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POLYNOMES BIQUADRATIQUES

et
al=e (L) . al=e(1l) . gl =e(Lh) )
“1/;:‘9(!2[:’:)" d‘zl;:P(IS{D ' as/;:*c(il:) ( 120)
ol =o(L0),  ol=e(L) . l=c(l1). )

Dans ce tableau les deux derniéres lignes proviennent par déri-
vation de la premicre, celle-ci n’étant que la reproduction de la
formule (17") ci-dessus.

Composons avec (20) les quantités

(2l — ) = (G — GL R L) =128
nous trouvons de suite
a (20,0 — ) = o [L(L0) + G (L) + 1(L0) = e(L40) " -

De la la conséquence suivante: le polynome I, a pour discrimi-
nant la quantité

e r s
~ i, 111213) . (21)

Empruntons encore au tableau (20) les combinaisons suivantes;
elles sont constantes comme 1l ressort de la valeur des seconds

membres

12 2 9 oo
aly + ol + ol =— o (L11) , (22)
o bl a4+ ol = o (LLT) . (23]

1I1. — Théorie du polyndéme du quatriéme degré.

- . A . , 2 2 2

7. — Avec trois polyndmes conjugués 7, /,, I, tels que ceux
qu'on a défini au § précédent, composons une forme du 4™ degré,
telle que

2 2 ¥4
—_— . . ¢
| = c, l1 -+ (.212 -+ ¢, ]3 . (21)
I’identité (17') qui régne entre les /;, permet, pour une méme forme

[, de choisir les coeflicients ¢; d’'une infinité de maniéres. On
pourrait par exemple faire ¢, = 0, en chassant complétement de

1 On désigne ici. et plus loin, par i, j, k les indices 1, 2, 3 permutés circulairement d’une

. , ,, ’ ’ 3 . . .
maniére quelconque ; <111213) représente le déterminant fonctionnel des trois polynomes L
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la représentation (24) un des polynémes Z; choisi & volonté ; en réa-
lité, malgré la présence de trois coeflicients, la formule (24) ne ren-
ferme qu’une double infinité de formes /.

Il importe de remarquer que les seuls carrés contenus dans le

: o . 5 2 2 % 5
faisceau (24) sont précisément 7, /., [ . En effet, prenons un tel
, . . " . 2 N 2 . .
carré (ui ne soit égal ni a /, nia/; son expression serait donc
o 2 9
P=c l + ¢l avec € C, F 0.

1 ‘273 ?

Pour chacune des racines de [. = 0, nous aurions

’

2 2 3 .
('111+6212:0 . et clll . + I, =10

. < ’ / Y v A .
On tire de la (11 12) =0, ou /,=0, condition satisfaite en meme

temps que L = 0; le dit carré 1.? est donc forcément £, saufun
facteur constant. L.a proposition est prouvée.

Remarquons maintenant que, les coefficients constants étant
exceptés, le systeme /,, {,, [, renferme trois parametres; la for-
mule (24), nous 'avons dit, en contient deux autres. Ainsi la défi-
nition de la forme /possede précisément autant de parametres que
le polynome le plus général de son degré; on doit done prévoir
que lout polynome du ™ degre peut revetir la forme (24).

Pour justifier cette présomption, désignons par a, le premier
coeflficient d’une biquadratique X, par y,, 7,, 75, 7, Ses racines
supposées distinctes ; employons les notations () et ({/) pour re-
présenter les dilférences & — y; et y; — y;, et posons

[2 + /3 = (10(12) (x-/k)(xS} s [2 Bt /3

Iy 4+ L
L 4 b= a,(13) (x2)(x4) , ly — I, = a,(24) {x1) (x3)

a,(43) (x1)(x2) | /

i

a,(14)(xd) (x2) , l3 — Iy = a,(32) (1) (xh) , g (25)

L.e calcul direct montre immédiatement (ue ces six relations
sont compatibles; d’ailleurs les trois polynomes 7, /,/, sont pre-
miers entre eux deux a deux puisque tout facteur commun a /,
et /,, par exemple, divisant /, 4+ /, et [, —/;, ne peul exister que
si les racines y, ne sont pas toutes distinctes, cas exclu.

Je dis que ces polyndmes [ sont conjugués; en effet, en égalant
les trois valeurs de

By Iy o
. A / o I 2 3 . 3 e _1_—_2___ \
X = a (#1)(#2) (@3) (#4) = 5 = 0 Eg) — a g s 0 D)

2 2 2 2 2
1

. . o .2 DR 5
nous obtenons une seule identité entre les carrés 7, /,, . KEn
faisant

ar = a,(12)(43) , ay == a,(14)(32) , ag = a,(13)(24) ,
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quantités qui vérifient ’équation

0‘1"*—12‘{—13:07

la dite identité s’éerit

e
N

allj -+ 12/: —+ 7.312 = 0

Les 4 sont donec conjugués; il importe de remarquer qu'ils ne
sont pas ordinairement réduits a la forme normale et que, a
moins que le contraire ne soit expressément indiqué, nous en
déterminerons toujours les coefficients constants conformément
au tableau (25) ci-dessus.

Pour exprimer X en fonction de 7, /:, [, il est préférable d’em-
ployer, au lieu des formes dissymétriques (26), la forme symeé-
trique '

30(17.27.3X = &4, — 7’2”? T (e, — aa) l: + (e, — OL1){: ? (28)
que l'on en déduit immédiatement.

On vient donc de démontrer que, étant donné un polynéme du
4 degré X, il existe toujours trois polyndmes orthogonaux 1; tels
gue X soit un polyndéme de leur fuisceau.

Une telle représentation est unique, car si on avait, par exemple,
de deux manieres différentes

- 2 > 2 2
X=1 —4, et X—=m —m ,
2 1 2
on aurait aussi, en changeant éventuellement le signe de e, ,
ly + ly = a(my + my) [y — ly = — (my — my) ;
a

et alors le conjugué 7, = ([, /,) des polynomes /,, [, serait, a un
facteur constant pres, égal a celui m, = (m, n?,) des polynomes
m,, m,. On démontrerait de méme les égalités /, == m, et I, == m,
qui ont lieu, bien entendu, seulement sous réserve des coeflicients
constants.

(’est donc d’une maniére parfaitement déterminée que les poly-
nomes [; correspondent a X; en outre, sous I'angle de la défini-
tion (24), X peut étre considéré comme un individu extrait d’un fais-
ceau de formes biquadratiques qui possédent en commun les mémes
polynémes conjugués /;, et se trouve étroitement uni avec ces
derniers. | |

Nous avons trouvé plus haut les /;, correspondant & X, et con-
struit le faisceau en partant de 1'édlément X décomposé en ses
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facteurs; c’est un probleme fondamental que d’opérer la méme
construction a 'aide des seuls coeflicients de X. Il suffit pour le
resoudre de déterminer, en fonction de X, une seconde forme
appartenant au méme faisceau.

Pour y parvenir, reprenons les définitions (25} des /;, et écri-

vons pour eux les relations (20) du § précédent. Un calcul rapide
donne

r.n

c=1, et [11“113 = a0, ,
on a donc
oy = (Lh), =L, oL =4, (29)

et, pour le discriminant de /;, la valeur

. U./f .
— 5 (30]
Soit maintenant une forme quelconque
) 2 2 2 57 %4
l=cl + ¢, + ¢l , (307)

du faisceau en question; il s’agit de calculer la valeur des deux
combinaisons suivantes

2 7 2 ” ” 4
el + ¢l + ¢l et clt 4l L, +cll

111

qu’'on a trouvées au § 6 pour le cas ¢, = «;.
Pour les déterminer dans le cas général, tirons de (30') les
égalités

”

-~

12 l, ’ i 2 ”
l:Ecili , §:Ec_ilili , §:Ecili+2"ilili )
l’” AN /4

Intégrons la derniere, et comparons le résultat avec 'avant-der-
niere formule; nous avons

(31)

ll!

. —‘ 14 .
g —‘Zcilili + ¢,
"o n
T __.zci li —C .

Pour déterminer la constante ¢ d’intégration, éliminons ’, et
. g , ,

remplacons les discriminants %(Z’: — 2/, Z;-’) par leurs valeurs (30),
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il vient
C.
T R N . 12 " - -_L
3¢ _Z(‘i<li 21, l;) — = Oy Bl By :; ,
ou
oy g Ug CL'
= — — 2 - . (33)
o U.L-
. 5 ’ , . . ’ b3 .
Appliquons ce résultat général au cas particulier /=X, qui
' . g 1 /1 1
donne, d’apres (28), ¢, = 7(— — ——); dans ce cas on a ¢ =0, et
3] a. a
J k

5}

les formules (31) et (32) deviennent

) - ) O\
_5)—__— thli , — ZCLLL’ X — ZLL'[L"

On tire de la

l\.;

XX" X’

- T = el — (2 AL l) __2(-jck<ljl'k>2 . (34)

Enfin cette derniere relation s’écrit encore, a cause des formules (29)

XY" \l)

ok B N
—5 = Xc iCr
. , . AXX” — 8X72
Voici done formé un nouveau polynéme H— 73 , ap-

partenant au méme faisceau que X; c’est lui quon nomme le
Hessien de X, et dont la valeur en fonction des coeflicients de

X = aq,2* 4+ hayx® + 6a,2? + hagx + a4,
est

H = (a,a; — af).r* + 2{agay — ayag) x®
+ (agas + 2aya3 — 3d? ,) 2+ 2aya4 — azaz)xc + aza, — a ) (35)
La relation (34) nous en donne lexpression en [;; quelques

réductions faciles, ou intervient la condition o, + a, + a, = 0,
amenent le Hessien a la forme

2 2 2
100 = — — L — [ . (36)

er 0 . . . 2

§ 8. -— Proprictés d’invariance. Nous savons que le faisceau [
contient les deux formes X et H; ces polyndmes étant certaine-
ment indépendants, au moins quand les racines de X sont dis-

[’Enseignement mathém., 16¢ anndée ; 1914, ’ 27
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tinctes, on peut les adopter comme base du faisceau, a la place
2 T . 4 e
des {;. Nous avons donc trois équations telles que

H 4 e, X = 0,0 . i=1,2,3 (37

Pour déterminer ces constantes 4, et e,, faisons d’abord x égal

. . , 4X X" — 3X72 X3 X’

alaraciney, de X;alors X=—=0, H= — m =i h=5;
1

on a done, dans (37), b; = — T

Ajoutons maintenant les mémes équations, multipliées soit
P4 3 A 1 \ .9 1 ),
par i, soit par e, soit encore par 0‘5<“j — a,); il vient, a cause de
2a,=—0, des équations (28] et (361 pour X et H, et de I'identité (27),

-

3
X . W] . /U o
265_0 — Zelai_o . Zeiai(aj~—1k>h—,}—1112a3 .
On tire immédiatement de 1a
1
e, = — 1—2'(11' — ak) .

Avant de récapituler les divers résultats qui précedent, il est
opportun de changer les notations en éliminant partoutles quan-
tités &, pour mettre a leur place les trois invariants irrationnels e,

du polynome X. Voici la correspondance entre ces quantités

Adg — Og (IO

- — = - 1 2%y — (141(3
€4 3 12[(\ 3)(24) (14)(32)] ,
—_— 11 e dg — (Eg Al _ +) /
&= —p— = 12[t12)u3i (13) (24)] (38)
P2 M Qoriaa89) (121042
€3 — 12 1 [(14)(32) (12)(431] , j
ou bien
%y == hley — e3) , . dy == h(eg — ey) , ag = 4(e; — ey) . (39)

l.es invariants irrationnels e,, dont la somme est nulle, véri-
fient une équation cubique telle que

bs — gps — g3 =0, (40)

avec les conditions

1
Qs = e€3€s + ese;, | ey, Zgg::elewg

,‘,\' [

(les derniéres quantités, évidemment symétriques par rapport aux
racines du polyndome X, sont exprimables rationnellement par
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les coefficients de X : voici la valeur de ces invariants rationnels

ik, 9 2
o —a a — ha a, + 3a_ .
8, = a,a, fa a, + 3a, ? »
/ (41)
3 2 2
S’ : —a. —a a — a. a, -
g, — w a,a, + 2a,a,a, a, a a, a a, ’

Rappelons d’ailleurs que la combinaison

VRN
[N

—83)'-(63 —611;(61*«@2%: A (

joue le role du discriminant de X,

l.a théorie générale conduit donc au résumé suivant ou se
trouvent récapitulées les propriétés les plus essentielles du poly-
nome du 4™¢ degré.

a) Désignons toujours par [/, les polyndémes conjugués, tels

f

qu’ils sont définis au tableau (25); /, a pour discriminant

—_ ajak

A

, on fe, — eJ-Hei — @] . {30”)
Alors, si H représente le Hessien de X, les trois combinaisons
suivantes sont des carrés, a savoir

o

2
l

| =

H—}—e,;x:*

ce sont les seuls carrés contenus dans le faisceau H 4 eX.
b) Mettons au lieu de 4(e, — e,) (e, —e,) e, — e,) = VA, quan-
tité parfaitement déterminée, on a le tableau

(e,— el 4 (e, — e)l: 4 (e, — e L =0 | (277)

XVK: 81(0’2 - ea)lj -+ 82(83 T ()1)12 =+ 83(61 T 82”: ’ ‘28,)

> ) ~ . 2 . 1 PR

X"V A = 3le, (e, — es}l,1 + e,le, — el)l: - » 1o — ezil;] , (327)

4XX" — 3X”? | 2 . e . (A)

H = 73 — ———i—Q(ll—|— lz—|—lg) , (367)

T—iHY’ ‘{H’——1lll A
-——z(‘ — )——‘[;123,' (43)

T2 =—4(H 4 e;X)(H 4 e,X)(H + e5N) = — 4H? + g HN? + g N? . (44) |

Dans le tableau ci-dessus, les diverses formules sont affectées
du méme numéro, avec un accent, que celles dont elles ne sont
qu'une simple répétition; seules (43) et (44) sont nouvelles et ont
besoin de démonstration. '
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11 s’y introduit un covariant T, du sixieme degré, dont l'annu-
] : . H
lation caractérise les extremas du quotient . Or ces extremas.

a cause de

Hod X /1)
H + elx_( ) ‘

AT

<

lg . i :
sont les mémes que ceux du quotient ( 7 ) . a savolr les racines
\ ‘1

de /.. les racines de /,, celles enfin du polynome / /, — /,( ou/,.

S Bl

La partie littérale de la formule 43 T =+ (/,/, est ainsi évi-

1
dente. Quant au coetlicient numérique —, on le trouve en com-
+

parant la valeur des deux membres pour une valeur particuliere
de ., .v =y, par exemple.

On sait par U'Algebre élémentaire que les divers éléments du
tableau A sont des invariants, lesquels. sauf introduction de cer-
taines puissances de d, se 1eplodulsent par les transformations
linéaires de déterminant d. Mais cette plopmete résulte a son tour.
et immédiatement, du tableau lui-méme. ainsi que d une remarque
au sujet du Hessien.

En intégrant 1'équation différentielle 4XX" — 3X'?2 =0, on re-
connait que le Hessien de X est identiquement nul dans le seul cas
ou X est une quatrieme puissance exacte. Or si on opere la trans-

v+ b
X (l’)‘ —+ b’ /)
est une puissance quatrieme en méme temps que N lul-méme.
[.e Hessien H, de Y, s'annulant avec celui H, de X, est divisible
par ce dernier, et l'on a

formation linéaire (z le transformé Y = (¢«'y + 0" *X

H,/ = o’y + 00 i

X

la partie littérale de la formule est évidente, la présence du fac-
teur 02, carré du déterminant de la transformation, se démontre
immédiatement, par exemple par le calcul direct.

Revenons alors au tableau ‘A, et effectuons la transformation
dont il sagit. On voit, d’apres la propriété du Hessien, que e,
acquiert le facteur 9% puis/;, T, g,. g, respectivementles facteurs
0, 0%, 0%, 9°.

Les conditions d’invariance relatives a g, et ¢, qui sont néces-

saires pour 'équivalence, sont aussi suffisantes. Autrement dit,
3

sl deux formes X et Y ont le méme invariant absolu — , ou bien
('“3

encore, st deux formes ont des inyariants irrationnels e; propor-

[
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tionnels entre eux, il existe une transformation linéaire changeant X
en Y.

En effet, dans ce cas, le systeme /; d'un des polyndémes est
transformable dans le systeme /; relatif au second; la chose est
évidente puisque le déterminant de /; étant &(e, — e;jle, — ¢}, la
proportionnalité des ¢; implique celle des invariants fondamentaux

des deux systemes /;. Soit d le déterminant de la transformation
T opérant le passage de I'un a I'autre; reprenons, pour les deux

Q

polynomes les identités (31}, on en conclut de suite
Y = (a/y+ VX . H, =2y + 0I*H,

Ou bien, la méme transformation U qui transforme le premier sys-
teme 1, dans le second, transforme aussi Xen Y.

Il est clair que ces questions d’équivalence se réduisent en réa-
lité au cas 0 = 1 d’une transformation unimodulaire. Pour qu’une
telle transformation de X en Y soit possible, il faut naturellement
que les invariants rationnels g,, g,, ou irrationnelse,, soient les
mémes pour X et pour Y. Supposons cette condition remplie, il
est facile de trouver toutes les substitutions opérant le passage
d’une forme a l'autre.

En effet, soient /; (z) les polynomes conjugués relatifs a X, m, (y)
ceux relatifs a Y. Nous avons

H, 4 ¢,X=—

2 . 2 . < ,
et comme /; doit se transformer en nz;en méme temps que X en Y,
il faut que

| s
I
|

RS

, ou bien YH —XH =0,
x Y

n m

[

. , ., . ay + b ,
cette derniere estune conséquence de I'équation v = ,—j:__—/, qu on
a'y )
cherche pour passer de X a Y.
Si réciproquement nous avons YH — XH, =0, nous aurons
L Iy ‘
aussi — — = — . Suivant la théorie développée au § 5, il résulte

m )
1 ¢ I2

de cette équation et du fait de la concordance des deux discrimi-
nants pour /; et m;, que I'équation

Fila, ) = lm, £ lym =0

se partage en deux équations linéaires. Voici donc le résultat.
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Si deux polynémes biqguadratiques X, Y ont les mémes invariants
ei, 'équation
VI, — X1, =0

se decompose en quatre équations linéuires en x et eny. A chacun
des quatre facteurs correspond une transformation unimodulaire
de X en Y ; il n’en existe pas d’autres.

Remarquons enfin que, dans tout ce qui précede, le degré
effectif de X peut fort bien s’abaisser au troisiéme par le trans-
port a linfini d’une des racines y;. Ainsi parmi les diverses
formes équivalentes a X figure le polynome 42® — g,2 — g, dont
les racines sont, comme nous savons, ¢,, ¢,, e¢,. Il est intéressant
de se procurer les polynomes conjugués »; de cette forme réduite :
ce sont d’apres les définitions (25)

, 2
o= 2(x® — 2e;x — e, — €363 — 2{{x — eq)® — (&g — eglles — eyl]
. 2
ng — 2 (1 — 20,00 — &, == egeq) == 2 [lax — eq)* — (e — e5)(e; — e4)] . (45)
By == 2 [ — oy — e; — egey) == 2[lr — e3)" — (3 — eqlleg — €3] .

Ces polynémés n; ne dépendent ainsi que des e;, propriété qui
n’appartient pas aux conjugués /; d’'une forme X quelconque ayant
les e; pour invariants; on trouvera d’ailleurs les /; en opérant sur
les n; une transformation unimodulaire quelconque.

9. — Théoréeme de Cayley. — On sait que toute forme du fais-
ceau X, H, par exemple «H + 5X posséde les mémes polynomes
conjugués /; que X lui-méme ; il serait intéressant de se procurer,
pour une telle forme, le systéme des invariants et covariants fon-
damentaux qui figurent dans le tableau (A]. Nous nous bornerons
a esquisser rapidement cette question en cherchant d’abord le
Hessien de la forme précédente, lequel faisant partie du faisceau /; .
est lui aussi du type AH 4+ BX.

Or le Hessien contient les coeflicients de la forme au second
degré, on a donc

A =a,0? + 28,ab 4 voa® B = oa.b* 4 2fab + via?
Pour déterminer ces polynomes, partons de la remarque que

4XX" - 3X72
48

voici. Si X est un carré, ou X = /2, son Hessien H =

(//g Qﬁl’ -

A . ’
— g /*- Ce Hessien vautdonc — 3 /%, si A représente le

discriminant de /.
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Appliquons cette remarque a Uexpression

d;

’

2
l

W) =

. . (e, — e)le; — ep) o
dont le Hessien doit étre L (H + e;X). Comparons

ce résultat & la régle générale énoncée ci-dessus; nous avons les
conditions d’identification
(BI: —_— e)(el = e/x)

2 : ]
aye; + 20, e e; + Yo = 3

2 e;le, — e;){e; — ez}
021 Bi —|—- 2(31 Bi + Y1 = Lt ‘]‘_ !

3
Remplacons aux seconds membres

fe, — ej)(ei — e, e;le; — e)(e — e
, et -
3 3

par les valeurs égales

eifl—lﬁgz, et 83_%25’1"5:302?‘*“%'
on obtient a I'instant
o, = 1 By =0 '}'0—‘—%8‘2,
& == 0 , B, — f—; , By, ==t %

Voici done le résultat
Le Hessien de la combinaison all 4 bX est un polynome du méme
faisceau, égal a

h = (1)2 — E’Q(I)H -+ < ab + %”’M)x . (46)

Sion appelle E;les invariants 1rrat10nnels de cette forme «H 4 &X,
on trouvera E; en exprimant que

h+ E,(aH -+ bX)
ou bien,

(0* — a + E;a) H4 (2 ab—}— 5;’—3(? + E,; 0 X
4

se réduit 4 un carré. On a donc, pour déterminer E;, la condition

2

ei(iia—}—l)z— 12)-—-L[) + ab_{_bjaz’
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soit, apres quelques réductions

~ 2 4 -
K, = ae; 4 be; — 224 | (47)
A 18 B Il T/ T / 9 ’ .
Quant au covariant T = 5 (HX" — XH'), ¢’est évidemment un

combinant du faisceau (X, H); si on substitue «H ++ 6X a X, il se
reproduit multiplié par le facteur

1
~7 (40° — g ba® — g ¥ .
[V. — Formes doublement quadratiques.
10. — On nomme forme doublement quadratigue un polyndéme
tel que
F = E(Imnx"‘f”‘ ; (m,n =20, 1, 2) (48)

soit, en le développant suivant les puissances de 'une ou de l'autre
des variables,

F == Xgp* 4 2Xgy 4+ N, = Yoa! 4+ 2Y,x £+ Y, . (49)
Les coeflicients X; et Y;, dans ces représentations, valent
X; = ay,2* + 2a,% + a,, , Y, = a;,)* 4 2a,y + a - (50)

Relativement a ces formes I doublement quadratiques, nous
avons a résoudre plusieurs questionsimportantes qui se rattachent
toutes, plus ou moins directement, au probleme de I'équivalence
de deux pareilles formes par transformation linéaire unimodulaire.
Un role fondamental, dans toute la théorie, est dévolu aux discri-

minants de F relatifs a chaque variable; ce sont les fonctions

.2 - o ,2 I ,
D,x) =X, —XX,, e D (=Y —YY,, (5]
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que nous représentons le plus souvent par les lettres X et Y.

Commencons par exclure le cas ou X et Y possédent des racines
multiples; 4 ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynomes, ou que si X
possede une racine multiple, Y en possede une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opere dans F une transformation portant sur les deux
variables et telle que

ax’ 41 ' ay’ -+ ¢

— i 7 ) 7 7 YA (52)
a’x’ + b ‘ a'y” 4 8
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