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SUR UNE
APPLICATION DE LA THÉORIE DES NOMBRES

A LA MÉCANIQUE STATISTIQUE ET LA THÉORIE
DES PERTURBATIONS1

Si l'on enroule sur une circonférence de longueur 1 un fil portant

des repères èquidistants, ces repères formeront, après un
nombre infini d'enroulements, sur la circonférence, un ensemble qui
non seulement sera dense, mais de plus présentera la même densité

partout sur la circonférence. Nous supposons que la
distance séparant deux repères soit mesurée par un nombre
irrationnel u (c'est-à-dire que son rapport à la circonférence soit
incommensurable). Ce théorème de la théorie des nombres,
d'énoncé simple fut démontré en 1909-1910 presque simultanément

par Bohl2, Sierpinski3 et Weyl. Je n'entrerai pas dans le
détail des démonstrations et me bornerai ici à donner quelques
applications de ce théorème, qui formeront le sujet de ma conférence.

Permettez-moi d'abord de préciser un peu l'énoncé ci-
dessus.

Enrouler la droite des nombres réels sur une circonférence de
longueur un, signifie que l'on considère deux nombres comme
étant égaux, lorsqu'ils sont congrus suivant le module 1 (c'est-à-
dire lorsque leur différence est un nombre entier). Autrement dit,
on remplace tout nombre réel x par le nombre réduit (x) qui lui
est congru suivant le module 1, tel que

0 £= [x) < 1

Désignons par a z= aaf une portion quelconque de l'intervalle
01 et par ;?a le nombre des n nombres

(Jeu) ] te — 0, 1, 2, n — 1 J

1 Conférence faite par M. Hermann "Weyl, Professeur à l'Ecole polytechnique de Zurich, à

la Réunion de la Société mathématique suisse, tenue à Zurich le 9 mai 1914. Rédaction française

de M. Ch. Wilugkns.
2 P. Bohl. Journal f. reine n. angew. Math., t. 135 (1909).
3 W. Sierpinski. Krakau Ak. Anz., A, janv. 1910.
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situés dans Vintervalle a; on a la relation

î ]im — ~ a' — a
n—oc n

ceci quel que soit l'intervalle aa'.
Je passe immédiatement à un deuxième énoncé de ce théorème.

J'écrirai pour tout nombre x

X [x] + M

le symbole [x] introduit par Gauss ayant sa signification
habituelle. n peut se représenter par la formule

n—i

(2) "« 2 I ~~ ^ _ ~~ î '

k=.)

En effet, l'expression entre accolades n'est différente de zéro et
dans ce cas elle est égale à l'unité que s'il existe un nombre
entier A, tel que

ku — af <C. h ku — a

c'est-à-dire' lorsque ku — h ou bien (ku) est situé entre a et a'.
n étant défini par la formule (2), la formule (1) reste valable alors
même que l'hypothèse o a a' 1 ne se trouve plus réalisée.
Désignons par £, V ^es coordonnées rectangulaires des points
d'un plan et considérons la portion, limitée par des parallèles,
définie par

y] colg y — ^ < ri cotg y — a

l'angle y des droites qui la limitent avec l'axe des g étant défini par
la relation

cotg y :— Il

Le terme général de la somme (2) désigne alors le nombre des

points nodaux (à coordonnées entières) de la portion de plan ainsi
définie, situés sur la droite rj k parallèle à l'axe des J. n sera
le nombre de points nodaux, situés dans cette bande de largeur
a' — a jusqu'à la hauteur n (0<C^)- Nous pouvons donner du
théorème le 2e énoncé suivant:

Le nombre des points nodaux situés dans une partie de la bande
qui a la hauteur n, tend asymptotiquement lorsque n croît
indéfiniment, vers le nombre qui mesure l'aire de la partie ainsi limitée.
(2me énoncé).

Nous allons encore transformer l'énoncé. Soit une longueur
P1 P2 donnée dans le plan des £>?. Dessinons cette longueur dans
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toutes les positions qu'elle peut prendre par suite de translations
dont les composantes suivant les axes des £ et rj sont mesurées

par des nombres entiers. Nous obtenons ainsi tout un réseau de

segments. Considérons une flèche se déplaçant d'un mouvement
uniforme en suivant une trajectoire rectiligne. La loi du déplacement

de la pointe sera définie par les relations :

jll Ç nz ai —|— a* y] nz ht 4- 4* (a, b, a*, // constantes)

Combien de segments du réseau notre flèche rencontrera-t-elle
par. unité de temps, ou bien combien de fois par unité de temps la
flèche passera-t-elle entre les extrémités d'un segment du réseau
Notre théorème nous dit que ce nombre est mesuré par l'aire
d'un parallélogramme, construit sur le vecteur P, P., et la vitesse
résultante (r/, b) comme côtés.

Car si nous désignons par gr la droite qui résulte de la trajectoire g*

de la flèche par une translation PjP2, chaque fois que g rencontre
un des segments PjP2, son extrémité P2 sera dans la portion de
plan limitée par les deux parallèles g et les extrémités P2 des
segments non rencontrés par g ne sont pas dans cette région. Les
extrémités P2 forment un réseau de points, il s'agit donc comme
précédemment de compter les points nodaux situés dans une portion

de plan limitée par deux parallèles. Ce troisième énoncé de
notre théorème est dû à M. Bohl1.

J'ajoute au dessin obtenu précédemment un réseau de carrés de

côté i défini par les relations

r 111 11
/ i •

c r, " - [m et n nombres entiers)

Supposons le segment P1 Pâ contenu dans le «carré fondamental

» 0 ^ %,ïj ^ i Plions le plan le long des côtés du réseau,
de sorte que tous les carrés viennent se superposer au carré
fondamental2. En un point £, rj du carré fondamental viendront se
superposer les points de coordonnées m -f- £, n -t- rj (m et n entiers
quelconques et en prenant toutes les combinaisons de signes
possibles.) La trajectoire rectiligne (3) est devenue une ligne
ÎDrisée, telle que la décrirait une bille de billard si le carré
fondamental était un billard dont les bandes renvoient la bille suivant
la loi ordinaire de la réflexion. Les vitesses de la bille sur les dif-

1 P. Bohl, Journal f. reine u. angew. Math.., t. 135.
2 Ce procédé est emprunté à un mémoire de MM. D. König et A. Szücs, Rendiconti del

Circolo mat. di Palermo, t. 3(».

L'Enseignement mathém., 16e année; 191A 29
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férentes portions de trajectoire sont

(-{- ci -j- b) (-|~ ci — b) (— ci -j- h) (— ci É

(+ • +! * (+•-), (—, + 1 (——)•

Chaque fois que notre droite g rencontre un segment du réseau,
la bille franchit le segment P, P2 tracé sur le billard, dans la
direction (+, -f-) ; ceci se produit en moyenne .1 fois par unité de
temps, J désignant l'aire du parallélogramme défini par P1 P2 et la
vitesse \a,b). Nous choisissons comme unité le double de la
longueur d'une bande du billard qui est supposé carré. Si nous
prenons la longueur même d'une bande comme unité, nous devons

1

prendre 7J au lieu de J. Si le segment Pd P2 est perpendiculaire à

la vitesse [a, b) et si l'on construit sur 131 P2 comme côté un
rectangle situé dans le plan du billard et de surface R, on peut énoncer

le résuLtat comme suit: Considérons la bille pendant l'intervalle

de temps très long de t — 0 à t, la durée totale du temps
que la bille a employé à traverser le rectangle R dans le sens

1

+) se rapproche asymptotiquement de 7 RC t croissant

indéfiniment. Tout domaine G tracé sur le billard, peut être considéré,

par approximation, comme constitué par de petits rectangles
dont les côtés sont parallèles à ceux de R. C'est pourquoi nous
sommes en droit d'affirmer que le temps employé par la bille
pour traverser le domaine G dans le sens (-(-, +) pendant une
durée très longue d'observation de t 0 à t, est représenté

asymptotiquement par ^ G / Si nous procédons de même pour les

trois autres directions, (-f- —) {— -(-) [>— —) et si nous
désignons par tG le temps pendant lequel dans l'intervalle d'observation

de i=;0 à t la bille s'est trouvée à l'intérieur de G, le temps

de séjour, et si nous appelons ^ le temps de séjour relatif,

nous arrivons au théorème :

Le temps de séjour relatif au domaine G est représenté par
l'aire de ce domaine, ou bien, puisque nous pouvons considérer
l'aire d'un domaine, comme mesurant la probabilité a priori pour
qu'un point choisi arbitrairement sur le billard soit situé dans G,
le temps de séjour relatif est égal ci la probabilité a priori.
(4me énoncé).

Une hypothèse fondamentale de la mécanique statistique
consiste à admettre que cette loi est valable pour tout système mécanique

non ordonné. Représentons l'état d'un système à n degrés
de liberté par 2n coordonnées canoniques, à savoir n coordonnées
de position et n coordonnées moments px, /;2, pn et qx, r/.,, qn.
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L'espace à 2n dimensions, dans lequel un système de valeurs de

ces coordonnées est représenté par un point, permet de représenter
les états successifs par une courbe, l'état initial étant donné ; et
l'espace se décomposera en o©-'* 1 de ces courbes, qui ne se rencontrent
jamais. Pour développer la mécanique statistique (par exemple
la théorie cinétique des gaz? il est nécessaire que l'une quelconque

de ces trajectoires passe finalement aussi près que l'on
voudra de tout point de l'espace, et que la durée de séjour moyenne
dans des domaines égaux soit constante (Lrgodenhypothesej. Ce

principe est un peu modifié par le fait que la courbe doit se

trouver en outre sur une surface d'énergie constante, mais en ce
moment j'en fais abstraction. Xotre bille cle billard est Vexemple
le plus simple satisfaisant à Vhypothèse ci-dessus, du moins en ce

qui concerne les coordonnées de position. L'hypothèse n'est pas
valable dans notre exemple pour les coordonnées moments, qui
sont ici les composantes de la vitesse, n'admettant que les quatre
valeurs =+= b

Quoique notre théorème de théorie des nombres et les idées qui
interviennent dans sa démonstration soient plus intimement liés
à la mécanique statistique qu'il ne ressort de l'exemple de la bille
de billard, je me contenterai de cette indication et je passe à

Vapplication à la théorie des perturbations en astronomie.
11 s'agit d'un système de planètes se mouvant autour d'un astre

central, le Soleil (dépassant de beaucoup les planètes en masse
Ce système de masses admet, un centre de gravité et un plan
invariable passant par ce point, qui se trouve déterminé grace au
théorème des aires. F,es trajectoires des planètes sont en première
approximation des ellipses loi de Kepler:, dont les éléments sont
toutefois soumis a des variations lentes, les perturbations. Les
éléments entrant en ligne de compte sont:

la longitude du nœud ascendant. Le nœud est la droite d'intersection

du plan de l'orbite et du plan invariable; on fixe sa position

en mesurant sa distance angulaire à partir d'une direction
fixe, choisie une fois pour toutes dans le plan invariable ;

Vinclinaison de l'orbite (angle du plan de la trajectoire avec le
plan invariable ;

la longitude du périhélie mesurée dans le plan invariable
depuis la direction fixe jusqu'au nœud, ensuite dans le plan de
l'orbite jusqu'au périhélie) ;

Vexcentricité numérique ;
le demi grand axe.
Prenons la masse du Soleil comme unité et représentons la

masse des planètes par emh, mh étant uncertain nombre fini
pour chaque planète, le facteur f par contre doit indiquer la
petitesse des masses des planètes; nous le supposerons tout de suite
infiniment petit. Des perturbations appréciables ne se produisent
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alors que clans cles intervalles de temps séculaires, c'est-à-dire de

l'ordre de grandeur de - Pour étudier les perturbations, au lieu

de nous servir de « l'année » {durée de révolution d'une planète
autour du soleil) comme unité de temps, nous nous servirons du
temps séculaire t — c/\ t' étant le temps mesuré en années. En
faisant tendre s vers zéro on parvient en passant à la limite aux
équations différentielles cles perturbations séculaires. L'une d'elles
exprime la célèbre loi de stabilité de Laplace: Les demi-grands
axes des trajectoires planétaires sont constants. Il faut réunir les
éléments suivants, soumis à cles variations séculaires :

il l'excentricité numérique r et la longitude du périhélie 2tcg\ à

l'aide desquels je forme le nombre complexe1

- ~ relKia ~ r (cos 2-<j -f i sin 2tz<j) ;

2) Le sinus de l'inclinaison de l'orbite / et de la longitude du
nœud 2tcù), que je réunis clans la formule

'ilxi/.A
u — s ni y e ~

Si l'on se borne aux termes du 1er degré, ce qui suppose une
excentricité et une inclinaison très petites, on obtient des équations
de la forme : 4

(izh
_dû ~ 1 "h-k ~k '

k

les constantes réelles a} k désignant les coefficients d'une certaine
forme quadratique positive. Pour u on obtient des équations
analogues. Si l'on transforme la forme quadratique en prenant les
axes de symétrie comme axes cle coordonnées, 3 devient

h

ah étant des nombres réels positifs (inverses des carrés des axes)

ayant les mêmes valeurs pour toutes les planètes du système, tandis
que les constantes complexes A h se rapportent à une seule cle ces
planètes. Posons

A h ~ cl h
e~"ian Cl k — 0 a y réeli

on a

r. 1=2 Cih eir-'["h' +ah].h

1 Je m'écarte ici des notations d'usage en astronomie, qui pourraient prêter à confusion
avec les quantités e, ir, i des mathématiques pures, dont il est fait usage ici.
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Ne considérons d'abord comme M. Bohl que le cas de trois
planètes :

(4)
•

r. — cle2ni(at + a^ + iße-7:i{bt + !r] + Ce2ni(ct + n

Quoique la théorie classique des perturbations séculaires soit
basée sur la conception de l'univers d'après Kepler et Newton et
non d'après Ptolémée, nous ferons bien de nous représenter la
dernière relation à Paide d'un mécanisme d'épicycles. Supposons
située dans le plan des nombres complexes 3 une roue de rayon (3
de centre 3 0 mobile autour de son centre. Une deuxième roue
de rayon 6b a son centre situé sur la circonférence de la première
et finalement une troisième roue a son centre sur la circonférence
de la seconde et se trouve munie d'un repère sur sa circonférence.
Si nous faisons tourner la première roue avec une vitesse angulaire

2tfc, la seconde avec une vitesse 2n\b — c), la troisième avec
la vitesse 2n{a — b — c), l'équation (4) représente le mouvement
résultant du repère g. 11 s'agit maintenant de trouver pour
l'accroissement de l'azimut 2jig (longitude du périhélie) une loi
valable à la limite t cc. Nous pouvons supposer la roue de
centre 3 0 immobile, car nous n'aurons qu'à composer son
mouvement avec celui obtenu dans cette hypothèse pour le repère :

d eiu27mfv-+ v -i- v + e
fi* — c* b± rzz b — c ; btK rrr b* — c*

L'azimut 2ttg^ de ^ est relié à g par la relation

s % -f- \tt -j- a*)

Nous pouvons étudier le mouvement de zA au lieu de celui de 3,
ce qui revient à poser en supprimant l'indice 1, c c* 0.

Toutes les positions de 3 possibles au point de vue cinématique
(la roue principale de centre 3=0 étant fixe) sont données par

(•5) eu-*1? + 6>elniTi + e

Les quantités réelles £, rj pouvant prendre toutes les valeurs
possibles, peuvent être considérées comme coordonnées d'un
point d'un plan. Le mouvement réel sera défini par

ff) ç — Cil -j- 41 Tj — bt -j— b *
;

elle est donc représentée par une droite parcourue avec une vitesse
uniforme.

+ o _

at — a — c aT —
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Si cf f> cl + i<3 cas de Lagrange on a pour toutes les positions

possibles du repère

<r -
2jtgù étant un angle défini par la relation

• n Cl - iB

Dans ce cas le repère ne peut parcourir un chemin enveloppant
l'origine. Supprimons l'hypothèse c c' ~ 0. nous aurons

- - et Y ^ 1

H.
7

—t -r yx
~;

Le mouvement de la roue principale décide tout. Le périhélie a
un mouvement moyen, c'est-à-dire qu'en moyenne par unite de

temps, il se déplace de la quantité 'lire dans le sens du mouvement

de la planète. Ce résultat est valable dans un système de

plus de trois planètes, pour chacune d'entre celles pour lesquelles
la condition de Lagrange est vérifiée, c'est-à-dire quand l'un des
nombres cL/; est plus grand que la somme des autres. Cette
condition est remplie pour les huit grandes planètes de notre
système solaire sauf pour 3 énus et la Terre. 11 n'y a donc que pour
ces deux planètes que l'on ignore si elles ont un déplacement
moyen du périhélie et du nœud ascendant, dans le sens du
mouvement planétaire.

C'est à M. Bohl que revient le mérite d'avoir traite le second cas
où aucun des trois nombres cl tG (S n'est supérieur à la somme
des deux autres. Je vais tacher d'établir rapidement son principal
résultat, de telle sorte qu'il soit facile de l'étendre à plus de trois
planètes, ce à quoi M. Bohl ne semble pas être parvenu.

Définissons y — re2:7/7 par la relation 5 et considérons toutes
les positions possibles au point de vue cinématique du repère, la
roue principale étant au repos, a est alors une fonction de jjf. rj qui
n'est pas uniforme, mais présente aux points où r — 0 des points
de ramification d'ordre infini, c'est-à-dire pour une position du
mécanisme telle que le repère soit confondu avec l'origine. Il y a

deux telles positions, répondant à ce fait que l'on peut, connaissant

les trois cotés, construire deux triangles i symétriques, mais
non directement égaux'». Désignons par na. jrß, try les angles du
triangle de cotés cl cB. Cf. nous avons comme solutions de

l'équation 3 0

__
1 - >

y __
1 + *

et : _
1 — 4

r _
1 — *
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ainsi que tous les points £, 7, dont les coordonnées sont
congrues à celles-ci mod. 1.

Réunissons les deux points ainsi obtenus par un segment de
droite le long duquel nous ferons une coupure dans le plan, ainsi
que le long de tous les segments qui s'en déduisent par des
translations dont les composantes sont mesurées par des nombres
entiers. Des considérations géométriques simples montrent que
dans le plan ainsi obtenu, la fonction cr^cryS, q) est uniforme et
continue et que pour chacune des variables '§, rj elle admet la
période un. Par conséquent <v'£, rj) est une fonction bornée (en

valeur absolue elle reste inférieure à i Lorsque le point §, rj

traverse une coupure, la fonction subit une diminution brusque de
valeur d'une unité. Poursuivons la variation continue de a pendant

que le point J, y décritla trajectoire rectiligne définie par (6).
Si nous partons de t 0 correspondant à la valeur initiale
a <T0(<rP, h*) au bout du temps t pendant lequel la trajectoire a
franchi nt coupures, cr <r0 nt, on a donc pour tous les temps
| a — nt 1^2 * N°l1s avons trouvé pour nt une valeur asympto-
tique Jl, J désignant l'aire d'un parallélogramme dont les côtés
sont le segment le long duquel s'étend la coupure et le vecteur
de composantes (a, b) : J aa -1- bß (le rapport ~ étant supposé

incommensurable). Nous trouvons donc la loi

lim — zzz a cl -4- i>%

«=oc t

Si nous supprimons l'hypothèse c — c* 0 nous devons
remplacer dans le 2e membre a et b par a — c et b — c, et ajouter c:

Cette belle loi due à Bohl constitue un cinquième énoncé de
notre théorème. 11 dit que même dans le eas non traité par La-
grange il existe un dèplaeement moyen du périhélie dans le sens
positifqui n est pas donné par l'une des altesses angulaires a, by c,
mais par une certaine valeur moyenne de ces trois quantités.

Si l'on veut étendre la loi de Bohl à quatre et plus de planètes,
il faut étendre le théorème de la théorie des nombres, qui nous a
servi de base, à plusieurs nombres irrationnels considérés
simultanément. Pour deux nombres u et c irrationnels qui ne sont pas
liés par une relation linéaire à coefficients entiers il s'énonce alors :

Si nous considérons dans un plan un système de coordonnées
rectangulaires, les points admettant les coordonnées [nu) (nv)
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réduites suivant le module un \n ~ t, 2, 3, forment pas
seulement dans le carré ayant Vanité pour côté un ensemble dense
(c'est l'énoncé d'un célèbre théorème d'approximation de Kro-
neckeri, mais ils présentent encore partout la même densité.

Les démonstrations de Bohl et de Sierpinski (qui sont
identiques dans leurs traits essentiels) ne se prêtaient pas à une
généralisation telle qu'elle est nécessaire ici. C'est pour cette raison
semble-t-il que M. Bohl a dû se borner au cas de trois planètes.
11 y a à peu près un an, j'ai présenté à Göttingue une démonstration

valable pour deux et un nombre supérieur de nombres
irrationnels, se basant sur l'invariant analytique e2rcix des-classes de
nombres mod. 1 et la théorie des séries de Fourier. Elle paraîtra
prochainement, ainsi que les résultats d'autres recherches du
même ordre d'idées, dans les « Nachrichten der K. Gesellschaft
der Wissenschaften zu Göttingen » 1. Une autre démonstration
élémentaire me fut communiquée peu après par M. II. Bohr.

En nous appuyant sur le théorème énoncé ci-dessus pour deux
nombres irrationnels, nous pouvons aborder l'étude des
perturbations dans le cas de quatre planètes.

Dans un espace rapporté aux coordonnées £, y, C, considérons
une courbe fermée £ sur laquelle nous choisirons un sens de
circulation. Considérons en outre la trajectoire recti ligne d'une flèche
se déplaçant d\in mouvement uniforme

£ — at -|- a* rt — ht -j- h* £ — et -j- c*

Nous supposerons que la flèche ne rencontre pas la courbe £,
dans quelles conditions dirons-nous qu'elle traverse cette courbe
Par un point 0 de la trajectoire de la flèche menons un plan E

perpendiculaire à cette droite, sur lequel nous projetterons £ or-
thogonalement suivant £. Si dans le plan E la courbe £
enveloppe m fois le point 0 (c'est-à-dire si le rayon vecteur OP décrit
un angle 2tchi lorsque le point P décrit la courbe £ dans le sens
de circulation) nous dirons que la flèche traverse m fois la courbe £
m pouvant être négatif). Si nous avons deux plans E, et E2

perpendiculaires à la trajectoire de la flèche, entre lesquels la courbe £
est entièrement située, qui sont rencontrés par la flèche aux
instants tA et les m passages à travers la courbe seront effectués
dans le temps qui s'écoule entre ti et 12. Nous n'avons pas besoin
de fixer le moment précis de ces passages. Construisons à l'aide
de £ un réseau en lui faisant subir toutes les translations ayant
des composantes mesurées par des nombres entiers, suivant les
trois axes de coordonnées, et cherchons combien de fois la flèche

1 L. séance du 13 juin lUl-'i.
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traversera de courbes du réseau eu moyenne par unité de. temps.
Ce nombre sera mesure par le volume déun tronc de cylindre, ayant
pour directrice pour direction des génératrices la trajectoire de

la flèche et pour hauteur la vitesse de la flèche:

(7) y —LÉ I (-f\cVÇ — j I CEc — rcdC ~j- - I \zdr{ — r,r/Çî
"

«- ^ %
(.Ci (.Cl (Cl

Dans un système de quatre planètes nous avons pour l'une
d'elles :

>***" 2 C\h^tk=aht + «; 1 2, 3. ij
h

Nous représenterons de nouveau notre trajectoire dans le plan
des z à l'aide d'un système d'épicycles qui se composera de 4 roues
de rayons cX/t. La roue principale de centre $ 0 aura pour
rayon CX4 et ce ne sera pas une restriction que de la supposer
immobile ou ce qui revient au même de supposer a4 — a4 — 0.

Faisons abstraction du cas connu, traité par Lagrange, il sera
possible d'amener le repère à passer par l'origine, c'est-à-dire de
construire un quadrilatère à l'aide des quatre côtés CLh. Ce
quadrilatère n'est pas complètement déterminé (comme le triangle
dans le cas précédent) mais possède encore un degré de liberté.
Nous avons un quadrilatère plan articulé. sont les angles des
côtés avec une direction fixe choisie dans le plan une fois pour
toutes. Nous avons deux cas à considérer.

1er cas: La somme du plus grand et du plus petit côté est
supérieure à la somme des deux côtés moyens. On peut parcourir en
un seul cycle toutes les formes du quadrilatère articulé, les six
différences d'angles

£ £ £ £ £Ï t E ce e £
12 ^2 » "ïS t1 > £l £2 > £l £4 £2 £4 > £3 £4

revenant à leurs valeurs primitives. Si nous maintenons £4

constant, c'est-à-dire si nous prenons CX4 comme base fixe du quadrilatère

(par exemple, soit — 0), le point de coordonnées
rectangulaires £,, g2, £3 dans l'espace décrit une courbe fermée qui
n'est toutefois déterminée qu'à une translation près à composantes
entières. Nous sommes donc en présence d'un réseau de courbes
sur lesquelles z 0, Le quadrilatère articulé est alors un système
oscillant double, c'est-à-dire les deux bras ne peuvent qu'osciller
de part et d'autre sans effectuer de tour complet.

2me cas: Toutes les formes distinctes possibles du quadrilatère
articulé font partie de deux cycles sans que le passage de l'un à
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l'autre puisse s'effectuer d'une façon continue. Si (fl4 est le plus
petit côté, les différences Jff — S4, — S4, £3 — ï4 augmentent
de ± 1 pendant que l'on décrit un cycle. Les trois autres
différences d'angles reviennent à leurs valeurs primitives. Suivant les
côtés que l'on choisit comme base, tige d'accouplement et bras du
quadrilatère articulé nous aurons un système à deux bras effectuant

des tours complets, un bras tournant, l'autre oscillant ou
enfin les deux bras oscillant.

Je me bornerai au premier cas ; la discussion du second cas

n'est pas essentiellement différente. Supposons a4~ a\~ 0. De
la formule (7) nous déduirons par des considérations analogues à

celles qui nous ont conduit au but dans le cas de trois planètes

" =% I (Ç.rfS.-ç.rfÇ.i+Ç (ï.rfÇi-5irf5.i +J*
i*.I 11

ï.rfï«i

Si nous supprimons la condition aA a\ 0 nous devons
remplacer dans le 2me membre ai, a 3, £„ g3 par — a4f
a2 - a4, a3 — a47 ^ — g4, g2 — S4, — J4 et ajouter u4. Pour
écrire le résultat simplement, nous introduirons les intégrales :

?-l — ^ j (£2 ^*8 ^3 ^2) + (^3 <7^4 ^4<7Ç3) -)- j

et des expressions analogues a4. Ces notations doivent
être interprétées comme suit : désignent les angles que
forment les côtés du quadrilatère avec une direction fixe du plan.
Les intégrales s'étendent à un cycle complet parcouru dans le plan
par le quadrilatère articulé et dans lequel il prend toutes les
formes que peut prendre un quadrilatère de côtés el/;. La façon
dont sont parcourues toutes ces formes possibles dépend de trois
fonctions arbitraires du temps, mais elles sont sans influence sur
les quantités ah, et bien entendu les quantités ah ne dépendent
pas de la direction fixe à partir de laquelle on a mesuré les
angles On pourra appeler à bon droit les quantités aJ% les
invariants intégraux du quadrilatère articulé. On obtient pour le
mouvement moyen du périhélie l'expression :

et 1 -f ((g0Cg H" aza.g -j- aê(l — at — a2 — a3)

Le résultat devant être symétrique en at «2, a.A, «4 on trouve:

ai -)- a2 -f- as d" a4 — 1

1 ' ^
Jim ^2^2 H- -J- ^4^*4 •

/—^ t
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Je ne suis pas arrivé à vérifier le premier résultat, a savoir que
la somme des quatre invariants intégraux d'un quadrilatère
articulé est égale à l'unité, partant de leur définition. La dernière
relation permet de supposer que les relations qui lient les quatre
côtés aux quatre invariants intégraux d'un quadrilatère articulé
sont l'analogue des relations entre les côtés et les angles d'un
triangle fixe. Ce sont ces relations et non celles entre les côtés et
les angles d'un quadrilatère fixe qui semblent être l'analogue le
plus proche et le plus naturel de la théorie des triangles plans.
J'ignore jusqu'à quel point ceci est vrai; mais on se rend en tout
cas compte que l'on a devant soi le point de départ d'une théorie
plus approfondie des quadrilatères articulés.

Les invariants intégraux sont positifs. Dans le cas discuté nous
avons donc de nouveau un déplacement moyen du périhélie dans
le sens positif\ déterminé par une valeur moyenne des vitesses 2nah
des différentes roues de Vèpicycle.

Le mouvement moyen du périhélie et du nœud ascendant a été
étudié pour toutes les planètes, sauf Vénus et la Terre, avec le plus
de soin par Stockwell1. Pour les déterminer il faut être certain
que l'on a affaire au cas de Lagrange, après quoi on n'a plus qu'à
déterminer les quantités a,n a±, a8, pour notre système
planétaire, c'est-à-dire à rapporter à ces axes de symétrie une forme
quadratique de huit variables. Si l'on veut résoudre le même
problème pour la Terre et Vénus, il faut calculer les quantités

Ct2, Cl8, correspondant à ces deux planètes, puis évaluer

des intégrales quintuples, étendues à toutes les formes
distinctes prises par un octogone articulé. Les calculs que ceci entraînerait

pourraient faire reculer, et renoncer à les effectuer
réellement.

On peut toutefois affirmer que Vénus et la Terre présentent
également un mouvement moyen du périhélie dans le sens du
mouvement planétaire. Le mouvement rétrograde actuel du du périhélie

de Vénus ne saurait donc être qu'un phénomène passager.
J'espère vous avoir montré, par ces quelques développements,

comment la théorie des nombres peut être appelée à jouer un rôle
dans les applications des mathématiques.

Herrn. Weyl (Zurich

1 Smithsonian Contributions to Knowledge, vol. xvni, 1870.


	SUR UNE APPLICATION DE LA THÉORIE DES NOMBRES A LA MÉCANIQUE STATISTIQUE ET LA THÉORIE DES PERTURBATIONS

