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432 C. CAILLER

soit, apres quelques réductions

~ 2 4 -
K, = ae; 4 be; — 224 | (47)
A 18 B Il T/ T / 9 ’ .
Quant au covariant T = 5 (HX" — XH'), ¢’est évidemment un

combinant du faisceau (X, H); si on substitue «H ++ 6X a X, il se
reproduit multiplié par le facteur

1
~7 (40° — g ba® — g ¥ .
[V. — Formes doublement quadratiques.
10. — On nomme forme doublement quadratigue un polyndéme
tel que
F = E(Imnx"‘f”‘ ; (m,n =20, 1, 2) (48)

soit, en le développant suivant les puissances de 'une ou de l'autre
des variables,

F == Xgp* 4 2Xgy 4+ N, = Yoa! 4+ 2Y,x £+ Y, . (49)
Les coeflicients X; et Y;, dans ces représentations, valent
X; = ay,2* + 2a,% + a,, , Y, = a;,)* 4 2a,y + a - (50)

Relativement a ces formes I doublement quadratiques, nous
avons a résoudre plusieurs questionsimportantes qui se rattachent
toutes, plus ou moins directement, au probleme de I'équivalence
de deux pareilles formes par transformation linéaire unimodulaire.
Un role fondamental, dans toute la théorie, est dévolu aux discri-

minants de F relatifs a chaque variable; ce sont les fonctions

.2 - o ,2 I ,
D,x) =X, —XX,, e D (=Y —YY,, (5]

072

que nous représentons le plus souvent par les lettres X et Y.

Commencons par exclure le cas ou X et Y possédent des racines
multiples; 4 ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynomes, ou que si X
possede une racine multiple, Y en possede une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opere dans F une transformation portant sur les deux
variables et telle que

ax’ 41 ' ay’ -+ ¢

— i 7 ) 7 7 YA (52)
a’x’ + b ‘ a'y” 4 8
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le nouveau polynome F’ obtenu aprés avoir chassé les diviseurs
est encore doublement quadratique en 2’ et y'; sauf des facteurs
constants, ses deux discriminants sont les transformés

N = (e’ 4 0 X, Y = (a4 FIPY ()

de N et Y par (52).

Au moyen d’une transformation semblable amenons une racine
de 'équation X = 0 a l'origine w = 0. En vertu de la condition
I = 0, a cette racine v = 0, simple ou multiple, correspond une
racine y de F, celle-la est une racine double. Amenons de nouveau
y a lUorigine des y par une transformation linéaire. Supposons
maintenant que la premiére racine x — 0 soit multiple pour
'équation X = 0; on trouve immédiatement pour satisfaire ces
diverses conditions les deux hypotheses que voici. Ou bien, on a

. . R o o . - - . 9 : -

oy = g = 1,, =0, ou bien ¢, = @, = a, = 0. Si c’est 191 pre

mier systeme qui est vérifié, y =0 est une racine double de Y =0,
. r - 72 ’ Ve

si c’est le second Y, = 0, Y = Y, est un carré parfait; ce

deuxieme cas n’existe par conséquent que si l'équation FF == 0 est
décomposable en deux équations linéaires en y.

De toute maniere il est établi que X ne peut admettre de racines
multiples sans que Y en admette de son coté. Il importe de fixer
par une interprétation géométrique la signification du résultat
précédent.

La courbe K == 0 est une biquadratique C, rencontrée en deux
points seulement par les paralléeles aux axes coordonnés. Elle
possede donc deux points doubles a l'infini, un sur chaque axe;
elle est ainsi de 2m¢ classe et de genre 1. Ce sera méme, parmi les
courbes du 4™ degré, la plus générale possédant deux points
(doubles si, par une perspective, on a pris soin de les transporter
tous deux a l'infini.

Il est aisé de voir que la condition pour que C, possede un troi-
sieme point double est précisément que X admette une racine
double. On apercoit immédiatement ainsi, & cause de la symétrie
des axes, I'équivalence de la dite condition pour X et Y; c’est
donc simultanément que X et Y ont des racines multiples, et dans
ce cas, le genre de C, s’abaisse de 1 a 0.

Si, dans FF = 0, le coeflicient a,, est nul, la courbe n’est plus
que du troisieme degré. Cette cubique C, contient les points situés
a I'infini sur les deux axes, et ce sont des points ordinaires; la
courbe, d’un genre égal a I'unité, ne deviendra unicursale que si X,
et par suite Y, admet une racine double.

Laissons désormais de coté les cas de dégénérescence, nos dis-
criminants X et Y n'auront aucun facteur multiple, et leur degré ne
peut s’abaisser au-dessous du troisieme.
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1. — Forme normale. Equivalence des deux discriminants. —
Désignons par /,, /,, /;, les polyndomes conjugués relatifs a X, par
m,, m,, m, ceux relatifs a Y. Nous savons que les /; sont linéai-
rement indépendants; c’est dire que les quantités .2?, ., 1 peuvent
s’exprimer en fonction linéaire homogene des polyndomes /;; exac-
tement de méme on peut remplacer y2, y. | par certaines combi-
naisons homogenes des m;.

Cela étant, le polynome F peut s’écrire, d'une seule maniere,
sous la forme doublement linéaire

(agmy -~ agmg -+ agmg)ly 4+ (bymy + bgmg 4 bgms) l; +
(Cymy == cgny + cgmg)ly,

i

O
o2

Or je dis que cette réduite a neuf termes se ramene en réalité a
un simple trindme, et que, en numérotant autrement, si besoin
est, les trois polynomes m,, m,, m, dont Uordre importe peu, elle
s'écrira
aglymy 4+ aglymy + aslymg .
Pour établir ce fait supposons, pour plus de simplicité, que les

;. m; ont été réduits a leur forme normale avec des discriminants
égaux a 'unité, et considérons une forme linéaire telle que

/'1111 + /'2/2 + 73/3 ;

son discriminant est, par définition, égal a

L : . Qs )
P (St —236L30]
A cause des conditions d orthogonalité entre les /;, il se réduit a
2 2 2 .2 2,2
f1/1 + /2/2 + /3(3 "

Appliquons cette regle pour trouver les deux discriminants de la
forme bilinéaire ci-dessus (53!, ou l'on suppose, répétons-le, les
[; et m; réduits a leur forme normale. On trouve a l'instant

X - (((1/1 —}—- /}1/2 —I'— Cllgbz + ‘(1211 + /)2/2 + C'2/3)2 + (((3[1 + /13[2 + ('3/3]2

Y — (agmy 4 asmg = azmg)? + (bymyg + by + bymg* 4
(cq iy - cying 4 cgmg)?

Or, par supposition, les /; sont les polynomes conjugués relatifs
a X comme les m; le sont a Y; il faut donc que les seconds
membres des formules pr ecedentes se réduisent tous les deux a la
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forme purement quadratique, par destruction des doubles pro-
duits, de maniere que

X :Aili - ;\272 - Ag/: , et Y == Blnzj + Bzmz 4 Bsm; . (9%

Mais d’aprés un lemme d'Algébre élémentaire, les conditions
moyennant lesquelles les deux sommes de carrés

D = (ayx + by 4+ 122 + (agx + by 4 23 F (@ + bsy —+ 3317 .
D = (a2 + a;y + azz )V + (e 4 -l;gg- A o e A s S L

deviennent purement quadratiques des types
O = Ax® 4 Agr® + As® et T @ = Bia? 4+ Bpy? 4 Py,

sont des plus limitées. On démontre, en effet, aisément la propo-
sition suivante.

Si @ et @ sont tous deux purement gquadratiques et que, en
outre, les constantes A,, A,, A, soient différentes les unes des
autres, les trois polynémes

ayx + by 4 3. g —+ -byy 4 ¢33, asx -+ gy + 53,

se réduisent nécessairement o des mondémes qui, de plus, sont line-
airement indépendants.

Pour ne pas allonger, je laisse au lecteur le soin d’obtenir la
démonstration, facile, de ces divers points; je me borne a en faire
Iapplication aux polyndmes X, Y auxquels je reviens.

Remarquons que les discriminants des six polyndmes /;, n; ont
été supposés égaux a l'unité, et les polynémes eux-mémes réduits
a leur forme normale. On a donc

: EZ?:E/N?:O

si donc, dans la formule (54), pour X, deux coefficients étaient
égaux, par exemple A, = A,, en remplacant /. + 7. parla quantité
égale — [, ce discriminant serait un carré parfait, cas exclu,

I1 faut donc que les formes réduites (54) possédent trois coefli-

cients distinets; des lors, en vertu du lemme ci-dessus. les trois
trindmes

aymy + agmy - azmg hymy 4+ bymg 4 bymg cimy = colg 4+ Cging

dégénerent en trois monomes indépendants. Il suflit de changer
au besoin la numérotation des /7; pour leur donner la forme -

aymy aymy (gms .
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Du méme coup 'expression doublement quadratique I7 apparait
sous sa forme reduite, soit

F = ajlim + aglymg + azlymg . 1 (53)
Quant aux diseriminants, leur valeur correspondante sera
. 2 2 2 2 2 o .
N=al + a,l, 4+ al . (06)
T = (1 m + a m - {1;/)1; . (57)

Or, nous savons que des transformations unimodulaires per-
mettent de passer du systéme /; au systeme ;. les deux théo-
remes fondamentaux suivants s'offrent a présent d'eux-mémes.

a) Les deux discriminants X, Y de la forme ¥ sont transfor-
mables Uun dans Uautre; ils sont équivalents et possedent les mémes
invariants rationnels gi, ow irrationnels e;.

b) A laide d’une transformation linéaire operée sur 'y seul I de-
plent symetrigue en x el en'y.

Arrétons-nous un instant sur les interprétations géométriques
de ces résultats, elles sont classiques et fort simples.

1° Soit d’abord le cas ol la courbe F =—=0 est une cubique; pour
qu'une cubique C, se présente sous la forme I — 0, il sullit de
transporter a I'infini une corde AB de la cubique, puis O dési-
gnant un point quelconque de son plan, de prendre OA, OB pour
axes coordonnes.

Cela étant, Véquation X =—= 0 détermine les abscisses des tan-
gentes menées par le point B, autres que celles qui touchent la
courbe en B;ilya quatle tangentes pareilles puisque C, estde la
sixieme classe.

[’équation Y = 0 déterminera de méme les tangentes menées
a G, par le point A. Le théoreme d’équivalence entre X et Y nous
donne donc la propriété fondamentale de la géométrie des
cubiques.

Qiw’on mene par un pomt A d’une cubique les quatre tangentes a
la courbe telles que leur contact n'ait pas liew en A, le rapport
.anharmonique de ces tangentes est constant quand A varie.

2° Supposons, en second lieu, que la courbe I = 0 soit une bi-
quadratique G, non dégénérée. l.es points A et B sur la droite de
I'infini sont les points doubles de C,; la méme interprétation nous
apprend que

1 Il'est clair que cette méme forme réduite peut étre adoptée, méme si /; m; ne sont pas
réduits a leur forme normale. Les formules qui suivent pour X et Y supposent simplement,

par exemple, que les {;, m; ont Punité pour discriminant.
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Si, par les points doubles d’une C, de genre 1, on mene quatre
tangentes aulres que les tangentes aux points doubles eux-mémes,
ces deux faisceaux de quatre tangentes sont projectifs.

3° Généralisons ceci en considérant une biquadratique gauche
C,. Soient A, B, Ctrois points de la courbe, choisissons ABC comme
plan de l'infini, OA, OB, OC comme axes coordonnés. D’apres
ces conventions, les équations de C, serout

ays + bsx 4 cxy dac 4+ G d oy + =0,
a'ys -+ Vsx 4 ay + 2l 4+ Yy s+ 8 =0

Eliminons z, nous trouvons pour définirla projection de la courbe
sur le plan OX, OY, une équation doublement quadratique I =0.
Done, toujours par la méme interprétation, si par la corde BC on
méne quatre plans tangents a C,, ils ont le méme rapport anhar-
monique que uatre autres plans semblables conduits suivant
CA ; ou bien

Le rapport anharmonique des quatre plans tangents menes a la
biquadratique gauche par une corde quelconque est constant.

4° 11 existe encore d’autres interprétations géométriques du
théoréme d’équivalence; la plus connue, en dehors des précé-
dentes, est celle fournie par le systeme de deux coniques. Elle
résulte aisément du rapport (ui existe entre un semblable systeme
et 'équation doublement quadratique. Halphen a développé ces
relations, avec un grand détail, dans les chapitres 10 et 11 de son
second volume; je me borne a citer ici la proposition qui traduit,
pour deux coniques, le théoreme d’équivalence entre les deux
discriminants X et Y.

Deux coniques étant tracées a volonté dans un plan, le rapport
anharmonique des points d'intersection, pris sur l'une des conigues,

est egal au rapport anharmonique des tangentes communes pris
surlautre*.

12. — Formes symétriques. Conditions d équivalence. — l.e pro-
bleme a résoudre consiste a trouver les conditions a satisfaire
pour qu'une forme I’ soit équivalente a une autre F’'; la premiere
forme doit se changer dans la seconde quand on exécute sur elle
les deux transformations linéaires unimodulaires

ax’ <+ b ¢y’ 4+ d -
= 5 . ¥= 555 » (98)
ax” + b c’y -+ d

Une condition d’équivalence se rencontre immédiatement ; il est
clair en effet que si I se transforme en F', les deux discriminants

' Havenun. fonctions elliptiques, Zwe vol. p. .74,
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doivent étre équivalents deux a deux, XaX'et Y a Y. En écrivant
les conditions de cette double équivalence entre les discriminants,
on se procure toutes les transformations possibles de IF en I,
selon le mode susindiqué (58).

La condition précédente, qui est nécessaire pour l'équivalence
et fournit toutes les équations de la transformation, n’est pas suf-
fisante. Prenons en effet une forme F et essayons de la recons-
truire a partir de ses discriminants X et Y.

Soient e; les invariants irrationnels communs a X et a Y, /; les
polyndémes conjugués de X, m; ceux de Y ; ces polynomes sont de

<

nouveau déterminés par les formules (25), et leur discriminant,

identique pour /; et /72;, vaut comme nous savons, 4{e; — e;] e; — ex) .
On a entre les /; 'identité

N, —e, ;=0 (59)

A ] i

tandis que X est donné par 'expression

F :2“ilé”li , (61)

la représentation bilinéaire de F; son discriminant relatif a y
trouvé suivant les regles du § précédent, sera
O 2 3 2 :
Dy (21 = Nha;(e;, — ;) (e; — e,)1; - (62)
1l faut que D, coincide avec X; en comparant (59) (60) et (62),
on voit que la condition nécessaire et suffisante de cette égalité est

: le; — ¢1 (e; — eyl
Q«(li(e- — ej)(ei —- ek) i J ,

2 ‘/A—'

la quantité g désignant une indéterminée.
On en tire

9
e (e, — e y/s = ..
a. — J A) , ou a. — J ‘/ SO (6))

‘= 3 ‘T YA

tels sont les coeflicients a porter dans (61). On voit, par ce calcul,
que si X et Y sont donnés, F peut prendre une infinité de formes
différentes qui se distinguent les unes des autres par la valeur du
parametre 9.
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Si donc une autre forme F’ a des discriminants X', Y' respec-
tivement équivalents a X et Y, elle donne lieu aux équations

= <> ) ’ ’ (PJ - 8/{)‘/?/ —_— (:'l'
F'=Na.lm, , avec a, =— —
— L 1L l l/t-\

Or toute transformation qui changerait I en F’ changera aussi
XenX, Yen Y, cest-a-dire , en [, et m; en m,; ainsi done I'équi-
valence entre I et I ne saurait avoir lieu a moins que ¢'=— .

Voici donc un nouvel invariant absolu qui vient s’adjoindre aux
deux autres g,, g;, pour que I' se change en ', en méme temps
que X en X' et Y en Y'; il y a, sans plus, trois invariants g,, ¢,, 0
dont ’égalité est nécessaire, mais aussi suflisante, pour la possi-
bilité de la transformation.

Les expressions a; ci-dessus dépendent de trois irrationnelles
/o — e, 1l est aisé de les remplacer par une seule irrationnelle.
Soit en etfet Z un nouveau polynome biquadratique en =, possé-
dant les mémes invariants e; que X et Y ; nommons-en K le Hessien
et n; les polyndmes conjugués.

N

Posons ¢ = — - ; alors, d’apres la formule (37)

n.

Ve—e =377

o~

en substituant ces trois valeurs dans 'équation {61), on voit que
tout polynome ¥ aux discriminants Dy = X et Doy = Y se présente
sous la forme canonique trilinéaire

l .
. __ _ Q
F = QVIZZ(eJ. — eyl lmn;

Répétons que, dans cette forme, le polyndéme Z qui contient 'arbi-
traire z est lui-méme quelconque, pourvu qu’il ait les invariants
e; en commun avec X et Y.

Le théoreme précédent, facile a vérifier par le calcul direct,
‘peut encore s'énoncer comme suit:

Sotent trois polyndmes en X, y, et z du 4™ degré X, Y, L; sup-
posons-les equivalents ou doués des mémes invariants ei. Soient
~encore li, myi, ni leurs polyndmes conjugués ; alors la Jorme triple-
ment quadratique

. |\ ; .
G — Z(ej — e, )i mpn; . (64%)
admet, par rapport awx trois variables, des discriminants Dy, D,,D-

qui sont
De = 3AYZ Dy == 4AZX , D: = 4AXY . (63)
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Toutes les propositions qui préecident concernent des poly-
nomes F quelconques:nous voulons en faire l'application au cas
le plus tmportant qui est celui d'une forme F. non seulement qua-
dratique en . et en y. mais encore symétrique par rapport a ces
lettres. Il va de soi que. dans ce cas. XN et Y d'une part et les /;.m;
de l'autre. ne different que par le nom de la variable. .« chez les
uns. y chez les autres.

Parmi les diverses formes 7Z possédant les mémes invariants
que X. la plus simple. quis'offre d'abord. estlaforme transformee
de N par changement de » en z. de sorte que de méme que
Y= X 7 on ait aussi Z =X z. Ce choix particulier préscute un
intérét spécial dans l'étude du théoreme d'addition des fonctions
elliptiques. Toutefois nous ne l'adopterons pas ici. et nous ferons

.
PR - ;
L — 13% — Lol — &

les valeurs qui s'en déduisent pour les polynomes conjugués n; sont
donc celles consignées sous le n* 45 .

Cherchouns. pour le cas actuel. la constitution du polynome
G 64 . en fonction explicite des variables . y. z. et des coeffi-
cients du polynome X que jappelleral aussi /... Nous avons

€

N = frr = a, 2 = Ga,0% — Huya® = G0 — g

Développons G suivant les puissances de z et remplacons les
n; par leurs valeurs 45 .1l vient

s =N . —ve, Lmn, =Pz - 2Pz — F°
-— J o~ - o

. : ) . ,
P* = 2[ Py — Poilymy == irg — oytlamg — Py — ot lymg
Pli= — 270rg — ey limy = €5 vy — oy by — eoowp — ey g

5] -

& 3T - 7 i
P' == — "/'1“—(’9‘)3) Py — Lo (1M — ...

et il ne reste plus qu'a exprimer ces trois quantités en fonction
des variables . i et des coeflicients de \.

Remarquons pour cela que sideux polynomes doublement qua-
dratiques. et en outre symétriques. [.;,. Mz, — comme le sont les
quantités P/ — deviennent égaux quand . = y. ce qui constitue le
cas de coincidence. ces polvnomes ne different l'un de 'autre que
par un terme du type a & — y %

En effet le quotient Lzy — My doit étre bilinéaire. entier. et en

% — i
outre gauche relativement a la permutation des deux variables.
En écrivant ce quotient sous la forme axy -+ b 4-cy 4 d. il faut
donc que
a =10 . d—10, hdpr=b

i
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et 'on a bien Lyy — My, = a (2 — y). De cette remarque il résulte
qu'une fonction telle que Lz, est completement définie quand on
O*L
X0y
tion que nous allons employer trois fois de suite pour déterminer
les quantités P,

A l'égard de la premiére, on remarquera que dans le cas de
coincidence .« = y, on a /,—=m,; alors, en vertu de I'équation 27 .
P? s’annule. On a donc P® =Al2x — y,%; mais, comme d’autre part,

connait les deux valeurs l..; et < )x ; c'est cette observa-
=y

11 DEPO Y 72
B i c— e [ =

et que la somme nous est connue d’aprés 22, on tire

A=4/1), et PO = 4/ X — 112 .

Appliquonsle méme raisonnement a PW; d’apres 1'équation 28"
on a dans le cas de coincidence

PO = — 2/ AX = — 2)/Xf .

Or, en invoquant le résultat (32",

02P1\ . e 9 . B
DJ'D)‘) ¥ N _Zei‘ef — el =— ER VA

L=
dédoublons doncla forme £, biquadratique en une forme double-
ment quadratique et symétrique; on trouve immédiatement,

d’apres ce qui précede, I'équation

fxy = agx®) 4 2a12y (2 4 3) + azla? + hay 402+ 2a500 + 1 +ag, 166)

et
(1) s N
Py — 2‘/_\;”9:&/
Soit enfin P® = — 2(e, + e,elle, —eilm + .. ; nous avons
3¢’ = ! Se e — 1
e, = — (e, — ez\(eg—— e, +Zg2 ,et Jdee = —fe — e,)le, —el— :3_32 :
donc
: .. 2
Sle, + e,e e, —e) = — o T i Sile,— el

L’Enseignement mathém., 16c année 1914,




442 C. CAILLER
Cette identité, et ses analogues obtenues par permutation,
amenent I , a la forme

‘/A 02 A 9
P;y_ = n S+ %(/A(x——yr

Désignons maintenant par H,, le Hessien def, ., et prenons de
nouveau le cas de coincidence. En vertu des formules (36'), nous
avons

2.2

o P A 2

2 Y J— N\ o (/) .
P.’K.Z‘ T s !l‘/A Hxx , <Dxb‘)> ., p— —'3 2 [ 302‘/ A

Appliquons au Hessien la relation générale (32), nous avons
2 ”
Eli — —4Hxx iy [((’3~—— 61)(6’1—— 82) + ] = *Hxx -+ 4;,72 .

. . . . ’ . 2
Voici donc les conditions a employer pour déterminer P, ,

2pz2
P, =—4/NH_ , et <ap> ——VAH

L X0y

- elles donnent, apres un court calcul, par dédoublement du
Hessien H_,

2 ———
P, = — 4/NH,,

formule dans laquelle H,, a la signification suivante

4ny — &la,a; — aj)x“’)*z + &laja; — ajaz)xey(x 4+ y) + (0 a4 — aj) (x + )2

+ 8(a;a; — a:) xy + blaras — azas) (x + y) + leas — n:) . (67)

Résumons. 87 une équation doublement quadratique et symé-
trigue en X,y admet pour discriminant la forme

X = [, = ax* + a2 4 ...,
 elle a pour expression
Hyy + 2y — F2 —2)* =0, (68)

o les symboles £, et H,, ont les valeurs (66) et (67), tandis que z

désigne une ar bitraire.
De plus, le discriminant relatif a z de cette formule (68) est égal
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au produit /... /, , ainsi que nous savons. On peutdonc ecrire (68)
sous la forme résolue

‘//m’w . (69)
‘2(1» — )

1i

Enfin une derniere forme de la méme relation est digne de
remarque, comme s’étant présentée a Euler! et Lagrange? dans
leurs recherches sur le théoreme d’addition des intégrales ellip-

tiques. La voici. :
AV e — VT,

Dans le carre( xx Yy

x —

— 2‘//;/‘%/ par sa valeur tirée de (69), il vient

) , remplacons le double produit

fxr + fw/ fxl/

+ 4z .
[ — 7

Or, si l'on fait
YT T —9>

et quon remarque les identités

bfw
( - “) faa + ( “9> 6 m" ’

“on voit que la valeur de coincidence est

" 9 O°f 2/
fxx da? 1 »
— ¥ 2 y/
Qxx_ ——— = gfxx = 4ayx® 4+ 8ajx + ha, .

pa

Dailleurs Q. est entier, symétrique et du second degré en
x et y;le terme du'second degré est évidemment

xt ‘34 _ 2‘1,2).2_
(x — y)*

ol 4 )% .

ay

[.a valeur de Q,, se dégage de suite de ce double renseigne-
ment, elle est

Qxy = aylx + y)° + 4oy (x + 3) + hay .

L.a nouvelle forme cherchée pour 1'équation (68) se déduit de Ia,
la voici :

(l//xx — Vi ) = ao(x 43 + bas(x + 3) F S{eat2) . (70)

x — 5

L EuveRr. Institutiones Cal. Integr., vol. 1, Sectio secunda e. VI.
2 LAGRANGE. Oeuvres, éd. Serret, 11, p. 533.
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13. — Détermination des invariants. -— Continuons a nous
limiter aux équations doublement quadratiques symétriques. Ces
équations possedent comme nous savons, trois invariants qui sont
2., &5, et z; la détermination des invariants est extrémement
simple. Car, en premier lieu, g, et g, sontles invariants rationnels
de la fonction D?/: - ny étant donné ils se trouvent ainsi
d’une maniere immédiate. ‘

En second lieu, on a identiquement, comme nous savons,

2 [ At A2T . -
Ky = e Uy o oy — =27 )

a leur tour les expressions f, et Il sont toutes connues quand
[z OU ny, sont donnés ; 1l suffit donec d’identifier les deux
membres de (71) pour avoir le dernier invariant cherché z. On
peut méme, avant de procéder a cette identification, faire 2+ = y,
ce qui ramene 'équation précédente a la forme plus simple

2 -
Fow = ‘72 Hew + 3/l (72)
€
sous 'une ou 'autre de ces diverses formes, on voit que le pro-
bleme de la détermination de z n’offre aucune difficulté.

Halphen a donné, pour trouver les trois invariants, une reégle
sur laquelle il nous faut revenir?; il propose de former une équa-
tion caractéristigue dont les racines seraient proportionnelles aux
trois quantités z — e;. Mais la page 366 ou est formée cette équa-
tion contient, a co6té de quelques obscurités, une erreur qui com-
promet singulierement le résultat énoncé.

Je suppose qu’on ait sous les yeux le passage en question; ony
verra que l'illustre auteur propose de considérer la forme

-

sk 4 (x—y)?

comme une fonction des deux variables
&y =k, x+yr=n.
LLe discriminant de la forme quadratiqﬁe en &p ainsi formée
serait précisément l’équation caractérvistique. Quelques essais

suffisent a montrer l'inexactitude de la regle; la raison en est
facile a découvrir.

L HALPHEN. Fonctions elliptiques, 2me vol. p. 34%, 364-366.
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Prenons généralement la forme
ny == any + bfxy -+ c(x— ¥)?, (73)

A trois coefficients arbitraires; cherchons a en former le discri-
minant D, relatif a y.

Nous savons que D, est du type AHN + Bf,. et que les cons-
tantes A et B sont quadrathues en a, b, c. De plus, sia =06 =0,
F,, est un carré et D, doit s annuler' c’est done que A et B sont
linéaires en c.

Considérons en second lieu le cas @ = 0, et soit

fxy — ng}‘z - ,‘Zle + X,

Le discriminant de f;, est

2
X1 0X2 = e Hxx ;
celui de
Foy = l'fxy + cle — y)*, )
est égal a
(bX, — ex)? — (bX, + ) (bX, + cx?) = — b*H_, — bef, . -

Enfin, et en dernier lieu, si dans (73] on fait « =1, b =z,
¢ = — z°, le polynome F, se confond avec le premier membre de
(68), le discriminant est alors égal au produit

I1 suffit de rapprocher ces trois cas particuliers pour obtenir le
discriminant D, de la formule générale (73), sous la forme

D, = — (b* + ac)H ,, — <‘%3a"’ + %a/) + bc>fxx : (74)

on y lit, une fois de plus, ce fait fondamental qu’il existe une
simple infinité de polyndmes symétriques F,, possédant un déter-
minant donné.

Voici maintenant la conséquence a tirerde (74). Parmi les formes
F,,, & quel caractere reconnaitre celle qui sont décomposables en
facteurs linéaires en weteny ? L.aréponse estimmédiate : il faut et
suffit que le discriminant D, soit un carré parfait. Or, nous con-
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naissons les seuls carrés contenus dans la relation (74); ils dé-
pendent de la condition ~

bbe + g,ab 4 o a®
Co - ; - )
: A (b* 4 ac)

. b4 ol ’
qul peut s’écrire également

—_
LN |
(W]

o
/ 2 e} )
t/' — ael)(c —_ eib — e;a + Z-(l>: 0 .
Cette condition est donc réalisée si & = ae;, quelle que soit la
valeur de ¢; ainsi

Hacy + eifxy + c(x - 9')2

est toujours décomposable en facteurs linéaires. C’est ce qu’on
peut d’ailleurs vérifier a I'instant; car H,, + e¢,/,, se réduisantau

,

carre

1 2 Y
—-[;li:(ax"—i—Qﬁx—{—ﬂ“ ,

€

on obtient le polynéme décomposable

Ho,+ el + cle — ) = (axy + Bz +y) +7v)° + 8(x —y)* . (76)

Mais, c’est ici le point délicat, les facteurs de la décomposition
ne sont pas symetriques en x et en'y, ils ne sauraient donc s’exprimer
en g etenn.

Soit D le discriminant de Fz, par rapport aux variables &, #;
si D s’annule, Fz, est décomposable en facteurs linéaires en &, 7;
ou, si on préfere, F, se partage alors en facteurs bilinéaires rela-
tivementa .z, y et symétrigues. Aussile discriminant de laforme (76)
n’est pas nul, quoique cette forme soit décomposable, parce qu’elle

I'est de maniére non symétrique.

Il est d’ailleurs facile de trouver le discriminant D de la forme
générale par rapport aux variables &, 7. La fonction D est du troi-
sieme degré en a, b, ¢; la condition D=0 entraine la relation (75},
et comme elle n’est pas vérifiée si b=ae,, ellele sera forcément en
annulant le second facteur de la dite relation. On conclut de la

D="4Tl{ae; +be,+ ¢ — £a) s i=1,2,3 (77)

le coefficient numérique de cette formule se vérifie sur un essai
particulier, par exemple en faisant ¢ —= ¢ =0, b =1, F,,—=/,,.
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