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| SUR UNE
APPLICATION DE LA THEORIE DES NOMBRES
A LA MECANIQUE STATISTIQUE ET LA THEORIE
DES PERTURBATIONS!

Si¢ lon enroule sur une circonférence de longueur 1 un fil por-
tant des reperes équidistants, ces reperes formeront, apres in
nombre infini d’enroulements, sur la circonférence, un ensemble qui
non seulement sera dense, mais de plus présentera la méme den-
sité partout sur la circonférence. Nous supposons que la dis-
tance séparant deux repéres soit mesurée par un nombre irra-
tionnel « (c’est-a-dire que son rapport a la circonférence soit
incommensurable). Ce théoreme de la théorie des nombres,
d’énoncé simple fut démontré en 1909-1910 presque simultané-
ment par Bour?, Stereinski® et Wevr. Je n’entrerai pas dans le
détail des démonstrations et me bornerai ici a donner quelques
applications de ce théoréeme, ui formeront le sujet de ma confé-
rence. Permettez-moi d’abord de préciser un peu l'énoncé ci-
dessus. :

Enrvouler la droite des nombres réels sur une circonférence de
longueur un, signifie que 'on considére deux nombres comme
étant égaux, lorsqu’ils sont congrus suivant le module 1 (¢’est-a-
dire lorsque leur différence est un nombre entier). Autrement dit,
on remplace tout nombre réel » par le nombre réduit (x) qui lui
est congru suivant le module 1, tel que

0= (@) <1

Désignons par a —= ada' une portion quelconque de Uintervalle
01 et par ny le nombre des n nombres

(ku) Y h=0,1,2, ..., n—1

1 Conférence faite par M. Hermann WeyvL, Professeur a I'Ecole polytechnique de Zurich, 2
la Réunion de la Société mathématique suisse, tenue a Zurich le 9 mai 1914. Rédaction fran-
caise de M. Ch. WILLIGENS.

2 P. BouL. Journal f. reine w. angew. Math., t. 135 (1909).

8 W. SigrpPiNsKI. Krakan Ak. Anz., A, janv, 1910.




456 H. WEYL

situés dans lintervalle a; on a la relation
(1) lim — =a" — a

cecl quel que soit I'intervalle aa'.
Je passe immédiatement a un deuxiecme énoncé de ce théoreme.
J'écrirai pour tout nombre x

x = [x] + (v} ,

le symbole [x] introduit par Gauss ayant sa signification habi-
tuelle. n, peut se représenter par la formule

n—1

(2) n, :E % [ku — a] — [hu — &) } .

k=)

En effet, I'expression entre accolades n’est différente de zéro et
dans ce cas elle est égale a 'unité que s’il existe un nombre en-
tier A, tel que

ku — o’ < h = ku — a

c’est-a-dire' lorsque Au — 7 ou bien (ku) est situé entre a et a'.
n, étant délini par la formule (2], la formule (1) reste valable alors
méme que 'hypothese 0 == @ < @’ = 1 ne se trouve plus réalisée.
- Désignons par &, 7 les coordonnées rectangulaires des points
d’un plan et considérons la portion, limitée par des paralleles,
définie par

neolgy —a’ <t <mnceotgy — a

I’'angle y des droites qui la limitent avec 'axe des & étant défini par

la relation
cotg} —_— u

Le terme général de la somme (2) désigne alors le nombre des
points nodaux (a coordonnées entieres) de la portion de plan ainsi
définie, situés sur la droite y = & parallele a 'axe des &. n, sera
le nombre de points nodaux, situés dans cette bande de largeur
a' — a jusqu’a la hauteur 2 (0 =< » <n). Nous pouvons donner du
théoreme le 2¢ énoncé suivant:

Le nombre des points nodaux situés dans une partie de la bande
qui a la hauteur n, tend asymptotiqguement lorsque n croit indefi-
niment, vers le nombre qui mesure Uaire de la partie ainsi limitée.
(2me énoncé). ' :

Nous allons encore transformer 1'énoncé. Soit une longueur
P, P, donnée dans le plan des £7. Dessinons cette longueur dans
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toutes les positions qu’elle peut prendre par suite de translations
dont les composantes suivant les axes des & et # sont mesurées
par des nombres entiers. Nous obtenons ainsi tout un réseau de
segments. Considérons une fleche se déplagcant d’'un mouvement
uniforme en suivant une trajectoire rectiligne. La loi du déplace-

ment de la pointe sera définie par les relations :
(3} E=al+ a*, n = bt + b* , (@, b, a*, b* constantes) .

Combien de segments du réseau notre fleche rencontrera-t-elle
par.unité de temps, ou bien combien de fois par unité de temps la
fleche passera-t-elle entre les extrémités d’un segment du réseau .
Notre théoreme nous dit que ce nombre est mesuré par l'aire
d’un parallélogramme, construit sur le vecteur P, P, et la vitesse
résullante (a, b) comme cotés.

Carsinous désignons parg’ladroite quirésulte de latrajectoireg
de la fleche par une translation P lr;;, chaque fois que grencontre
un des segments P, P,, son extremlte PQ SETA dans Ja portion de
plan limitée par les deux paralléles g et ¢, les extrémités P, des
segments non rencontres par g ne sont pas dans cette région. lLes
extrémités P, forment un réseau de points, il s’agit donc comme
précédemment de compter les points nodaux situés dans une por-
tion de plan limitée par deux paralléles. Ce troisieme énoncé de
notre théoreme est di a M. Bohl*.

J'ajoute au dessin obtenu précédemment un réseau de carrés de

b ‘oo .
coté 5 , défini par les relations

e = N = - (m et n mnombres entiers) .

Supposons -le segment P, P, contenu dans le « carré fonda-

<

l
mental » 0 =2 &,7 = 5 . Plions le plan le long des cotés du réseau,

u

de sorte que tous les carrés viennent se superposer au carré fon-
damental*>. En un point £ » du®carré fondamental viendront se
superposer les points de coordonnées m ==&, n =5 [m et n entiers
quelconques et en prenant toutes les combinaisons de signes
possibles.) lLa trajectoire rectiligne (3) est devenue une llone
brisée, telle que la décrirait une bille de billard si le carré fonda-
ment‘ll était un billard dont les bandes renvoient la bille suivant
la loi ordinaire de la réflexion. Les vitesses de la bille sur les dif-

1 P. Bonw, Journal f. reine u. angew. Math., t. 135.
2 Ce procédé est emprunté & un mémoire de MM. D. Kénic et A, Szics, Rendiconti del
Circolo mat. di Palermo, t. 36,

[’Enseignement mathém., 16¢ année; 1914 29
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férentes portions de trajectoire sont

(+ a, + 0), (+ a, — b) (— a, + 0), (—a, — b)
o+ (. =) I~ s —

Chaque fois que notre droite g rencontre un segment du réseau,
la bille franchit le segment P, P, tracé sur le billard, dans la di-
rection (4, +); ceci se produit en moyenne J fois par unité de
temps, J désignant I'aire du parallélogramme défini par P, P, et la
vitesse («, b). Nous choisissons comme unité le double de la lon-
gueur d’'unc bande du billard qui est supposé carré. Si nous pre-
nons la longuear méme d’'une bande comme unité, nous devons

1 . . . . ’
rendre - J au lieu de J. Si le segment P, P, est perpendiculaire a
A e 1 1o I

la vitesse (a, ) et si on construit sur P, P, comme coté un rec-
tangle situé dans le plan du billard et de surface R, on peut énon-
cer le résultat comme suit: Considérons la bille pendant 'inter-
valle de temps tres long de ¢ =0 a ¢, la durée totale du temps
que la bille a employé a traverser le rectangle R dans le sens
1
A
définiment. Tout domaine G tracé sur le billard, peut étre consi-
déré, par approximation, comme constitué par de petits rectangles
dont les cotés sont paralleles a ceux de R. C’est pourquoi nous
sommes en droit d’affirmer que le temps employé par la bille
pour traverser le domaine G dans le sens (4, +) pendant une
durée tres longue d'observation de ¢t=—=0 a ¢, est représenté

(+, +) se rapproche asymptotiquement de ; R¢, ¢ croissant in-

: 1 T ; 5
asymptotiquement par - G¢. Si nous procédons de méme pour les
+ .

trois autres directions, (+ . —], (—, 4+, (—, —) et si nous dé-

signons par {g le temps pendant lequel dans I'intervalle d’obser-
vation de £=0 a ¢ la bille s’est trouvée a l'intérieur de G, le temps

de séjour, et si nous appelons Z’__L“; f;’le temps de séjour relatif,
nous arrivons au théoreme :

l.e temps de séjour relatif au domaine G est représenté par
I’aire de ce domaine, ou bien, puisque nous pouvons considérer
I’aire d’'un domaine, comme mesurant la probabilité a priori pour
qu'un point choisi arbitrairement sur le billard soit situé dans G,
le temps de séjour relatif est egal a la probabilité « priori.
(4™ énoncé).

Une hypothese fondamentale de la mécanique statistique con-
siste 4 admettre que cette loi est valable pour tout systéeme méca-
nique non ordonné. Représentons 1'état d’un systeme 2 n degrés
de liberté par 2n coordonnées canoniques, a savoir n coordonnées
de position et n coordonnées moments p,, p,, ... pu €t q,, q,, ... Gn-
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[’espace & 21 dimensions, dans lequel un systeme de valeurs de
ces coordonnées est représenté par un point, permet de représenter
les états successifs par une courbe, I'état initial étant donné: etl'es-
pace se décomposera en «2—! de ces courbes, quine se rencontrent
jamais. Pour développer la mécanique statistique (par exemple
la théorie cinétique des gaz) il est nécessaire que 'une quelcon-
que de ces trajectoires passe finalement aussi pres que l'on
voudra de tout point de 'espace, et que la durée de séjour moyenne
dans des domaines égaux soit constante (Krgodenhypothese). Ce
principe est un peu modifié par le fait que la courbe doit se
trouver en outre sur une surface d’énergie constante, mais en ce
moment j'en fais abstraction. Notre bille de billard est Uevemple
le plus simple satisfaisant a Uhypothese ci-dessus, du moins en ce
qui concerne les coordonnées de position. L.’hypothese n’est pas
valable dans notre exemple pour les coordonnées moments, qui
sont ici les composantes de la vitesse, n’admettant que les quatre
valeurs (4= a, =0,

Quoicue notre théoreme de théorie des nombres et les idées qui
interviennent dans sa démonstration soient plus intimement liés
a la mécanique statistique qu’il ne ressort de 'exemple de la bille
de billard, je me contenterai de cette indication et je passe a
Uapplication « la théorie des perturbations en astronomie.

[l s’agit d’un systéeme de planétes se mouvant autour d'un astre
central, le Soleil (dépassant de beaucoup les planétes en masse!.
Ce systeme de masses admet un centre de gravité et un plan in-
pariable passant par ce point, qui se trouve déterminé grice au
théoreme des aires. [Les trajectoires des planétes sont en premiére
approximation des ellipses loi de Kepler', dontles éléments sont
toutefois soumis a des variations lentes, les perturbations. les
élements entrant en ligne de compte sont:

la longitude du neeud ascendant. Le neeud est la droite d'inter-
section du plan de l'orbite et du plan invariable; on fixe sa posi-
tion en mesurant sa distance angulaire a partir d'une direction
fixe, choisie une fois pour toutes dans le plan invariable ;

Uinclinaison de lorbite {angle du plan de la trajectoire avec le
plan invariable; ;

la longitude du périhélie 'mesurée dans le plan invariable de-
puis la direction fixe jusqu’au nceud, ensuite dans le plan de
Porbite jusqu’au périhélie) ;

Uexcentricite numérique ;

le demi grand uxe.

Prenons la masse du Soleil comme unité et représentons la
masse des planetes parv emy., 7, étant uncertain nombre fini
pour chaque plancte, le facteur ¢ par contre doit indiquer la peti-
tesse des masses des planetes; nous le supposerons tout de suite
infliniment petit. Des perturbations appréciables ne se produisent
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alors que dans des intervalles de temps séculaires, c’est-a-dire de

lordre de grandeur de - . Pour étudier les perturbations, aulieu

o l

de nous servir de «l’année» (durée de révolution d'une planete
autour du soleil) comme unité de temps, nous nous servirons du
temps séculaire f == ¢/, (' étant le temps mesuré en années. En
faisant tendre ¢ vers zéro on parvient en passant a la limite aux
équations différentielles des perturbations séculaires. LL'une d’elles
exprime la célebre loi de stabilité de Laplace: Les demi-grands
axes des trajectoires planétaires sont constants. 11 faut réunir les
éléments suivants, soumis a des variations séculaires :

1) 'excentricité numérique » et la longitude du périhélie 27c, a
I'aide desquels je forme le nombre complexe®

21i : . s
T — r(cos 2m5 + {sin 2r0)

P §

2} Le sinus de l'inclinaison de l'orbite j et de la longitude du
nceud 27w, que je réunis dans la formule

u = sinj. e ™
Si 'on se borne aux termes du 1*" degré, ce qui suppose une
excentricité et uneinclinaison tres petites, on obtient des équations
de la forme: «
dz,
dt

= 1

E “hok Sk oo

k
les constantes réelles a, , désignant les coeflicients d'une certaine
forme quadratique positive. Pour « on obtient des équations ana-
logues. Si 'on transforme la forme quadratique en prenant les
axes de symétrie comme axes de coordonnées, = devient

’

o \ Imia, t
= == ‘ Ah e h

h

/

ayant les mémes valeurs pour toutes les planetes du systeme, tandis
que les constantes complexes A, se rapportent a une seule de ces
planétes. Posons

a, étant des nombres réels positifs (inverses des carrés des axes|

Y 7y ¥ ,
A/l o c‘Lh e-“Lah fcx h E 0 \ ”;L I’(,‘C“
on a

=N @, k)
h

1 Je m’écarte ici des notations d'usage en astronomie, qui pourraient préter a confusion
avec les quantités e, 7, { des mathématiques pures, dont il est fait usage iei.
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Ne considérons d’abord comme M. Bohl que le cas de trois
planetes :

(4) . A Clegm(at'}_a') + (p’e'zzti(bz—%—b') + Ge‘lrri((ft-i-t")

Quoique la théorie classique des perturbations séculaires soit
basée sur la conception de 'univers d’apres Kepler et Newton et
non d’aprés Ptolémée, nous ferons bien de nous représenter la
derniére relation a 'aide d’'un mécanisme d’épicycles. Supposons
située dans le plan des nombres complexes = une roue de rayon €
de centre s = 0 mobile autour de son centre. Une deuxieme roue
de rayon (B a son centre situé sur la circonférence de la premiere
et finalement une troisiéme roue a son centre sur la circonférence
de la seconde et se trouve munie d’un repere sur sa circonférence.
Si nous faisons tourner la premieére roue avec une vitesse angu-
laire 2mw¢, la seconde avec une vitesse 2z b — ¢}, la troisiéme avec
la vitesse 2mw(a — b — ¢}, I'équation (4) represente le mouvement
résultant du repere z. Il s’agit maintenant de trouver pour
I'accroissement de l'azimut 276 (longitude du périhélie) une loi
valable 4 la limite ¢ = =. Nous pouvons supposer la roue de
centre z = 0 immobile, car nous n’aurons qu’a composer son
mouvement avec celui obtenu dans cette hypothese pourle repére :

B > S* . 27T
- — G-M(ct—}-c ):1 : 7, — (ﬁ’ez: Hayt 4 a* + U _Tub -t B F + C
G4 =a—c, a —=a — ", by —=b—¢e : by = b — ¢*
[azimut 270, de =, = r¢27i% est relié a ¢ par la relation

5 = 51 + (¢t + ¢7)

Nous pouvons étudier le mouvement de z, au lieu de celui de z,

ce qui revient a poser en supprimant 'indice 1, ¢ = ¢* = 0.
Toutes les positions de = p0551bles au pomt de vue Clnemathue

(la roue principale de centre

(5) s = (LetmiE L BT L @

Les quantités réelles &, 7 pouvant prendre toutes les valeurs
possibles, peuvent étre considérées comme coordonnées d'un
point d’un plan. L.e mouvement réel sera défini par

(6) = at + «* = bt + b*

elle est done représentée par une droite parcourue avec une vitesse
uniforme.
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51C > ¢l 4+ @3 cas de Lagrange onapour toutes les positions
possibles du repere

<

19
|
a
IN
o
1
O
rel
Q
N

2re” étant un angle défini par la velation

P 2 QYL
NIl 279 =— — A

¢

Dans ce cas le repere ne peut pavcourir un chemin enveloppant

l'origine. Supprimons I'hypotheése ¢ = ¢~ = 0. nous aurons
_ . 1 .3
5 — it = ¢ <+ lim — = ¢
+ I—x

[Le mouvement de la roue principale décide tout. Le perihelic «
un mowvevement moyen, cest-a-dire quen movenne par unité de
temps. il se déplace de la quantité 2wc¢ dans le sens du mouve-
ment de la planete. Ce resultat est valable dans un svsteme de
plus de trois planetes. pour chacune d'entre celles pourlesquelles
la condition de T.agrange est véritiée. ¢'est-a-dire quand l'un des
nombres ¢l est plus grand que la somme des autres. Cette con-
dition est remplie pour les huit grandes planetes de notre svs-
teme solaire sauf pour Vénus et la Terre. [l n'v a done que pour
ces deux planetes que l'on ignore si elles ont un deplacement
moven du périhélie et du neud ascendant. dans le sens du mou-
vement planétaire.

C’est a M. Bohl que revient Ie mérite d’avoir traité le second cas
ou aucun des trois nombres ¢L. 3. € n'est supérieur a la somme
des deux autres. Je vais tacher d'établir rapidement son principal
résultat. de telle sorte qu'il soit facile de I'étendre a plus de trois
planetes. ce a quoi M. Bohl ne semble pas étre parvenu.

Définissons z == 7¢37¢7 par la relation 5 et considérons toutes
les positions possibles au point de vue cinématique du repere. la
roue principale étant au repos. ¢ est alors une fonction de 2. » qui
n'est pas uniforme. mais présente aux points ou s == 0 des points
de ramification d'ordre infini. c¢’est-a-dire pour une position du
mécanisme telle que le reperve soit confondu avec l'origine. Il v a
deux telles positions. répondant a ce fait que l'on peut. connais-
sant les trois cotes. construire deux triangles symeétriques. mais
non directement égaux:. Désignons par wa. 3. my lesangles du
triangle de cotés ¢l. ¢d. €. nous avons comme solutions de
I'équation = = 0

' y = et L= —, y—

) * U

DANY

1 — 5 1 + = 1 — I — 2
— -




THEORIE DES NOMBRES 463

ainsi que tous les points &, 7, dont les coordonnées sont con-
grues a celles-ci mod. 1.

Réunissons les deux points ainsi obtenus par un segment de
droite le long duquel nous ferons une coupure dans le plan, ainsi
que le long de tous les segments quis’en déduisent par des trans-
lations dont les composantes sont mesurées par des nombres
entiers. Des considérations géométriques simples montrent que
dans le plan ainsi obtenu, la fonction ¢ —=06,:&, 7) est uniforme et
continue et que pour chacune des variables &, » elle admet la pé-
riode un. Par conséquent ¢,:&, 7, est une fonction bornée (en va-

- «  me R . ga
leur absolue elle reste inférieure a 5 Lorsque le point &, p tra-

verse une coupure, la fonction subit une diminution brusque de
valeur d’une unité. Poursuivons la variation continue de ¢ pen-
dant que le point &, » décritla trajectoire rectiligne définie par (6).
Si nous partons de £=—=0 correspondant a la valeur initiale
o = 6,(a", 0*) au bout du temps ¢ pendant lequel la trajectoire a
franchi n, coupures, ¢ =— 6, + n:, on a donc pour tous les temps

l .
|o — ny 1é§ . Nous avons trouvé pour n; une valeur asympto-

tique J¢, J désignant l'aire d’un parallélogramme dont les cotés
sont le segment le long duquel s’étend la coupure et le vecteur
de composantes (a, b): J=aa+ 0§ (le rapport % étant supposé

incommensurable). Nous trouvons donc la loi

. o}
lim — = aa 4 05 .
{—=w

Si nous supprimons ’hypothése ¢ = ¢* = 0 nous devons rem-
placer dans le 2° membre @ et b par « — ¢ et b — ¢, et ajouter ¢:

. g "
lim S = o + b3 4 ey .

==z

Cette belle loi due & Bohl constitue un cinquieme énoncé de
notre théoreme. I dit que méme dans le cas non traité par La-
grange il existe un déplacement moyen du périhélie dans le sens
positiyf qui 'est pas donné par Uune des vitesses angulaires a, b, ¢,
mais par une certaine valeur moyenne de ces trois quantites.

Si l'on veut étendre la loi de Bohl a quatre et plus de planétes,
1l faut étendre le théoreme de la théorie des nombres, qui nous a
servi de base, a plusieurs nombres irrationnels considérés simul-
tanément. Pour deux nombres « et ¢ irrationnels qui ne sont pas
liés par une relation linéaire a coeflicients entiers il s’énonce alors :

Si nous considérons dans un plan un systeme de coordonnées
rectangulaires, les points admettant les coordonnées (nu) (ny)
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5 ¢

reduites suivant le module un (n =1, 2, 3, ...} ne forment pas seu-
lement dans le carré ayant Uunité powur coté un ensemble dense
(c’est I'énoncé d’un célébre théoréme d’approximation de Kro-
necker), mais ils présentent encore partout la méme densite.

[Les démonstrations de Bohl et de Sierpinski (qui sont iden-
tiques dans leurs traits essentiels) ne se prétaient pas a une géné-
ralisation telle qu’elle est nécessaire ici. C’est pour cette raison
semble-t-il que M. Bohl a du se borner au cas de trois planeétes.
Il'y a a peu pres un an, j'ai présenté a Gottingue une démonstra-
tion valable pour deux et un nombre supérieur de nombres irra-
tionnels, se basant sur I'invariant analytique €27 des-classes de
nombres mod. 1 etla théorie des séries de Fourier. Elle paraitra
prochainement, ainsi que les résultats d’autres recherches du
méme ordre d’idées, dans les « Nachrichten der K. Gesellschaft
der Wissenschaften zu Gottingen » . Une autre démonstration
élémentaire me fut communiquée peu aprés par M. H. Bohr.

En nous appuyant sur le théoréme énoncé ci-dessus pour deux
nombres irrationnels, nous pouvons aborder I'étude des pertur-
bations dans le cas de quatre planetes.

Dans un espace rapporté aux coordonnées &, 7, {, considérons
une courbe fermée 2 sur laquelle nous choisirons un sens de cir-
culation. Considérons en outre la trajectoire rectiligne d’une fleche
se déplacant d'un mouvement uniforme

t = at + a* , = bt + b* | = ct + ¢~
Nous supposerons que la {leche ne rencontre pas la courbe £,
dais quelles conditions dirons-nous qu’elle traverse cette courbe ?
Par un point O de la trajectoire de la fleche menons vn plan E
perpendiculaire a cette droite, sur lequel nous projetterons £ or-
thogonalement suivant £2 Si dans le plan E la courbe £ enve-
loppe m fois le point O (c’est-a-dire si le rayon vecteur OP décrit
un angle 2zm, lorsque le point P décrit la courbe (2 dans le sens
de circulation} nous dirons que la fleche traverse m fois la courbe £
(m pouvant étre négatif]. Si nous avons deux plans E, et E, per-
pendiculaires a la trajectoire de la fleche, entre lesquels la courbe £7
est entierement située, qui sont rencontrés par la fleche- aux ins-
tants ¢, et ¢,, les m passages a travers la courbe seront effectués
dans le temps qui s’écoule entre ¢, et z,. Nous n’avons pas besoin
de fixer le moment précis de ces passages. Construisons a l'aide
de fZun réseau en lui faisant subir toutes les translations ayant
des composantes mesurées par des nombres entiers, suivant les
trois axes de coordonnées, et cherchous combien de fois la fleche

1 L. c., séance du 13 juin 191%.
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traversera de courbes du réseau en moyenne par unité de.temps.
Ce nombre sera mesuré par le volume d’un tronc de cylindre, ayant
pour directrice 8%, pour direction des générairices la trajectoire de
la fleche et pour hautewr la vitesse de la fleche :

e b [ c [
T V=4 [+ g [ s — a4 g [ =

o

(j
() (\L‘)

N,

J

(£ (

1 1 N %
Dans un systéeme de quatre planetes nous avons poul I'une
d’elles :

T 2 3z if s _ 1 9
: = pe?™0 = CL, e*Tép £, = a,t + a th = 1.2, 3. %)
h

Nous représenterons de nouveau notre trajectoire dans le plan
des 5 a I'aide d’un systéme d’épicycles qui se composera de 4 roues
de rayons @ ,. La roue principale de centre z =0 aura pour
rayon (L, et ce ne sera pas une restriction que de la supposer im-
mobile ou ce qui revient au méme de supposer a, = «, = 0.

Faisons abstraction du cas connu, traité par l.agrange. ll sera
possible d’amener le repéere a passer par l'origine, c’est-a-dire de
construire un quadrilatere a I'aide des quatre cotés &L,. Ce qua-
drilatere n’est pas completement déterminé (comme le triangle
dans le cas précédent) mais possede encore un degré de liberté.
Nous avons un quadrilatére plan articulé. 27§, sont les angles des
cOtés avec une direction fixe choisie dans le plan une fois pour
toutes. Nous avons deux cas a considérer.

I°* cas: La somme du plus grand et du plus petit cOté est supé-
rieure a la somme des deux cOtés moyens. On peut parcourir en
un seul cycle toutes les formes du quadrilatere articulé, les six
différences d’angles

z
=1

£

VY
N

)
oINY
NARS
AN}

: — &, 2. G G,
revenant a leurs valeurs primitives. Si nous maintenons &, con-
stant, c’est-a-dire si nous prenons ¢, comme base fixe du quadri-
latere (par exemple, soit &, == 0), le point de coordonnées rectan-
gulaires &, &,, &, dansD’espace décrit une courbe fermée £, qui
n’est toutefois déterminée qu’'a une translation pres a composantes
entieres. Nous sommes donc en présence d’un réseau de courbes
sur lesquelles 3 — 0. e quadrilatere articulé est alors un systéme
oscillant double, c’est-a-dire les deux bras ne peuvent qu’osciller
de part et d’autre sans effectuer de tour complet.

2me cas: Toutes les formes distinctes possibles du quadrilatere

articulé font partie de deux cycles sans que le passage de 1'un a




466 . wWEYL

l'autre puisse s’effectuer d’'une facon continue. Si €1, est le plus
petit coté, les différences & — &,, &, — &,, & — & augmentent
de == 1 pendant que 'on décrit un cycle. Les trois autres diffé-
rences d’angles reviennent a leurs valeurs primitives. Suivant les
cOtés que 'on choisit comme base, tige d’accouplement et bras du
quadrilatere articulé nous aurons un systéme a deux bras eflec-
tuant des tours complets, un bras tournant, 'autre oscillant ou
enfin les deux bras oscillant.

Je me bornerai au premier cas; la discussion du second cas
n’est pas essentiellement différente. Supposons «,=— «,=0. De
la formule (7) nous déduirons par des considérations analogues a
celles qui nous ont conduit au but dans le cas de trois planetes

e 3 P

" s} (4 42 .
T = o 2 / G — Gadia + 2 [ (Bde —Edi + 2 [ G — fds
== - e

Si nous supprimons la condition ¢, = «, = 0 nous devons rem-
placer dans le 2™ membre «,, a,, «,. &, &,, & par a; — ay,
a, —a,, a, —a,, & — &, & — &, & — &, et ajouter «,. Pour
écrire le résultat simplement, nous introduirons les intégrales :

€

1 ( . .
w= o [V Cadh — i)+ Gadh — Rdi) 4 (Eudh— G|
- \

-t
/

et des expressions analogues o,, «,, «,. Ces notations doivent
étre interprétées comme suit: 27§, désignent les angles que
forment les cotés du quadrilatere avec une direction fixe du plan.
Les intégrales s’étendent a un cycle complet parcouru dans le plan
par le quadrilatere articulé et dans lequel il prend toutes les
formes que peut prendre un quadrilatere de cotés ¢1,. La facon
dont sont parcourues toutes ces formes possibles dépend de trois
fonctions arbitraires du temps, mais elles sont sans influence sur
les quantités «,, et bien entendu les quantités «, ne deépendent
pas de la direction fixe a partir de laquelle on a mesuré les
angles 27&,. On pourra appeler a bon droit les quantités a, les
invariants intégraur du quadrilatere articulé. On obtient pour le
mouvement moyen du périhélie I'expression :

ajoy + agag + agos -+ agll — oy — oy — o)
Le résultat devant étre symétrique en «,, «,, a,, o, on trouve:

oy + ag + a5 + a0 =1

Iim
==

= @y + a0y + azo; + ago4 .

~]Qa
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Je ne suis pas arrivé i vérifier le premier résultat, a savoir que
la somme des quatre invariants intégraux d’un quadrilatére arti-
culé est égale a 'unité, partant de leur définition. La derniére
relation permet de supposer que les relations qui lient les quatre
cOtés aux quatre invariants intégraux d’un quadrilatére articulé
sont I'analogue des relations entre les cotés et les angles d’'un
triangle fixe. Ce sont ces relations et non celles entre les cotés et
les angles d’un quadrilatere fixe qui semblent étre ’'analogue le
plus proche et le plus naturel de la théorie des triangles plans.
Jignore jusqu’a quel point ceci est vrai; mais on se rend en tout
cas compte que ’on a devant soi le point de départ d’une théorie
plus approfondie des quadrilateres articulés.

Les invariants intégraux sont positifs. Dans le cas discuté rous
ayvons donc de nouveauw un déplacement moyen du périhélie dans
le sens positif, déterminé par une valeur mcyenne des vilesses 2ma,
des différentes roues de I'épicycle.

Le mouvement moyen du périhélie et du nceud ascendant a été
etudié pour toutes les planétes, sauf Vénus etlal'erre, avec le plus
de soin par Stockwell!. Pour les déterminer il faut étre certain
que l'on a affaire au cas de l.agrange, aprés quoi on n’a plus qu’a
déterminer les quantités «a,, «,, ... @z, pour notre systéme pla-
nétaire, c'est-a-dire a rapporter a ces axes de symétrie une forme
quadraticque de huit variables. Si 'on veut résoudre le méme pro-
bléeme pour la Terre et Vénus, il faut calculer les quantités
A,, A&,, ... &, correspondant a ces deux planeétes, puis éva-
luer des intégrales quintuples, étendues a toutes les formes dis-
tinctes prises par un octogone articulé. l.es calculs que ceci entrai-
nerait pourraient faire reculer, et renoncer a les effectuer
réellement. ’

On peut toutefois affirmer que Vénus et la Terre présentent éga-
lement un mouvement moyen du périhélie dans le sens du mou-
vement planétaire. Le mouvement rétrograde actuel du du péri-
hélie de Vénus ne saurait donc étre qu’un phénomeéne passager.

J'espére vous avoir montré, par ces quelques développements,
comment la théorie des nombres peut étre appelée a jouer un role
dans les applications des mathématiques.

Herm. WeyeL (Zurich,.

v Smithsonian Contributions to Knowledge, vol. xvii, 1870.
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