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L'INTÉGRALE DE ST1ELTJES ET SA GENERALISATION

L. — Primitive m eut restreint à la classe des fonctions
continues, le champ des fonctions intégrables a été successivement

étendu de manière à embrasser non seulement toutes
les fonctions bornées — c'est-à-dire toutes les fonctions
dont les valeurs restent comprises entre deux nombres finis
appelés les bornes supérieure et inférieure de la fonction —
mais encore une classe étendue de fonctions non bornées.
Cette extension a eu comme conséquence un progrès notable
des mathématiques.

Or, Stieltjes a généralisé la notion d'intégrale eu remplaçant

la variable indépendante x par une fonction monolone
g{x) non décroissante. Bien qu'il n'ait appliqué sa généralisation

de l'intégrale que dans le champ primitif restreint des
fonctions continues et qu'il n'ait guère envisagé son extension

et son emploi dans le champ des fonctions intégrables au
sens de Riemann, les conséquences qu'il en tire ont une
importance comparable à celles qui résultent de l'application
de la définition ordinaire de l'intégrale d'une fonction
continue. Aussi, tout mathématicien versé dans la théorie
moderne de l'intégration et qui a éprouvé dans ses recherches
la liberté d'action que le vaste champ des fonctions bornées
lui permet, ne tarde pas à se demander si dans l'emploi de

l'intégrale de Stieltjes il ne peut pas aussi dépasser les
limites du champ primitif.

Lebesgue a éprouvé ce désir. En 1909, il publie dans les

Comptes Rendus une Note, où il démontre, par un artifice
très élégant dépendant d'un changement de variable de
nature en quelque sorte géométrique, que la notion de l'intégrale

de Stieltjes peut être ramenée à celle de l'intégrale

L'Enseignement mathém., 16e année; 1914 <»
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d'une fonction bornée. Il établit, en effet, que si f(x) est
une fonction continue et g{x) une fonction monotone non
décroissante, on peut par un changement de variable x x(y)7
écrire

ft\x)dH(x) — ff(x j) )9 (j) dy ~f
ß{y) et par suite cp[y) étant bornées. Il tire de son raisonnement

la conséquence que l'on peut — je cite les derniers
mots de sa note — « se permettre le prolongement de
l'opération de l'intégration de Stieltjes, supposée connue pour
les fonctions continues, à tout le champ des fonctions som-
mables bornées. On définit en somme l'intégrale de Stieltjes
pour /sommable bornée et g à variation bornée, ce qu'il
parait difficile de faire sans changement de variable. » Le
raisonnement de Lebesgue est d'une finesse remarquable
mais d'une application difficile dans les cas qui surviennent
dans la pratique. Il suppose d'ailleurs déjà surmontées les
difficultés dß la théorie de l'intégration moderne. Remarquons
enfin que Lebesgue n'a pas utilisé sa définition de l'intégrale
d'une fonction bornée par rapport à une fonction à variation
bornée.

Je me propose de donner dans ce qui suit les traits les

plus saillants d'une nouvelle théorie de l'intégration par
rapport à une fonction à variation bornée. Cette théorie
n'exige ni la connaissance de la théorie des ensembles ni
celle des intégrales de Riemann ou de Lebesgue. Je signalerai

quelques résultats frappants de cette théorie et quelques
applications nouvelles à la théorie des séries de Fourier. Le
lecteur pourra trouver les détails de la théorie et les démonstrations

dans différents mémoires présentés à la Société
royale de Londres et à la London Math, Society1.

2. — Le rôle que jouent les suites monotones de fonctions

1 « On Integration with Respect to a Function of Bounded Variation ». Proc. L.M.S., Série 2,
Vol- 13, p. 109.

« On the Usual Convergence of a Class of Trigonometrical Series », Ibid., pp. 13-28.
« On Fourier Series and Functions of Bounded Variation », Roy. Soc. Proc., A. Vol. 88,

pp. 561-568.
« On the Condition that a Trigonometrical Series should have a Certain Form », Ibid.,

pp. 569-574.
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est fondamental dans ma théorie de l'intégration. Soit

ft M < ••• S fa (*) ^ • • fW

une suite monotone non décroissante, ou

f[x) ^ f%(x) > à fn(*) ^ ••• — M
une suite monotone non croissante, bornée dans son
ensemble, c'est-à-dire telle que pour toute valeur de n et de x,

A et B étant des constantes finies. La fonction limite f\x) de

cette suite sera également bornée,

A f[x) N B

et son caractère dépendra de celui des fonctions fn (x). C'est

par l'intermédiaire de telles suites monotones que nous
répartirons les fonctions bornées en classes jouant un rôle
important pour l'intégration.

Supposons, en effet, connue une théorie de l'intégration
par rapport à g(x) d'une certaine classe de fonctions. On
étendra alors le champ d'intégration au moyen du principe
suivant :

On dira qu'une fonction f(x) possède une intégrale
Çf(x)dg(x) par rapport à une fonction positive non décroissante

g(x), si elle peut s'exprimer comme limite (finie ou
infinie avec signe déterminé) d'une suite monotone de fonctions

ft, f2,..., dont les intégrales par rapport et g(x) sont
déjà définies, pourvu que la limite des intégrales de toute
suite ayant ces propriétés soit la même et ait une valeur finie.
Cette limite s'appelle Vintégrale de f(x) par rapport à g(x).

Etudions d'abord de ce point de vue l'intégration
ordinaire par rapport à x. La classe la plus simple de fonctions
dans une intervalle [a, b) est formée par les fonctions qui
sont constantes à l'intérieur (au sens étroit) de chaque intervalle

partiel (xi, xi+\) d'une division de [a, b) en un nombre
fini d'intervalles et qui, aux extrémités de ces intervalles
partiels ont des valeurs quelconques. L'intégrale d'une
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fonction simple, c'est-à-dire d une fonction de cette classe,

par rapport à la variable indépendante x est naturellement la

somme Ne,-tL d'un nombre fini de termes relatifs à chacun
des intervalles partiels. Ci désignant la valeur constante de
la fonction à l'intérieur de l'intervalle ixi, X;+{) et G la

longueur, Ui+x —JCi de cet intervalle.
Désignons pour abréger une fonction semi-continue supé

rieurement ou intérieurement au sens de Baire par les lettres
u ou l, abréviations pour upper ou lower semi-continuous
functions. On établit facilement que toute fonction a est la

limite d'une suite non croissante et toute fonction l la limite
d'une suite non décroissante de fonctions simples. De plus,
la limite d'une suite non croissante de fonctions u est encore
une fonction u, celle d'une suite non décroissante de
fonctions l est encore une fonction l. Par contre, la limite d'une
suite non décroissante de fonctions a est en général une
fonction appartenant à une nouvelle classe que nous
désignerons par lu et la limite d'une suite non croissante de

fonctions l une fonction appartenant a une nouvelle classe

que nous désignerons par ul. Si nous considérons de même
des suites monotones de fonctions lu et ul, nous retrouverons

soit ces deux classes soit deux nouvelles classes lui et
ulu de fonctions. En continuant ainsi nous obtenons une
série illimitée de classes

u / ul lu ulu lui ulul lu lu

de fonctions. Enfin, la considération de suites monotones de

fonctions de classes différentes nous conduira à de
nouvelles classes non exprimables par les symboles précédents,

etc. Toute fonction bornée représentable analytique-
ment rentre dans une des classes de fonctions ainsi caractérisées.

Le problème de l'intégration sera résolu si, à partir
de la définition de l'intégrale des fonctions simples, nous
pouvons, au moyen du principe général énoncé plus haut,
attribuer une intégrale d'abord aux fonctions bornées des
classes u, l puis des classes uL lu ulu, lui, etc. Mais,
fait intéressant et capital, grâce à un théorème que nous
indiquerons plus loin, nous verrons qu'il n'est pas nécessaire
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d'étudier séparément au point de vue de 1 intégration toutes

ces classes de fonctions et qu'il suffit de savoir intégrer les

fonctions ul et les fonctions lu pour pouvoir affirmer l'intégra

bi li té de toute fonction bornée représentable analytique-
ment.

3. —La théorie de l'intégration par rapport à une fonction
monotone gix) se développe delà même manière. Considérons

d'abord une fonction simple f(x) et soit {xt, Xi+\) un des

intervalles partiels à l'intérieur duquel la fonction f(x) a une
valeur constante f(x$ + o) — fijXty.\ — o). Nous aurons à tenir
compte ici des valeurs de f(x) aux extrémités de l'intervalle
[Xi, Xi+i) et nous définirons

pxi+\
I f[x) dg[x) — ((*•) [gfa + 0) — g (x.)] H- f[xi + 0) [g{xi+x — 0) — g[Xt + 0)]

xi + f(xi+;l) l-ö 1 + Ö) o (^i+i)] '

Lorsque g(x) est continue aux points Xi, Xi+1 les termes
correspondants à ces points s'annulent. En particulier, si

gÇx) — x, nous retombons sur la définition de l'intégrale
ordinaire d'une constante. L'intégrale de la fonction simple
f(x) dans l'intervalle (a,b) sera, par définition, la somme
des intégrales étendues aux intervalles partiels ixt, Xufi).

On étendra ensuite aux fonctions bornées de classes /, u,
lu et ul la notion d'intégration par rapport à g(x). Il suffira

pour cela de montrer l'existence et l'unicité de la limite des

intégrales de suites monotones bornées ayant une limite
donnée, lorsque les termes de la suite et sa limite
appartiennent aux classes l, u, la ou al. On étendra ensuite la
notion d'intégrale par rapport à g{pc) à toute fonction bornée
représentable analytiquement en démontrant le théorème
suivant :

Etant donnée une fonction f(x) bornée et représentable
analytiquement, on peut trouver une fonction lu qui ne dépasse
pas f(x) et une fonction ul qui n'est pas moindre que f(x), ces
deux fonctions auxiliaires ayant la même intégrale par
rapport à une fonction non décroissante g(x) donnée.

Il résulte de ce théorème que la fonction bornée f(x) a une
intégrale par rapport et que la valeur de cette intégrale
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est égale à la valeur commune des intégrales des deux fonctions

auxiliaires lu et ul.
Après avoir développé la théorie de l'intégration des

fonctions bornées par rapport à une fonction non décroissante

g(x), nous pouvons aborder l'intégration des fonctions
non bornées. Les mêmes raisonnements sont encore
applicables ; ils exigent simplement plus de soin et il est nécessaire

d'introduire cpielquefois l'hypothèse que les limites
obtenues sont finies; cette hypothèse était superflue lorsque
toutes les suites considérées étaient bornées. On arrive de

cette façon à définir la classe des fonctions sommables

par rapport à g(x), c'est-à-dire des fonctions bornées ou non
possédant une intégrale par rapport à g{x). Cette classe

comprend, comme nous l'avons déjà dit, toutes les fonctions
bornées exprimables analytiquement ; elle comprend encore
toutes les fonctions dont le module | (f{x)\ est lui-même
sommable par rapport àg(x).

L'extension à l'intégration par rapport à une fonction g(x)
à variation bornée est ensuite immédiat. Si l'on représente
g(x) comme différence g(x) — gl fx)—g%(x) de deux
fonctions positives non décroissantes, on définira

ff(x)dg(x) — f f{x)dgt{x) —j f(x) dg2(x)

en montrant que le second membre est indépendant du mode
de décomposition deg(x)*

4. — Voici une application de la théorie précédente.
Considérons une série de Fourier quelconque

(ûtcosx -(- biSinx) -f- («2cos2,x -|- sin 2x\ -j- (1)

J'ai démontré, il y a quelques années, que si

Ai cos x -f- A2 cos 2x + (2)

est la série de Fourier d'une fonction paire, la série trigono-
métrique

Aiiciicosx -j- bi sin x) -j- A3(«2cos 2.^ -f- />2 sin 2.r) + (3)

est encore une série de Fourier. La théorie de l'intégrale
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généralisée de Stieltjes me permet de montrer que ce résultat
reste encore vrai, si l'on suppose seulement que la série (2)

est la série obtenue par dérivation terme à terme de la série
de Fourier

1
Ai sin x -h — Aa sin 2x +

d'une fonction impaire à variation bornée. J'ai réussi, de

plus, à montrer que la sommabilité de la fonction g(x) représentée

par (3) est au moins celle de la fonction fix) représentée

par (1). Si, par exemple, f(.x)2 ou f(x)logxest sommable,

on peut affirmer quegQF)2 ou g(.x) logx l'est aussi. En
particulier, lorsque les séries (1) et (2) sont les séries de Fourier
de deux fonctions dont la ]fème et la çième puissance respectivement

sont sommables, la fonction représentée par (3) a sa

r\ème pUjssance soin m able, où r ^

On pourrait aussi établir un théorème du même genre en

remplaçant la série de Fourier (1) par sa série alliée

(«! cos x — hi sin x) + (a2 cos %x — b2 sin 2x) -f-

5. — La théorie des séries trigonométriques a fait de

grands progrès depuis le commencement du XXe siècle. La

généralisation de la notion d'intégrale a permis à Lebesgue
d'étendre la théorie des séries de Fourier et de supprimer
nombre de restrictions ennuyeuses. Sans cette généralisation
ces progrès n'étaient pas possibles, car Riemann avait conduit
les mathématiciens dans un cul-de-sac par sa théorie de

l'intégration et la théorie des séries de Fourier risquait à la
fin du XIXe siècle de devenir une collection de curiosités.

Qu'est-ce donc qu'une série de Fourier? La réponse de

Lebesgue est formellement la même que celle de Riemann :

c'est une série trigonométrique

1
— a0 + (at cos x -f- b± sin x) + (a2 cos 2x + b2 sin 2x) -f-

dont les coefficients ani bn peuvent s'exprimer au moyen
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d'une fonction f\,v) par les formules

T. It
I r I r

an ess. 3 I f{x) cos nxdx 3 / /"(or) sin nxdx

Si maintenant nous nous demandons à quelles conditions on
reconnaît si une série trigonomélrique est une série de
Fourier, on peut répondre, quand on prend les intégrales
au sens moderne, qu'il est nécessaire et suffisant pour cela

que la série intégrée (terme à terme

converge pour tout point x de l'intervalle — r. < x < - vers
une intégrale. On ne pourrait pas donner cette réponse, si
l'on prenait les intégrales au sens de Riemann, car la série
intégrée d'une série de Fourier au sens de Riemann ne con-
verge pas nécessairement vers une intégrale au sens de

Riemann.
Les nouvelles séries trigonométriques, séries dérivées

(terme à terme) des séries de Fourier des fonctions à variation

bornées, que j'ai introduites dans le rang des séries
maniables, ont des propriétés qui les rapprochent beaucoup
des séries de Fourier; elles s'obtiennent par les mêmes
méthodes en employant l'intégration par rapporta une fonction

à variation bornée au lieu de l'intégration par rapport
àx. Ainsi, leurs coefficients s'expriment par des intégrales
de Stieltjes

La condition nécessaire et suffisante pour qu'une série trigo-
nométrique soit la série dérivée de la série de Fourier d'une
fonction à variation bornée est analogue à celle que nous
avons indiqué plus haut pour les séries de Fourier : la série
intégrée terme à terme doit converger vers une fonction à

variation bornée. L'emploi pratique de cette condition est
assez restreint. Il n'est pas facile de reconnaître si une série

\at s tu x — b± cos x) -(- — \a2 sin 2x — bt cos 2x) -j-

7r
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trigonométrique donnée converge vers une fonction à variation

bornée ou même vers une intégrale. Aussi, avais-je

déjà indiqué pour les séries de Fourier de fonctions /(.#),

telles que I /'(.*;) \l+p soit somniable, comme condition nécessaire

et suffisante que

j
soit une fonction bornée de n<fn(x) désignant la /Fèrae moyenne
de Cesàro

a

fnU')— -(Si + 4's + ••• + S„) =2 cos ix + b£ sin I

I— I

La condition nécessaire et suffisante pour qu'une série

trigonométrique soit la série dérivée de la série de Fourier
d'une fonction à variation bornée est que

7T

I I fn(x|àx
«y

•—77

soit une fonction bornée de n. Cette condition est d'autant
plus intéressante qu'elle jette une vive lumière sur la nature
des fonctions sommables et qu'elle amène à se demander si

pour toute fonction sommable il n'existe pas une fonction
d'ordre supérieur, soit une puissance, soit une autre fonction
simple qui soit elle-même encore sommable. Envisagé à un
autre poinL de vue, ce résultatnous donne la condition nécessaire

et suffisante pour qu'une série trigonométrique soit la

série de Fourier d'une fonction à variation bornée.
6. — Signalons encore une des nombreuses propriétés

communes aux séries de Fourier et aux séries dérivées des
séries de Fourier des fonctions à variation bornée.

Une série dont les premières moyennes de Cesàro convergent

vers une limite finie et déterminée est dite converger
(Cl). Si les termes de la série sont des fonctions de .r, la

convergence peut avoir lieu partout, ou seulement en certains
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points x. Si les points où la convergence n'a pas lieu sont
parsemés clans le continu de manière à pouvoir être tous
enfermés dans un nombre fini ou infini d'intervalles dont la

somme des longueurs est aussi petite que l'on veut, la série
est dite converger (Cl) presque partout. Or Lebesgue a

démontré, il y a environ dix ans, que les séries de Fourier
convergent (Cl) presque partout. En introduisant les moyennes
de Cesàro d'ordre 5, on a généralisé le résultat de Lebesgue
et démontré que la série de Fourier d'une fonction f{œ)

converge (C5j presque partout vers f(x), lorsque o <( o < J'ai
démontré d'une manière analogue qu'une série trigonomé-
trique qui est la série dérivée de la série de Fourier d'une
fonction à variation bornée F(.r) converge aussi (C<î) presque
partout vers F'(.£*),, lorsque o < d < 1.

La méthode de sommation par les moyennes de Cesàro est
un cas spécial des méthodes de transformation d'une série
en série convergente par multiplication de chaque terme de
la série par* une constante (facteur de convergence) convenable.

Les recherches que j'ai faites sur ce sujet, recherches
auxquelles M. G. H. Hardy a ajouté la démonstration élégante
d'un point que je n'avais que prévu, m'ont conduit au théorème

suivant :

oc

^2(an cosnx + bnsinnxj est la série dérivée de la série
i

de Fourier d'une fonction F(x) à variation bornée, la série
°° an cos rix -f- bn sin îix

N est une série de Fourier convergente
« iog n °

presque partout. Sa somme est

[F (x + t) — F

où G estune constante et g(l) la fonction à variation bornée
• ^ ^ cos n xdont la série de Fourier est ^ -r

'TT 11

7. — Je termine en indiquant un exemple de la simplification

que peut apporter l'emploi de l'intégrale généralisée
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de Stieltjes dans la démonstration de théorèmes déjà connus.
Je prendrai pour cela le théorème suivant :

Si Fn(x) f fn(x) dx est une fonction bornée cle n qui

converge vers une intégrale F (x) f f(x)dx, et si g (x) est une

fonction à variation bornée, on aura

lim f fn(x)g(x)dx f f(x) g(x) dx
n=cc ' '

En e filet, de même que dans la théorie de l'intégration par
rapport à x, il est permis dans notre théorie d'intégrer
terme à terme une suite bornée. On aura donc

lim Ç F n(x)dg(x) f F (x) dg(x)
n=x 1 '

Or%*F(.r) et F;|(.X') étant des fonctions continues, on peut intégrer

par parties, ce qui donne

.r x x x

lim | F^ (#)J — fg{x)dFn(x) | j^F (.r) g (.r)"J — fg\x)d¥tx?)
a a a et

Les premiers termes des deux membres de cette relation
sont égaux et les seconds sont des intégrales par rapport à

des intégrales; par conséquent, comme on le voit facilement,

on peut exprimer les seconds termes par des intégrales
de Lebesgue, par exemple

x X

Çg(x)dF \x) — Çg(x) f(x) dx
a a

Par suite, l'égalité des seconds termes des deux membres
donne le théorème cherché.

Cette démonstration si brève n'emploie que des théorèmes
fondamentaux, bien connus pour l'intégration ordinaire.
Tout mathématicien peut donc en suivre le raisonnement;
il lui suffit d'accepter ces théorèmes fondamentaux. La
première démonstration que j'ai donnée de ce théorème remplit
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au contraire plusieurs pages; elle est délicate, elle utilise le
changement de variable à la façon de Lebesgue et nécessiteÖ o
pour sa compréhension des connaissances étendues et une
attention soutenue.

J'espère en avoir assez dit pour convaincre delà simplicité
et de l'intérêt de la théorie de l'intégration par rapport à

une fonction à variation bornée.
W. H. Young (Genève).

LE BICENTENAIRE DE LA LOI DES GRANDS NOMBRES

Le 1/14 décembre 1914, l'Académie des Sciences de Saint-Pétersbourg

a consacré une séance solennelle à la célébration du
bicentenaire de la publication à Baie, en 1713, de l'œuvre posthume de
Jacques Bernoulli : Ars conjectandi. On sait que la quatrième
partie de cet ouvrage contient l'énoncé et la démonstration du
célèbre théorème de Jacques Bernoulli, le plus simple cas d'un
ensemble de théorèmes qui constitue la loi des grands nombres.

La séance fut suivie par un nombreux public ; elle comprenait
trois discours. Tout d'abord M. le Prof. A. Vassilief parla des

questions de la théorie des probabilités jusqu'au théoréme de
Bernoulli. Puis M. Markof, membre de l'Académie, et qui avait
pris l'initiative de la séance, examina la loi des grands nombres
considérés comme un ensemble de théorèmes mathématiques. Enfin
M. le Prof. A. Tschouprof montra le rôle de la loi des grands
nombres dans la science contemporaine.

Nous croyons intéresser les lecteurs de cette Revue en leur
donnant un aperçu de ces trois conférences.

I

M. le Prof. A. Vassilief a donné un aperçu historique du
développement de deux notions fondamentales : de la probabilité
mathématique ou a priori et de la probabilité a posteriori ou
empirique. Dans la « Sùmma de Aritmetica Geometria Proportioni
e Proportionalita » de Paciùolo, dans les ouvrages de Tartaglia,
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