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L'INTEGRALE DE STIELTJES ET SA GENERALISATION

L. — Primitivement restreint a la classe des lonctions con-
linues, le champ des fonctions intégrables a été successive-
ment étendu de maniére A embrasser non seulement toutes
les fonclions bornées — c'est-a-dire toules les fonctions
dont les valeurs restent comprises entre deux nombres finis
appelés les bornes supérieure et inférieure de la fonction —
mais encore une classe étendue de fonctions non bhornées.
Cette extension a eu comme conséquence un progres notable
des mat.l'lématiques.
~'Or, Stieltjes a généralisé la notion d'intégrale en rempla-
cant la variable indépendante x par une fonction monotone
g(x) non décroissante. Bien qu’il n’ait appliqué sa générali-
sation de I'intégrale que dans le champ primitil restreint des
fonctions coutinues et qu’il n'ait guere envisagé son exten-
sionet son emploi dans le champ des fonctions intégrables au
sens de Riemann, les conséquences qu’il en tire ont une
importance comparable a celles qui résullent de 'application
de la définilion ordinaire de l'intégrale d'une fonclion con-
tinue. Aussi, tout mathématicien versé dans la théorie mo-
derne de l'intégration et qui a éprouvé dans ses recherches
la liberté d’action que le vaste champ des fonctlions bornées
lui permet, ne tarde pas a se demander si dans '’emploi de
I'intégrale de Stieltjes il ne peut pas aussi dépasser les
limites du champ primitif. 4

Lebesgue a éprouvé ce désir. En 1909, il publie dans les
Comptes Rendus une Note, ou 1l démontre, par un artifice
trés élégant dépendant d’un changement de variable de
nature en quelque sorte géométrique, que la notion de 'inté-
grale de Stieltjes peut étre ramenée a celle de l'intégrale

I’Enseignement mathém., 16¢ année; 1914 6
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d’'une fonction bornée. Il établit, en effet, que si f(x) est
une fonction continue et g(x) une fonction monotone non
décroissante, on peut par un changement de variable x = x(y),

écrire
f/( Jdg (x /7 y)dy —f ?ly)dy

6(y) et par suite o(y) étant bornées. 1l tire de son raisonne-
ment la conséquence que 'on peat — je cite les derniers
olongement de 'opé-
ration de l'intégration de Stieltjes, supposée connue pour
les fonctions continues, a tout le champ des fonctions som-

mables bornées. On définit en somme 'intégrale de Stieltjes
pour fsommable bornée et g a variation bornee, ce qu’il
parait difficile de faire sans (,hangement de variable. » Le
raisonnement de Lebesgue est d'une finesse remarquable
mais d'une application difficile dans les cas qui surviennent

dans la pratique. Il suppose d’ailleurs déja surmontées les
difficultés de la théorie de I'intégration moderne. Remarquons
enfin que Lebesgue n’a pas ntlllse sa définition de l'intégrale
d’une fonction bornée par rapport a une fonction a variation
bhornée.

Je me propose de donner dans ce qui suit les traits les
plus saillants d’une nouvelle théorie de l'intégration par
rapport a une fonction a variation bornée. Cette théorie
n'exige ni la connaissance de la théorie des ensembles ni
celle des intégrales de Riemann ou de Lebesgue. Je signa-
lerai quelques résultats frappants de cette théorie et quelques
applications nouvelles a la théorie des séries de Fourier. Le
lecteur pourra trouver les détails de la théorie etles démons-
trations dans différents mémoires présentés a la Société
royale de Londres et a la London Math, Society?

2. — Le role que jouent les suites monotones de fonctions

1 « On Integration with Respect to a Function of Bounded Variation». Proc. L. M. ., Série 2,
Vol. 13, p. 109.

« On the Usual Convergence of a Class of Trigonometrical Series », 16id., pp. 13-28.

« On Fourier Series and Functions of Bounded Variation », Roy. Soc. Proc., A. Vol. 88,
pp- 561-568.

« On the Condition that a Tno‘onometncal bemes should have a Certain Form », Ibid.,
pPP. 569-574.
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est fondamental dans ma théorie de l’intégration. Soit

filx) < falx) < .0 S f,(x) < ... —> flx)

une suite monotone non décroissanle, ou
filx) 2 fale) = ... 2 [, (%) = - —> f(x)

une suile monotone non croissante, bornée dans son
~ensemble, c’est-a-dire telle que pour toute valeur de n etde x,

AShx) B

A et B étant des constantes finies. La fonction limite f{x) de
celte suite sera également bornée,

et son caractere dépendra de celui des fonctions /, (x). C'est
par l'intermédiaire de telles suites monotones que nous
répartirons les fonctions bornées en classes jouant un role
important pour l'intégration.

Supposons, en effet, connue une théorie de Tintégration
par rapport a g(x) d'une certaine classe de fonctions. On
étendra alors le champ d’intégration au moyen du principe
suivant :

On dira qu'une fonction f(x) posséde une intégrale.
ff(x)dg(x) par rapport a une fonclion posilive non décrois-
sante g(x), st elle peut s’exprimer comme limite (finie ou
infinie avec signe délerminé) d’une suite monotone de fonc-
tions fy, 1,,..., dont les intégrales par rapport « g(x) sont
déja définies, pourvu que la limile des intégrales de toule
suite ayant ces propriétes soil la méme et ait une valeur finte.
Cette limite s’appelle U'intégrale de {(x) par rapport a g(x).

Etudions d’abord de ce point de vue l'intégration ordi-
naire par rapporta .. La classe la plus simple de fonctions
dans une intervalle (¢, b) est formée par les fonctions qui
sont constantes a 'intérieur (au sens étroil) de chaque inter-
valle partiel (x;, 4:y1) d'une division de (@, b) en un nombre
fini d’'intervalles et qui, aux extrémités de ces intervalles
partiels ont des valeurs quelconques. L’intégrale d’unc
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fonction simple, c’'est-a-dire d'une fonction de cette classe,
par rapport a la variable indépendante .v est natureliement la
somme Nc¢;/; d’'un nombre fini de termes relatils a chacun
des intervalles partiels, ¢; désignant la valeur constante de
la fonction a I'intérieur de l'intervalle (x;, x4 et la lon-
gueur ;41 —x; de cet intervalle.

Désignons pour abréger une fonction semi-continue supé
rieurement ou inférieurement au sens de Baire par les lettres
w ou [, abréviations pour upper ou lower semi-continuous
functions. On établit facilement que toule fonction « est la
limite d’'une suite non croissante et toule fonction £ la limite
d’une suite non décroissante de fonctions simples. De plus,
la limite d’une suite non croissante de fonctions « est encore
une fonction «, celle d’'une suite non décroissante de fonc-
tions [ est encore une fonction /. Par contre, la limite d’'une
suite non décroissante de fonctions « est en général une
fonction appartenant a une nouvelle classe que nous dési-
gnerons par [u et la limite d'une suite non croissante de
fonctions / une fonction appartenant a une nouvelle classe
que nous désignerons par «/. Si nous considérons de méme
des suites monotones de {onctions {u et wl, nous retrouve-
rons soit ces deux classes soit deux nouvelles classes {ul et
wlu de fonctions. En continuant-ainsi nous oblenons une
série illimitce de classes

w .o loowl, e, wle, lad ;) wlal | lula,

de fonctions. Enfin, la considération de suites monotones de
fonctions de classes différentes nous conduira a de nou-
velles classes non exprimables par les symboles précé-
dents, ete. Toute fonction bornée représentable analviique-
ment rentre dans une des classes de fonctions ainsi caracté-
risées. Le probléme de l'intégration sera résolu si, a partir
de la définition de l'intégrale des fonclions simples, nous
pouvons, au moyen du principe général énoncé plus haut.
attribuer une intégrale d'abord aux fonctions bornées des
classes «, [ puis des classes wl, lu, wlu, lul, ... elc. Mais,
fait intéressant et capital, grace a un théoréeme que nous
indiquerons plus loin, nous verrons qu’il n’est pas nécessaire
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d'étudier séparément au point de vue de l'intégration loutes
ces classes de fonclions et qu'il-suffit de savoir intégrer les
fonctions ul et les fonctions lu pour pouvoir aflirmer l'inté-
grabilité de toute fonction bornée représentable analylique-
ment.

3. — La théorie de I'intégration par rapport a une fonction
monotone g(x) se développe de la méme maniere. Considé-
rons d’abord une fonction simple f(x) et soil (x;, xiy1) un des
intervalles partiels a I'intérieur duquel la fonction f(r) a une

-valeur constante f(x; + 0) = f(x;1—o0). Nous aurons a tenir
comple ici des valeurs de f{x) aux extrémités de I'intervalle
(:, x;41) et nous définirons

A%

/ fla)dgix) = f(x;) [gla; +0) — g (x,)] + floe; + 0)[gla; gy — 0) — 8(2; +0)]
;,; + @) (8% + 0) — glxgyy)] -
Lorsque g(x) est continue aux points r;, 2,41 les termes cor-
respondants a ces points s’annulent. En particulier, si
g(x) = x, nous retombons sur la définition de l'intégrale
ordinaire d’'une constante. L’intégrale de la fonction simple
f(x) dans lintervalle («,b) sera, par définition, la somme
des intégrales étendues aux intervalles partiels (z:, x:4)).

On étendra ensuite aux fonctions bornées de classes [, u,
lu et ul la notion d’intégration par rapport a g(r). Il suffira
pour cela de montrer I'existence et Punicité de la limite des
intégrales de suites monotlones bornées ayant une limite
donnée, lorsque les termes de la suite et sa limite appar-
tiennent aux classes /, u, {u ou ul. On étendra ensuite la
notion d’intégrale par rapport a g(x) a toute fonction bornée
représentable analytiquement en démontrant le théoréme
suivant :

Etant donnée une fonction {(x) bornée et représentable ana-
lytiquement, on peut trouver une fonction lu qut ne dépasse
pas £(x) et une fonction ul qui n’est pas moindre que f(x), ces
deux fonctions auxiliaires ayant la méme intégrale par
rapport a une fonction non décroissante g(x) donnée.

Il résulte de ce théoréme que la fonction bornée f{x)a une
intégrale par rapport a g(x) et que la valeur de cette intégrale
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est égale a la valeur commune des intégrales des deux fonc-
tions auxiliaires lu et ul.

Aprés avoir développé la théorie de lintégration des
fonctions bhornées par rapport a une fonction non décrois-
sante g(r), nous pouvons aborder I'intégration des fonctions
non bornées. Les mémes raisonnements sont encore appli-
cables; ils exigent simplement plus de soin et il est néces-
saire d'introduire quelquefois I'hypothése que les limites
obtenues sont finies; cette hypothése était superflue lorsque
toutes les suiles considérées étaienl bornées. On arrive de
cette facon a définir la classe des fonctions sommables
par rapport a g(x), ¢’est-a-dire des fonctions bornées ou non
possédant une intégrale par rapport a g(x). Cette classe
comprend, comme nous 'avons déja dit, toutes les fonctions
bornées exprimables analytiquement; elle comprend encore
toutes les fonctions dont le module |[(f(x)| est lui-méme
sommable par rapport a g(x). '

L’extension a l'intégration par rapport a une fonction g(x)
a variation bornée est ensuite immédiat. Si 'on représente
g(x) comme différence g(x) = g,(x) — g,(x) de deux fonc-

\

tions positives non décroissantes, on définira
[rrdgia) = [fladg @) — [flx)dg, i)

en montrant que le second membre est indépendant du mode
de décomposition de g(x).

4. — Voici une application de la théorie précédente. Con-
sidérons une série de Fourier quelconque

(agcos x + bysinx) 4+ (ascos 2x 4 by sin 2x) + ... (1)
J'ai démontré, il y a quelques années, que si
Ajcosax + Azcos2x + .. (2)

est la série de Fourier d’une fonction paire, la série trigono-
métrique

Ailarcos x + bysinx) + Ag(aycos 22 -+ by sin 2x) + ... (3)

est encore une série de lFourier. La théorie de l’intégrale
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généralisée de Slieltjes me permet de montrer que ce résultat
resle encore vrai, si l'on suppose seulement que la série (2)
est la série obtenue par dérivation terme a terme de la série
de Fourier

1
A;sina 4 < Apsin 2x 4 ...

d’une fonction impaire a variation bornée. J'ai réussi, de
plus, & montrer que la sommabilité de la fonction g(x) repré-
sentée par (3) est au moins celle de la fonction f{x) repré-
sentée par (1). Si, par exemple, f(x)? ou f(x)logx est sommable.
on peut affirmer que g(x)? ou g(x)logx l'est aussi. En parti-
culier, lorsque les séries (1) et (2) sont les séries de Fourier
de deux fonctions dont la p*° et la ¢ puissance respecti-
vement sont sommables, la fonction représentée par (3) a sa
‘ (14 p) (14 ¢
1 — pq '
On pourrait aussi établir un théoréme du méme genre en
remplacant la série de Fourier (1) par sa série alliée

/¥ puissance sommable, ou r =

(@, cos x — Dy sinx) + (azc08 2x — bgsin 2x) 4 ...

5. — La théorie des séries trigonométriques a fait de
grands progrés depuis le commencement du XX° siecle. La
généralisation de la notion d’'intégrale a permis a Lebesgue
d’étendre la théorie des séries de Fourier et de supprimer
nombre de restrictions ennuyeuses. Sans cette généralisation
ces progres n’étaient pas possibles, car Riemann avait conduit
les mathématiciens dans un cul-de-sac par sa théorie de
Pintégration et la théorie des séries de Fourier risquait a la
fin du XIX* siecle de devenir une collection de curiosités.

Qu’est-ce donc qu’une série de Fourier? La réponse de
Lebesgue est formellement la méme que celle de Riemann :
c’est une série trigonométrique

P

a, + (ascosx 4 bysinx) + (a, cos 2¢ + by sin 2x) 4~ ...

dont les coefficients «,, b, peuvent s’exprimer au moyen
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d'une fonclion fi.v) par les formules
| _ 1:
L/, , YA
a, = — [ flx)cos nxdx, b,=—=[ fla)sinnaxdx .
T X

S1 maintenant nous nous demandons a quelles conditions on
reconnait si une série trigonomélrique est une série de
Fourier. on peut répondre, quand on prend les intégrales
au sens moderne, qu’il est nécessaire et suffisant pour cela
que la série intégrée (terme a terme:

. 1 . ‘
(aysinx — by cos x) 72—((12 sin 2x — by cos 2x) + ...

converge pour tout poinl x de I'intervalle — = < v < = vers
une intégrale. On ne pourrait pas donner cette réponse, si
Pon prenait les intégrales au sens de Riemann, car la série
intégrée d'une série de Fourier au sens de Riemann ne con-
verge pas nécessairement vers une intégrale au sens de
Riemann.

Les nouvelles séries Irigonométriques, séries dérivées
(terme a terme) des séries de Fourier des fonctions a varia-
tion bornées, que jai introduites dans le rang des séries
maniables, ont des propriétés qui les rapprochent beaucoup
des séries de Fourier; elles s’obtiennent par les mémes
méthodes en employant I'intégration par rapporta une fonc-
tion 4 variation bornée au lieu de l'intégration par rapport
a x. Ainsi, leurs coeflicients s’expriment par des intégrales
de Stieltjes

T T
1/ 1 '
fl, ==~ / cos nx dF(x) , b, = —/sm nx.dF(x) .

Z =
La condition nécessaire et suflisante pour qu'une série trigo-
nométrique soit la série dérivée de la série de Fourier d'une
fonction a variation bornée est analogue a celle que nous
avons indiqué plus haut pour les séries de Fourier : la série
intégrée terme a terme doit converger vers une fonction a
variation bornée. L’emploi pratique de cette condition est
assez restreint. Il n’est pas facile de reconnaitre si une série
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trigonométrique donnée converge vers une fonction a varia-
tion bornée ou méme vers une intégrale. Aussi, avais-je
déja indiqué pour les séries de Fourier Je fonctions f{x),
telles que | f(x) |'+7 soit sommable, comme condition néces-
saire et suflisante que |

—
i

4/ l fh(T) l‘+pa7‘l’.

-
1Y

soilunc fonction bornée de n, fu(x) désignant la 2'*"* moyenne
de Cesaro
n
[, (x) = 71-(31 + se 4+ ... 4 s,) g, == (a*cosix 4 b;sinwx) .

=1

La condition nécessaire el suffisante pour qu'une série ri-
gonométrique soit la série dérivée de la série de Fourier
d’une fonction & variation bornée est que

j £, (x) | dx

soit une fonction bornée de n. Cetle condition est d’autant
plus intéressante qu’elle jette une vive lumiére sur la nature
des fonctions sommables et qu’elle améne a se demander si
pour toute fonction sommable il n’existe pas une fonction
d’ordre supérieur, soit une puissance, soit une autre fonction
simple qui soit elle-méme encore sommable. Envisagé a un
autre point de vue, ce résultat nous donne la condition néces-
saire et suflisante pour qu’une série trigonométrique soit la
série de Fourier d'une fonction a varialion bornée.

6. — Signalons encore une des nombreuses propriétés
communes aux séries de Fourier et aux séries dérivées des
séries de Fourier des fonctions a variation bornée.

Une série dont les premiéres moyennes de Cesaro conver-
gent vers une limite finie et déterminée est dite converger
(G1). Siles termes de la série sont des fonctions de x, la
convergence peutavoir lieu partout, ou seulementen certains
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points x. Si les points ou la convergence n’a pas lieu sont
parsemés dans le continu de maniere a pouvoir étre tous
enfermés dans un nombre fini ou infini d’intervalles dont la
somme des longueurs est aussi petite que 'on veut, la série
est dite converger (Cl) presque partout. Or Lebesgue a
démontré, ily a environ dix ans, que les séries de Fourier
convergent(C1) presquepartout. Enintroduisantles moyennes
de Cesaro d’ordre d, on a généralisé le résultat de Lebesgue
et démontré que la série de Fourier d’une fonction f(x) con-
verge (Cd) presque partout vers f(x), lorsque o {90 < 1. Jai
démontré d'une maniére analogue qu’une série trigonomé-
trique qui est la série dérivée de la série de Fourier d’une
fonction a variation bornée F(x) converge aussi (Cd) presque
partout vers F'(x), lorsque 0o < ¢ < 1.

La méthode de sommation par les moyennes de Cesaro est
un cas spécial des méthodes de transformation d’une série
en série convergente par multiplication de chaque terme de
la série par-une constante (facteur de convergence) conve-
nable. Les recherches que j’ai faites sur ce sujet, recherches
auxquelles M. G. H. Hardy aajouté la démonstration élégante
d’un point que je n’avais que prévu, m'ont conduit au théo-

‘réme suivant :
Si}i(an cosnux + bysinnx) est la série dérivée de la série
1
de Fourter d’une fonction F(x) a variation bornée, la série e

© a_cosnx 4 b sinnx

est une série de Fourter convergente
log n

2

presque partout. Sa somme est

C/[F(x + ) — Flx — t)]dg(t)
T

ou G est une constante et g(t) la fonction « variation bornée

2 ‘ “ ¢cOS nXx
dont la sérve de Fourier est ™S

st log n
7. — Je termine en indiquant un exemple de la simpliﬁca-
tion que peut apporter 'emploi de l'intégrale généralisée
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de Stieltjes dans la démonstration de théoremes déja connus.
Je prendrai pour cela le théoréme suivant :

St Fan(x) = /' fo(x)dx est une fonction bornée de n, qui con-
verge vers une.intégrale F(x /l (x)dx, et st g(x) est une
fonction a variation bornee, on aura

lim /qf;L(,r)g(x)dx = /gf'(.r)g(x)d,z:

n=ige ¢ *

En effet, de méme que dans la théorie de l'intégration par
rapport a x, il est permis dans notre théorie d'intégrer
terme a terme une suite bornée. On aara donc

lim /'F glx) = /df‘(.x‘y dg(x)

n—w ¢

Or, ¥(x) et F,(x) étant des fonctions continues, on peut inté-
grer par parties, ce qui donne

x X 9 4 X
lim [g(x') Fn(x)] — /’g(;r) d¥  (x) i = IF(x)g(\x‘)] - ['g(.x') d¥ (x)
= « t(c ! N r A

Les premiers termes des deux membres de cette relation
sont égaux el les seconds sont des intégrales par rapport &
des intégrales; par conséquent, comme on le voit facile-
ment, on peut exprimer les seconds termes par desintégrales
de Lebesgue, par exemple

x

/g( dF (x) :[ flarda .

CL

Par suite, 'égalité des seconds termes des deux membres
donne le théoréme cherché. |

- Celte démonstration si bréve n’emploie que des théorémes
fondamentaux, bien connus pour lintégration ordinaire.
Tout mathématicien peut donc en suivre le raisonnement;
il lui suffit d’accepter ces théorémes fondamentaux. La pre-
miére démonstration que j'ai donnée de ce théoréme remplit
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au contraire plusieurs pages; elle est délicate, elle utilise le
changement de variable a la facon de Lebesgue et nécessite
pour sa compréhension des connaissances étendues et une
attention soutenue.

J'espere en avoir assez dil pour convaincre de la simplicité
et de l'intérét de la théorie de I'intégration par rapport a
une fonction a variation bornée.

W. H. Youxc (Geneve).

LE BICENTENAIRE DE LA LOI DES GRANDS NOMBRES

Le 1/14 décembre 1914, 'Académie des Sciences de Saint-Péters-
bourg a consacré une séance solennelle & la célébration du bicen-
tenaire de la publication a Bale, en 1713, de ’ceuvre posthume de
Jacques BernouLrr : Ars conjectandi. On sait que la quatrieme
partie de cet ouvrage contient ['énoncé et la démonstration du
célebre théoréeme de Jacques Bernourrr, le plus simple cas d’un
ensemble de théoremes qui constitue la loi des grands nombres.

La séance fut suivie par un nombreux public; elle comprenait
trois discours. Tout d’abord M. le Prof. A. Vassiuier parla des
guestions de la théorie des probabilitées jusqi’au théoreme de
Bernoulli. Puis M. Markor, membre de I’Académie, et qui avait
pris l'initiative de la séance, examina la loi/ des grands nombres
considerés comme un ensemble de théoremes mathéematiques. Enfin
M. le Prof. A. Tscuourror montra le role de la loi des grands
nombres dans la science contemporaine.

Nous croyons intéresser les lecteurs de cette Revue en leur
donnant un apercu de ces trois conférences.

M. le Prof. A. Vassilief a donné un aper¢u historique du déve-
loppement de deux notions fondamentales : de la probabilité
mathématique ou a priori et de la probabilité a posteriori ou
empirique. Dans la « Simma de Aritmetica Geometria Proportioni
e Proportionalita » de Paciliolo, dans les ouvrages de Tartaglia,
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