffit de transporter le segment $P'' P_{12}$ sur la perpendiculaire $P' P^*_{12}$ à partir de son pied dans un sens déterminé. Pour éviter la discussion qui est nécessaire pour fixer dans chaque cas quel est ce sens, appelons P_0 le point ou la parallèle menée de P'' à t_{12} coupe la parallèle menée de P''^* à t_{12}^* ; P_0 tombera évidemment sur la bissectrice b de l'angle formé par la

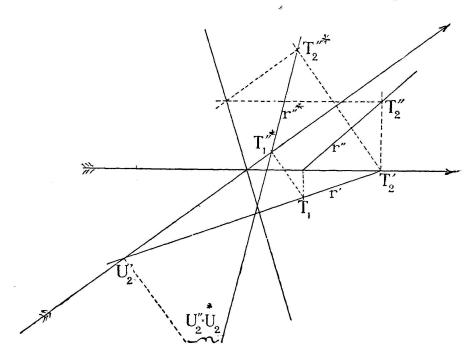


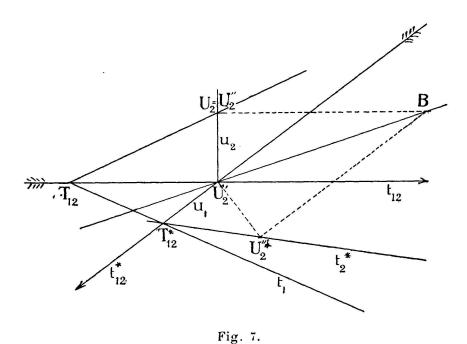
Fig. 6.

direction positive de t_{12} et la direction négative de t_{12}^* . Cette bissectrice menée, pour trouver P''* on peut procéder de la manière suivante: Du point P'' on mène la parallèle à t_{12} ; soit P₀ son intersection avec la droite b; du point P₀ on tire la parallèle à t_{12}^* ; le point où elle coupe la perpendiculaire menée de P' à t_{12} est le point cherché P''*. (Dans la fig. 5, nous avons exécuté cette construction sur plusieurs points P, Q, R, S placés en des régions différents de l'espace).

A présent, pour déterminer la nouvelle représentation d'une droite r, il est évidemment suffisant de répéter cette construction sur deux de ses points; en général, il convient de choisir encore comme points auxiliaires ses deux traces T_1 et T_2 , mais il est bon de se rappeler la possibilité d'autres choix pour se tirer d'affaire dans les cas douteux. Dans la fig. 6 on a appliqué la construc-

tion que nous venons d'exposer à la détermination de la nouvelle projection verticale r''^* de la droite dont r' et r'' sont les projections et T_4 et T_2 sont les traces ; nous remarquons sur cette figure que, si du point ou r' coupe la nouvelle ligne de terre on mène la perpendiculaire à cette droite, son intersection avec la droite r''^* donnera la nouvelle trace verticale U_2 de la droite considérée.

Pour épuiser la question, il nous reste à parler des plans (fig. 7). Nous supposerons données les traces t_1 et t_2 d'un plan τ dans le système dont t_{12} est la ligne de terre et nous nous proposons d'en trouver la trace verticale dans le système déterminé par la ligne de terre t^*_{12} . A cet effet nous remarquons d'abord que, tandis que t_1 et t_2 se coupent dans un point T_{12} de l'ancienne ligne de terre,



 $t_{\scriptscriptstyle 1}$ et $t^{\star}_{\scriptscriptstyle 2}$ se couperont dans un point $T^{\star}_{\scriptscriptstyle 12}$ de la nouvelle; de manière qu'on a tout de suite un point de la droite cherché, c'est le point $t_1 t_{12}^* = T_{12}^*$. Pour en trouver un autre, je remarque que le nouveau plan vertical, dans l'ancien système, a sa trace horizontale u_{i} coïncidente avec la nouvelle ligne de terre t_{i}^{*} , tandis que sa trace verticale u_2 est la perpendiculaire menée à t_{12} par le point $t_{12}u_1$. D'ailleurs la nouvelle trace verticale du plan r est l'intersection des deux plans $[t_1, t_2]$ et $[u_1, u_2]$. Cette droite a dans l'ancien système comme traces les points $U_1 = t_1 u_1$ et $U_2 = t_2 u_2$. Or la droite t_2 est l'intersection des plans τ et π_2 , tandis que u_2 est l'intersection des plans π_2 et π_2^* , de manière que U_2 est en dernière analyse l'intersection des trois plans τ_1 , π_2 et π_2 ; comme elle se trouve sur le nouveau plan vertical, elle coïncide avec sa nouvelle projection verticale; si donc nous déterminons, par le procédé précédent, la nouvelle projection verticale U''^* du point U_2 (U', U",), par le point résultant ira passer la droite cherchée ; cette

droite est donc celle qui joint les deux points T_{12} et U''^*_{2} ; le problème est ainsi résolu, sans qu'on ait eu besoin de distinguer les différents cas auxquels donne lieu la situation du plan τ par rapport aux plans de projection. Le lecteur remarquera que, si B est le point de la bissectrice b où se coupent les parallèles menées de U''_{2} à t_{12} et de U''^*_{2} à t_{12}^* , les deux triangles rectangles $U'_{2}U''_{2}$ B et $U'_{2}U''^*_{2}$ B sont égaux entre eux; cette observation suffit pour établir l'accord de la construction que nous avons proposée avec celle qu'on trouve dans les traités.

Les constructions que nous venons d'exposer dans ce paragraphe trouvent des applications très importantes; car, par exemple, c'est par un changement d'un des plans de projection qu'on résout de la manière la plus simple les problèmes de déterminer les intersections avec un plan d'un polyèdre ou d'une courbe

gauche quelconque.

Gênes, 28 décembre 1913.

Gino Loria.

LA LIGNE DE TERRE ET LE SECOND BISSECTEUR

Notes sur certains principes de la géométrie descriptive.

Introduction.

Il est vraisemblable que la représentation des figures à trois dimensions au moyen des projections remonte à une époque très reculée. Les projections n'étaient pas seulement employées dans les plans topographiques et dans les cartes, mais aussi dans les arts de la construction. La géométrie descriptive ne peut donc être attribuée à Monge comme une création; il est cependant certain qu'il a rassemblé des documents épars, des tracés en usage dans la pratique; il les a améliorés, complétés, et en a fait une véritable science, branche de la géométrie.

Le point capital de la doctrine de Monge est l'emploi de deux plans de projection fixes, rectangulaires, dont l'intersection est la ligne de terre. Aussi, dans la représentation du plan — qui est fondamentale — est-il amené immédiatement à considérer les traces ou droites d'intersection avec les deux plans de projection. L'importance attribuée aux traces par Monge est telle que les plans ne sont jamais donnés autrement dans son ouvrage. Son