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432 C. CAILLER

soit, après quelques réductions

^ «4+^-1«. (47)

Quant au covariant T ^ (HX' — XIF), c'est évidemment un

combinant du faisceau (X, H) ; si on substitue ali -f- bX à X, il se

reproduit multiplié par le facteur

-1(4V - g,b„* - g,a*,

IV. — Formes doublement quadratiques.

10. — On nomme forme doublement quadratique un polynôme
tel que

[m,n- 0,1,2) (48)

soit, en le développant suivant les puissances de l'une ou de l'autre
des variables,

F — X2y8 -f- 2Xij X0 r= 4 2•** 4" -4 i *' ~~b X •
1 'l<3)

Les coefficients X* et Yi, dans ces représentations, valent

X, — a-HX' + e*a\iX +'rt0i ' ~ ai*y + 2r/ilJ + aLi) • 00

Relativement à ces formes F doublement quadratiques, nous
avons à résoudre plusieurs questions importantes qui se rattachent
toutes, plus ou moins directement, au problème de l'équivalence
de deux pareilles formes par transformation linéaire uni modulaire.
Un rôle fondamental, dans toute la théorie, est dévolu aux
discriminants de F relatifs à chaque variable; ce sont les fonctions

D ix) X2 — XX et D„(v) Y2 — Y Y. (51)
// • ' 1 0 2 X •

'
1 0 2' ^ '

que nous représentons le plus souvent par les lettres X et Y.
Commençons par exclure le cas où X et Y possèdent des racines

multiples; à ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynômes, ou que si X
possède une racine multiple, Y en possède une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opère dans F une transformation portant sur les deux
variables et telle que
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le nouveau polynôme F' obtenu après avoir chassé les diviseurs
est encore doublement quadratique en x' et y' ; sauf des facteurs
constants, ses deux discriminants sont les transformés

X' | a'x' + b'f X (x) Y" =r (aV -f ß')4Y(r)

de X et Y par (52).
Au moyen d'une transformation semblable amenons une racine

de l'équation X — 0 à l'origine x 0. En vertu de la condition
F — 0, à cette racine x 0, simple ou multiple, correspond une
racine y de F, celle-là est une racine double. Amenons de nouveau
y à l'origine des y par une transformation linéaire. Supposons
maintenant que la première racine x 0 soit multiple pour
l'équation X =0; on trouve immédiatement pour satisfaire ces
diverses conditions les deux hypothèses que voici. Ou bien, on a

"oo "oi — "10 0» 011 bien a00 a0\ aQ2 C'est le Pre"
mier système qui est vérifié, y — 0 est une racine double de Y 0,

si c'est le second Y0 0, Y Y* est un carré parfait ; ce

deuxième cas n'existe par conséquent que si l'équation F 0 est
décomposable en deux équations linéaires en y.

De toute manière il est établi que X ne peut admettre de racines
multiples sans que Y en admette de son côté. Il importe de fixer
par une interprétation géométrique la signification du résultat
précédent.

La courbe F 0 est une biquadratique C4 rencontrée en deux
points seulement par les parallèles aux axes coordonnés. Elle
possède donc deux points doubles à l'infini, un sur chaque axe;
elle est ainsi de 2me classe et de genre i. Ce sera même, parmi les
courbes du 4m<> degré, la plus générale possédant deux points
doubles si, par une perspective, on a pris soin de les transporter
tous deux à l'infini.

11 est aisé de voir que la condition pour que C4 possède un
troisième point double est précisément que X admette une racine
double. On aperçoit immédiatement ainsi, à cause de la symétrie
des axes, l'équivalence cle la dite condition pour X et Y; c'est
donc simultanément que X et Y ont des racines multiples, et dans
ce cas, le genre de C4 s'abaisse de 1 à 0.

Si, dans F — 0, le coefficient a22 est nul, la courbe n'est plus
que du troisième degré. Cette cubique C3 contient les points situés
à l'infini sur les deux axes, et ce sont des points ordinaires; la
courbe, d'un genre égal à l'unité, ne deviendra unicursale que si X,
et par suite Y, admet une racine double.

Laissons désormais de côté les cas de dégénérescence, nos
discriminants Xet Y n'auront aucun facteur multiple, et leur degré ne
peut s'abaisser au-dessous du troisième.



434 C. CAILLER
11. — Forme normale. Equivalence des deux discriminants. —

Désignons par lx l2 l3 les polynômes conjugués relatifs a X, par
m] m2, m3 ceux relatifs à Y. Nous savons que les U sont
linéairement indépendants; c'est dire que les quantités x2, x, 1 peuvent
s'exprimer en fonction linéaire homogène des polynômes h ;

exactement de même on peut remplacer y2, y, 1 par certaines
combinaisons homogènes des mi.

Cela étant, le polynôme F peut s'écrire, d'une seule manière,
sous la forme doublement linéaire

\ai/at 4- a2m2 -f- rsm3\lt -\- {h±m± -f b2in2 -j- b2 m?j \ l2

(Cl Illi -J- C2 II! 2 "F ('s '»3> 4; • (5o)

Or je dis que cette réduite à neuf termes se ramène en réalité à

un simple trinôme, et que, en numérotant autrement, si besoin
est, les trois polynômes m], m2, mz dont l'ordre importe peu, elle
s'écrira

i U na 4~ (f2l2ni2 4~ o3l3m3

Pour établir ce fait supposons, pour plus de simplicité, que les
li. lin ont été réduits à leur forme normale avec des discriminants
égaux à l'unité, et considérons une forme linéaire telle que

fi h -f" fï 4 -f- /s h ;

son discriminant est, par définition, égal à

l [(2/p!- mA cause des conditions d'orthogonalité entre les il se réduit à

ff+ ft+'11 1 '22 1 '33

Appliquons cette règle pour trouver les deux discriminants de la
forme bilinéaire ci-dessus (53), où l'on suppose, répétons-le, les
U et nii réduits à leur forme normale. On trouve à l'instant

X ~ {Cl II -f- bLl2 -(- 6-1 /3)3 -p \e2 ù -f" b2l2 -f- C£/g) 2 -j- I C 3 /1 -f- b3I2 -f- c3/3)2

Y [atmt 4- a2m2 4- asm3)'2 4- (faïUi 4- b2m2 bsm3|2 4-

bi //?! 4- c2m2 4- c3 msl8

Or, par supposition, les U sont les polynômes conjugués relatifs
à X comme les nii le sont à Y ; il faut donc que les seconds
membres des formules précédentes se réduisent tous les deux à la
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forme purement quadratique, par destruction des doubles
produits, de manière que

X Atf± -j- A2f -|- As/g et Y m Baiy ff- B2/»2 -f- Bsmg (5-ïJ

Mais d'après un lemme d'Algèbre élémentaire, les conditions
moyennant lesquelles les deux sommes de carrés

$ — [Gtx -f- éyv -j- -j- {a2x -j- ù2y -f- c%z)'2 -f- [ct3x -f- l\r -f- £g ")' •

— | Gtx -j- a2y + gz ~ ê + I f'i--1' + 4ar + 0 - ê + B'i-*' + CA' 4~ r3~l~ •

deviennent purement quadratiques des types

<î> m Atx' -f- A2r -j- A3c-2 et Y' ~ Bi.r'2 -|- B2y2 -f- Bs"-2

sont des plus limitées. On démontre, en effet, aisément la proposition

suivante.
Si & et <2>' sont tons deux purement quadratiques et que, en

outre, les constantes A,, A2, A3 soient différentes les unes des

autres, les trois polynômes

a±x + b±y -f- Ci" a2x -f--f>2y -j- c2z as.r -f b3y -f- csz

se réduisent nécessairement à des monômes qui, de plus, sont
linéairement indépendants.

Pour ne pas allonger, je laisse au lecteur le soin d'obtenir la
démonstration, facile, de ces divers points ; je me borne à en faire
l'application aux polynômes X, Y auxquels je reviens.

Remarquons que les discriminants des six polynômes U. nu ont
été supposés égaux à l'unité, et les polynômes eux-mêmes réduits
à leur forme normale. On a donc

si donc, dans la formule (54), pour X, deux coefficients étaient
égaux, par exemple A, A2, en remplaçant -f- f parla quantité
égale — If ce discriminant serait un carré parfait, cas exclu.

11 faut donc que les formes réduites (54 possèdent trois coefficients

distincts; dès lors, en vertu du lemme ci-dessus, les trois
trinômes

cii ni \ H- ci<iin2 -j- g3iii3 Y nii -}- b2m2 -j— h3m3 l'iiiii -}- c2m2 -j- c3m3

dégénèrent en trois monômes indépendants. 11 suffit de changer
au besoin la numérotation des nu pour leur donner la forme -

Gi na G 2 1112 G s Hl S
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Du même coup l'expression doublement quadratique F apparaît

sous sa forme réduite, soit

F <?i /j m-i -f- a2l2m2 -f- a2/2m3 1 (55)

Quant aux discriminants, leur valeur correspondante sera

X — a" 1" -)- a* l~ 4- al' (56)
1 1

1

2 2
1

3 S
1 '

Y ~ a m 4- a m -4- a />> (57)
1 1

1

2 2
1

3 3
' '

Or, nous savons que des transformations unimodulaires
permettent de passer du système tL au système ni]. Les deux
théorèmes fondamentaux suivants s'offrent à présent d'eux-mêmes.

a) Les deux discriminants X, Y de la forme F sont transformables

l'un dans Vautre; ils sont équivalents et possèdent les mêmes
invariants rationnels gï, ou irrationnels ei.

b) .4 l'aide d'une transformation linéaire opérée sur y seul F
devient symétrique en x et en y.

Arrêtons-irous un instant sur les interprétations géométriques
de ces résultats, elles sont classiques et fort simples.

1° Soit d'abord le cas où la courbe F 0 est une cubique ; pour
qu'une cubique C3 se présente sous la forme F — 0, il suffit de

transporter à l'infini une corde ÀB de la cubique, puis 0
désignant un point quelconque de son plan, de prendre OA, OB pour
axes coordonnés.

Cela étant, l'équation X 0 détermine les abscisses des
tangentes menées par le point B, autres que celles qui touchent la
courbe en B ; il y a quatre tangentes pareilles puisque C3 est de la
sixième classe.

L'équation Y — 0 déterminera de même les tangentes menées
à C3 par le point A. Le théorème d'équivalence entre X et Y nous
donne donc la propriété fondamentale de la géométrie des
cubiques.

Qu'on mène par un point A d'une cubique les quatre tangentes à
la courbe telles que leur contact n ait pas lieu en L, le rapport
anharnionique de ces tangentes est constant quand A varie.

2° Supposons, en second lieu, que la courbe F 0 soit une bi-
quadratique C4 non dégénérée. Les points A et B sur la droite de
l'infini sont les points doubles de C4; la même interprétation nous
apprend que

1 II'est clair que cette même forme réduite peut être adoptée, même si !| m± ne sont pas
réduits à leur forme normale. Les formules qui suivent pour X et Y supposent simplement,
par exemple, que les L, ///i ont l'unité pour discriminant.
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Si, par les points doubles d'une C4 de genre 1, on mène quatre
tangentes autres que les tangentes aux points doubles eux-mêmes,
ces deux faisceaux de quatre tangentes sont projectifs.

3° Généralisons ceci en considérant une biquadratique gauche
C4. Soient A, B, C trois points de la courbe, choisissons ABC comme
plan de l'infini, OA, OB, OC comme axes coordonnés. D'après
ces conventions, les équations de C4 seront

ayz -j- bzx -f- cxy -f- a f -j- A -j- itz -j- o 0

a/yz -f- f/zx -}- c'xy -j- %fx -f- rfy -f- y'z -j- o/ zzz 0

Eliminons s, nous trouvons pour définir la projection de la courbe
sur le plan OX, OY, une équation doublement quadratique F — 0.

Donc, toujours par la même interprétation, si par la corde BC on
mène quatre plans tangents à C4, ils ont le même rapport anhar-
monique que quatre autres plans semblables conduits suivant
CA; ou bien

Le rapport anharmonique des quatre plans tangents menés à la
biquadratique gauche par une corde quelconque est constant.

4° 11 existe encore d'autres interprétations géométriques du
théorème d'équivalence ; la plus connue, en dehors des
précédentes, est celle fournie par le système de deux coniques. Elle
résulte aisément du rapport qui existe entre un semblable système
et l'équation doublement quadratique. Halphen a développé ces
relations, avec un grand détail, dans les chapitres 10 et 11 de son
second volume; je me borne à citer ici la proposition qui traduit,
pour deux coniques, le théorème d'équivalence entre les deux
discriminants X et Y.

Deux coniques étant tracées à volonté dans un plan, le rapport
anharmonique des points d'intersection, pris sur Vune des coniques,
est égal au rapport anharmonique des tangentes communes pris
sur l'autre1.

12. — Formes symétriques. Conditions cVéquivalence. — Le
problème à résoudre consiste à trouver les conditions à satisfaire
pour qu'une forme F soit équivalente à une autre F' ; la première
forme doit se changer dans la seconde quand on exécute sur elle
les deux transformations linéaires unimodulaires

^ ex ~F b cy -j- d ^Cl X -j- h v T —|— (I
^

Une condition d'équivalence se rencontre immédiatement ; il est
clair en effet que si F se transforme en F', les deux discriminants

1 Hai.imikn. tonctions elliptiques, ïme vol. ]
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doivent être équivalents deux à deux, X à X' et Y à Y'. En écrivant
les conditions de cette double équivalence entre les discriminants,
on se procure toutes les transformations possibles de F en F',
selon le mode susindiqué (58).

La condition précédente, qui est nécessaire pour l'équivalence
et fournit toutes les équations de la transformation, n'est pas
suffisante. Prenons en effet une forme F et essayons de la reconstruire

à partir de ses discriminants X et Y.
Soient et les invariants irrationnels communs à X et à Y, U les

polynômes conjugués de X, nu ceux de Y ; ces polynômes sont de
nouveau déterminés par les formules (25), et leur discriminant,
identique pour U et nu, vaut comme nous savons, k[et — ej) [et — ef] -

On a entre les U l'identité

—ek)l]=0 (59)

tandis que X est donné par l'expression

y (60)

Soit donc

F=2V<"li' (61)

la représentation bilinéaire de F ; son discriminant relatif à y
trouvé suivant les règles du § précédent, sera

IXy (.»•) — eß K' — (6"2>

Il faut que Dy coïncide avec X ; en comparant (59) (60) et (62),
on voit que la condition nécessaire et suffisante de cette égalité est

• pi \ej — eté

1/Ä"

la quantité q désignant une indéterminée.
On en tire

' jej " |/P —

|/A
(63)

tels sont les coefficients à porter dans (61). On voit, par ce calcul,
que si X et Y sont donnés, F pent prendre une infinité de formes
différentes qui se distinguent les unes des autres par la valeur du
paramétre Q.
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Si donc une autre forme F' a des discriminants X', Y'
respectivement équivalents à X et Y, elle donne lieu aux équations

6;
V'— y.a'Xm'i avec at= J eiV?'

/A
Or toute transformation qui changerait F en F' changera aussi

X en X7, Y en Y', c'est-à-dire /• en l\ et mi en mi ; ainsi donc
l'équivalence entre F et F7 ne saurait avoir lieu à moins que q' q.

Yoici donc un nouvel invariant absolu qui vient s'adjoindre aux
deux autres g2, g3, poui1 que F se change en F7, en même temps
que X en X7 et Y en Y7; il y a, sans plus, trois invariants g3, q
dont l'égalité est nécessaire, mais aussi suffisante, pour la possibilité

de la transformation.
Les expressions at ci-dessus dépendent de trois irrationnelles

i/o — et, il est aisé de les remplacer par une seule irrationnelle.
Soit en effet Z un nouveau polynôme biquadratique en possédant

les mêmes invariants que X et Y ; nommons-en K le J lessien
et m les polynômes conjugués.

Posons Q —- — 5
; alors, d'après la formule (377)

2j/Z

en substituant ces trois valeurs dans l'équation (61), on voit que
tout polynôme F aux discriminants Dy X et Dx — Y se présente
sons la forme canonique trilinèaire

2j/5Z2(<7 ~ III Il,

Répétons que, dans cette forme, le polynôme Z qui contient l'arbitraire

s est lui-même quelconque, pourvu qu'il ait les invariants
et en commun avec X et Y.

Le théorème précédent, facile à vérifier par le calcul direct,
peut encore s'énoncer comme suit:

Soient trois polynômes en x, y, et z du 4me degré X, Y, Z ;

supposons-les équivalents ou doués des mêmes invariants û\. Soient
encore h, nii, ni leurs polynômes conjugués ; alors la forme triplement

quadratique
G 2 (<7 — ek)ii"'int " <64)

admet, par rapport aux trois variables, des discriminants Dx, D v, D -

qui sont
D* 4AYZ Dy 4AZX — 4AXY ,65)
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Toutes les propositions qui précèdent concernent des

polynômes F quelconques ; nous voulons en faire l'application au cas
le plus important qui est celui d'une forme F. non seulement
quadratique en x et en y. mais encore symétrique par rapport a ces
lettres. Il va de soi que. dans ce cas. X et 4 d'une part et les h- nu
de l'autre, ne différent que par le nom de la variable, x chez les

uns. y chez les autres.
Parmi les diverses formes Z possédant les mêmes invariants

que X. la plus simple, qui s'offre d'abord, est la forme transformée
de X par changement de x en r.. de sorte que de même que
Y X y on ait aussi Z X r- (le choix particulier présente un
intérêt spécial dans l'étude du théorème d'addition des fonctions
elliptiques. Toutefois nous ne l'adopterons pas ici. et nous ferons

les valeu rs qui s'en déduisent pour les polynômes conjugués /y son t

donc celles consignées sous le n° 45

Cherchons, pour le cas actuel, la constitution du polynôme
G 64 en fonction explicite des variables x\ y. z. et des coefficients

du polynôme X cpie j'appellerai aussi /h.. Yous avons

X fxa: — <7f .V4 — 4 nt x* — (><y2 ./ - — h.5 — nA

Développons G suivant les puissances de ~ et remplaçons les
nt par leurs valeurs 45 il vient

G m, — ef. h"',», p° — -61 - — P*

P 0 — 2 [ p2 — Cgi 4m% — • f,o — Ci! /2ms — y yc Lmz

P 1 — 2 e-, ' p% — Po /i rnx — e% pz — (y — ez y — y 4 mz

P 2 — — 2 — 'mV p2 — pz — ••• •

et il ne reste plus qu'a exprimer ces trois quantités en fonction
des variables x. y et des coefficients de X.

Remarquons pour cela que si deux polynômes doublement
quadratiques. et en outre symétriques. F^. — comme le sont les
quantités Pi — deviennent égaux quand x~y> ce qui constitue le
cas de coïncidence, ces polynômes ne diffèrent l'un de l'autre que
par un terme du type a x — y -.

En effet le quotient Exy — doit être bilinéaire. entier, et en
x — y

outre gauche relativement à la permutation des deux variables.
En écrivant ce quotient sous la forme axy -f bx -f-cy -h d. il faut
donc que

Cl 0 <7 0, /; y r — U
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et l'on a bien hxy — Mxy a [x — y)'2. De cette remarque il résulte
qu'une fonction telle que Lxy est complètement définie quand on

connaît les deux valeurs \,xx et (^ ^ \ ; c'est cette observa-
J x=y

tion que nous allons employer trois fois de suite pour déterminer
les quantités P$,

A l'égard de la première, on remarquera que dans le cas de
coïncidence x y, on a /. /«.; alors, en vertu de l'équation 27

P° s'annule. On a donc P° — Ajif— y y2 ; mais, comme d'autre part.

et que la somme nous est connue d'après 22 on tire

A =: 4pA et P° ~ 4[/A(,r — y)2

Appliquons le même raisonnement à PAJ » d'après l'équation 28';
on a dans le cas de coïncidence

P(0= -.yix -2[/Afxx

Or, en invoquant le résultat 32'

/ ô2pi\ ^ „ 9
' ~ ^ ' 'J ~ e*} ~ 3x" t7 A ;

dédoublons donc la forme fxx biquadratique en une forme doublement

quadratique et symétrique; on trouve immédiatement,
d'après ce qui précède, l'équation

fxf =~ aox~J
2

H~ -cixxy[x -j- r) -J- a2(x~ -}- 4,ry 12j -{- 2«3j.y -f- r) ~\~ (U (661

et
Pd) — 2[/Jfxy

Soit enfin P(2)—— 2(<q -f e2e3)(e2 — e3)lyn± -f ; nous avons

0, - e2l(e3— éM + et 3e2es — — — ep - i ^ ;

donc

3 [e -j- le (6 — 6 zz: — ——— — - o- / g — p jv 1
1

2 3M 2 3 2 4 D2! 2 S

L'Enseignement mathém., 16e année 1914. 90
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Cette identité, et ses analogues obtenues par permutation,

amènent P* à la forme

Désignons maintenant par \\xx le Hessien de fxx, et prenons de

nouveau le cas de coïncidence. En vertu des formules (36;), nous
avons

C -(Sr"L,=-f 2,;'

Appliquons au Hessien la relation générale (32), nous avons

2 fi=- 4HL - ¥ tK-~ + •••]=- «C + v, •

Voici donc les conditions à employer pour déterminer Pxy

Pxx ^ VA Hxx ' et ~ 3^ H-rx ;

elles donnent, après un court calcul, par dédoublement du
Hessien Hxx

formule dans laquelle H a la signification suivante

4Hxy — 4(aof,a — a[)x2y2 4- 4(a0as — ata2)xy(x + y) -j- (r0a4 — (x +y)2

-f 8{atcrà —a^xy 4~ 4(ata4 — a%at)[x 4- r) + 4(û2a4 — /*) (67)

Résumons. Si une équation doublement quadratique et symétrique

en x, y admet pour discriminant la forme

X ~ fxx a0xl 4~ ie1xri 4-

elle a pour expression

Hxy + zfxy -z2(x —0 (68)

où les symboles ïxy et Hxy ont les valeurs (66) et (67), tandis que z
désigne une arbitraire.

De plus, le discriminant relatif à z de cette formule (68) est égal
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xx fyy i ^1
sous la forme résolue
au produit fxx fyy ainsi que nous savons, On peut donc écrire (68)

fxy V'fxx !yy /gm3- 2(x-yf
Enfin une dernière forme de la même relation est digne de

remarque, comme s'étant présentée à Euler 1 et Lagrange 2 dans
leurs recherches sur le théorème d'addition des intégrales
elliptiques. La voici.

Dans le carré remplaçons le double produit

— 2\/fxx( par sa valeur tirée de (69), il vient'xx'yy

fxx 4" fyy

(x — y
yy "'xy ^ _

Or, si I on fait
Q fxx + fyy 2/xy

oc y ~

(X — Jl»

et qu'on remarque les identités

nf.vy\_ii .*

v (>x yxx•et i öä 2 xy ~ yxxv / x—y \ / x=y

on voit que la valeur de coïncidence est

f -YX• XX ^x.2 ^ n
Q-xx — y — %fxx ~ -f- 4c2

D'ailleurs Qxy est entier, symétrique et du second degré en
x et y ; le terme du second degré est évidemment

X4 -f- i4 — 2x2rJ
°° _ r)ä - °0 (* +

La valeur de Q se dégage de suite de ce double renseignement,

elle est

Qxy " ao (x ~f~ j)2 ~f~ + y) -f- 4tf2 •

La nouvelle forme cherchée pour l'équation (68) se déduit de là,
la voici :

V/« - Vr
x — y

yy _ «B(x +yf + + y (70)

1 Eulkr. Institution es Cal. Tntegr., vol. 1, Sectio secunda c. VI.
2 Lagrangk. Oeuvres, éd. Serret, II, p. 533.
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13. — Determination des invariants. — Continuons à nous

limiter aux équations doublement quadratiques symétriques. Ces

équations possèdent comme nous savons, trois invariants qui sont
g.2, gz, et z ; la détermination des invariants est extrêmement
simple. Car, en premier lieu, et gz sont les invariants rationnels
de la fonction D — f ; 1Q étant donné ils se trouvent ainsi

y !xx ' xy
d'une manière immédiate.

En second lieu, on a identiquement, comme nous savons,

Vxy- l nxy+ ~ ~ .ri2] ; (71)

à leur tour les expressions fxyetIlsont toutes connues quand
fxx, ou Fxy, sont donnés ; il suffît donc d'identifier les deux
membres de (71) pour avoir le dernier invariant cherché s. On

peut même, avant de procéder à cette identification, faire x y,
ce qui ramène l'équation précédente à la forme plus simple

^XX — ^xx "h *fxx\ ' C ï)

sous l'une ou l'autre de ces diverses formes, on voit que le
problème de la détermination de s n'offre aucune difficulté.

Halphen a donné, pour trouver les trois invariants, une règle
sur laquelle il nous faut revenir1; il propose de former une équation

caractéristique dont les racines seraient proportionnelles aux
trois quantités z — et. Mais la page 366 où est formée cette équation

contient, à côté de quelques obscurités, une erreur qui
compromet singulièrement le résultat énoncé.

Je suppose qu'on ait sous les yeux le passage en question ; on y
verra que l'iiiustre auteur propose de considérer la forme

S¥xy + (* —J)2

comme une fonction des deux variables

xy — l x + y r]

Le discriminant de la forme quadratique en £rj ainsi formée
serait précisément l'équation caractéristique. Quelques essais
suffisent à montrer l'inexactitude de la règle; la raison en est
facile à découvrir.

1 Halphiïn. Fonctions elliptiques, 2»»« vol. p. 344, 364-366.
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Prenons généralement la forme

F*y <(H*y + hfxy + c (* ~ fi*' <'3)

à trois coefficients arbitraires ; cherchons à en former le
discriminant Dy relatif à y.

Nous savons que Dy est du type AH^ + Bfxx et que les
constantes A et B sont quadratiques en a, by c. De plus, si a b 0,

Fxy est un carré et doit s'annuler; c'est donc que A et B sont
linéaires en c.

Considérons en second lieu le cas a 0, et soit

fxy= V2 + + Xe

Le discriminant de fXiJ est

celui de

x; - x0x, - bxx

Fty~hfxy+ '

est égal à

{hXi-cxY-(bX+c)(bX0 +cx*) -b> Uxx~ bcfxx

Enfin, et en dernier lieu, sj dans (73) on fait a= 1, b=z,
c — — z2, le polynôme ¥xy se confond avec le premier membre de

(68), le discriminant est alors égal au produit

^
/4s8 — %. — s? f03 ' XX

Il suffit de rapprocher ces trois cas particuliers pour obtenir le
discriminant Dy de la formule générale (73), sous la forme

Dy= b»+ ac) Exx - + f ah + bc^ (74)

on y lit, une fois de plus, ce fait fondamental qu'il existe une
simple infinité de polynômes symétriques Fxy possédant un
déterminant donné.

Voici maintenant la conséquence à tirer de (74), Parmi ies formes
Fxy, à quel caractère reconnaître celle qui sont décomposables en
facteurs linéaires en x et en y La réponse est immédiate : il faut et
suffit que le discriminant Dy soit un carré parfait. Or, nous con-
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naissons les seuls carrés contenus dans la relation (74); ils
dépendent de la condition

4he -i- ab <n\a2

61
4 (b2 -j- ac)

qui peut s'écrire également

V'— aet) (7 — e{b — + ° ' (75)

Cette condition est donc réalisée si b aeé. quelle que soit la
valeur de c ; ainsi

Exy + Gifxy + C(X — i)2

est toujours décomposable en facteurs linéaires. C'est ce qu'on
peut d'ailleurs vérifier à l'instant; car Hxx -f~ etfxxse réduisant au
carré

—
4 h — (a^2 ~t~ + y)2

on obtient le polynôme décomposable

Exy + eifXy + c(x — y)2 (axy -b + j) + y)2 -f B(.X — y)2 (76)

Mais, c'est ici le point délicat, les facteurs de la décomposition
ne sont pas symétriques en x et en y, ils ne sauraient donc s'exprima-
en § et en y.

Soit D le discriminant de FXy par rapport aux variables £, rj ;

si D s'anaule, FXy est décomposable en facteurs linéaires en £, rt ;

ou, si on préfère, FXy se partage alors en facteurs bilinéaires
relativement à.r, y et symétriques. Aussi le discriminant de la forme (76)
n'est pas nul, quoique cette forme soit décomposable, parce qu'elle
l'est de manière non symétrique.

Il est d'ailleurs facile de trouver le discriminant D de la forme
générale par rapport aux variables £, 7. La fonction D est du
troisième degré en «, b, c; la condition D~ 0 entraîne la relation (75),
et comme elle n'est pas vérifiée si b — aei, elle le sera forcément en

annulant le second facteur de la dite relation. On conclut de là

D=4n (ae) + bei + c — ^ a) ; i =z 1, 2, 3 (77)

le coefficient numérique de cette formule se vérifie sur un essai

particulier, par exemple en faisant a c 0, b i, Fxy fxym
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