
Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1914)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: UNE LEÇON D'ALGÈBRE ÉLÉMENTAIRE SUR LES POLYNOMES
BIQUADRATIQUES ET DOUBLEMENT QUADRATIQUES

Autor: Cailler, C.

Kapitel: III. — Théorie du polynôme du quatrième degré.

DOI: https://doi.org/10.5169/seals-15539

Nutzungsbedingungen
Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation
L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use
The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 24.01.2026

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

https://doi.org/10.5169/seals-15539
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en


POL YN 0 ME ü BIQUADRAT! Q VE S '(21

K'iO
Kol). i20)

Dans ce tableau les deux dernières lignes proviennent par
dérivation de la première, celle-ci n'étant que la reproduction de la
formule (il") ci-dessus.

Composons avec (20) les quantités

*;(2l/t - C) " - Vt + <J !• 2'

nous trouvons de suite

«m- 0 ?MA)+ 4(<?é + >;('/*)] ?(<AQ1 •

De là la conséquence suivante : le polynôme lt a pour discrimina

at la quantité

-km)- <2i>

Empruntons encore au tableau (20) les combinaisons suivantes;
elles sont constantes comme il ressort de la valeur des seconds
membres

a r _j_ a r -}- a f — _ 0 (/ f j") (22)
1 1 2 2 8 3 ' \ l 2 S / ' 1 '

a / / -j- a / / -f- a / / — o l l l (23)1111 222' 333 1 \ 1 2 3 /
X '

111. — Théorie du polynôme du quatrième degré.

7. — Avec trois polynômes conjugués /^, /*, tels que ceux
qu'on a défini au § précédent, composons une forme du 4me degré,
telle que

l=z c f + c f 4- c f (24)
1 1

1

2 2 ^ 3 3
y 1

L'identité (17') qui règne entre les 4, permet, pour une même forme
7, de choisir les coefficients eu d'une infinité de manières. On
pourrait par exemple faire ce 0, en chassant complètement de

1 On désigne ici, et plus loin, par i, j, k les indices 1, 2, 3 permutés circulairement d'une
/ f ,f\manière quelconque ; \ représente le déterminant fonctionnel des trois polynômes l -
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la représentation (24) un des polynômes f choisi à volonté ; en
réalité, malgré la présence de trois coefficients, la formule (24) ne
renferme qu'une double infinité de formes 1.

Il importe de remarquer que les seuls carrés contenus dans le
faisceau (24) sont précisément/*, /*, t. En effet, prenons un tel

carré qui ne soit égal ni à /*, ni à L; son expression serait donc

L2 — c c l avec c c ^ 0
1 1

1

2 2 ' 1 2

Pour chacune des racines de L — 0, nous aurions

L h + °2 l2 — 0
* °l Cill h + A /2 'a — 0 *

On tire delà (fQ 0 ou /g ~ 0 condition satisfaite en même

temps que L ~0; le dit carré L2 est donc forcément If sauf un
facteur constant. La proposition est prouvée.

Remarquons maintenant que, les coefficients constants étant
exceptés, le système f, /2, Là renferme trois paramètres; la
formule (24), nous l'avons dit, en contient deux autres. Ainsi la
définition de la forme / possède précisément autant de paramètres que
le polynôme le plus général cle son degré ; on doit donc prévoir
que tout polynôme du 4me degré peut revêtir la forme (24).

Pour justifier cette présomption, désignons par aQ le premier
coefficient d'une biquadratique X, par y, y2, y3, y4 ses racines
supposées distinctes ; employons les notations (ad) et (if) pour
représenter les différences x — yt et y% — yj, et posons

U 4 z:::: e0 12) (x*4) (x3) /2 — /8 rr: (4o) («rl) {<x2) \

h -p h — ao (14) [xS) (,x'2) /3 — h — C0(32)(erl)fr4) > (25)

l± + h «o (13) (,x'2)(,r4) 4 — /2 — an( 24) (,x-l)(,r3)

Le calcul direct montre immédiatement que ces six relations
sont compatibles ; d'ailleurs les trois polynômes sont
premiers entre eux deux à deux puisque tout facteur commun à l2

et l3, par exemple, divisant /2 -j- l3 et /2 — l3, ne peut exister que
si les racines yL ne sont pas toutes distinctes, cas exclu.

Je dis que ces polynômes l sont conjugués; en effet, en égalant
les trois valeurs de

X a0 {xl)(x2){xi)(xi) —(.12)(43) a0 (14) (32) «0 (13) (24) ' l26J

nous obtenons une seule identité entre les carrés l\, l2, t2. En
faisant

*1 — a0(l2) (43) oc2 — c0(14) (32) oc3 (13) (24)
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quantités qui vérifient l'équation

ai -f- a2 -f- a3 — 0

la dite identité s'écrit

a _|_ a /3 + a t 0 (27)
1 1

1

2 2
1

3 3

Les h sont donc conjugués; il importe de remarquer qu ils ne

sont pas ordinairement réduits à la forme normale et que, à

moins que le contraire ne soit expressément indiqué, nous en

déterminerons toujours les coefficients constants conformément
au tableau (25) ci-dessus.

Pour exprimer X en fonction de /*, /*, il est préférable
d'employer, au lieu des formes dissymétriques (26), la forme
symétrique

+ «,(«, — + *,(«, — \]ll > (28>

que l'on en déduit immédiatement.
On vient donc cle démontrer que, étant donné un polynôme du

4nie degré X, il existe toujours trois polynômes orthogonaux ^ tels

que X soit un polynôme de leur faisceau.
Une telle représentation est unique, car si on avait, par exemple,

de deux manières différentes

,2 .2 2 2
X z— l — / et X — m — m12' 12'

on aurait aussi, en changeant éventuellement le signe de m2,

h + h — ci [mx -f m2) k — /2 ^ \m± — m2) ;

et alors le conjugué /.. — \lxl'j des polynômes lx Ç serait, à un
facteur constant près, égal à celui m3 — [mi/?i,j des polynômes
mx, On démontrerait de même les égalités lx mx et l2 m2
qui ont lieu, bien entendu, seulement sous réserve des coefficients
constants.

C'est donc d'une manière parfaitement déterminée que les
polynômes lt correspondent à X ; en outre, sous l'angle de la définition

(24), X peut être considéré comme un individu extrait d'un faisceau

de formes biquadratiques qui possèdent en commun les mêmes
polynômes conjugués /, et se trouve étroitement uni avec ces
derniers.

Nous avons trouvé plus haut les h, correspondant à X, et
construit le faisceau en partant de l'élément X décomposé en ses



424 C. CAILLER

facteurs; c'est un problème fondamental que d'opérer la même
construction à l'aide des seuls coefficients de X. Il suffît pour le
résoudre de déterminer, en fonction de X, une seconde forme
appartenant au même faisceau.

Pour y parvenir, reprenons les définitions (25) des Ut et écrivons

pour eux les relations (20) du § précédent. Un calcul rapide
donne

p l, et (7 / / V= a a a
4 ' \ 1 U / 128'

on a donc

°-ih('A* > A (A) • A - (A) <29>

et, pour le discriminant de h, la valeur

- (30)

Soit maintenant une forme quelconque

/ c I -4- c I 4- c f 30r)
1 1

1

2 2
1

3 3 '

du faisceau en question; il s'agit de calculer la valeur des deux
combinaisons suivantes

c cn I2 4- c 1' et cil -j-cil -p c l ln111 2 2
1

8 ~ 3 1111 2 2 2 333'
qu'on a trouvées au § 6 pour le cas c. er.

Pour les déterminer dans le cas général, tirons de (304 les
égalités

(31)

Intégrons la dernière, et comparons le résultat avec l'avant-der-
nière formule ; nous avons

-
<32)

3 =2A
Pour déterminer la constante 6* d'intégration, éliminons l", et

remplaçons les discriminants i (l* — 2/,/,) par leurs valeurs (30),
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il vient

3c =2Ci((2 — — «!«» »3 2"^. •

ou

c — — ^ "ags y ~ (33)
3 ^-1 CL.

Appliqu°ns ce résultat général an cas particulier l X, qui

donne, d'après (28), c. \-(- — ; dans ce cas on a c 0, et
o

les formules (31) et (32) deviennent

f 2c<£. *=2^4-
On tire de là

¥ " A:-2'V;2'V4 - (2'vm;-)2 - 2o"ù'/ù • (34)

Enfin cette dernière relation s'écrit encore, à cause des formules (29)

XX" x/2— ~ X =Zcjc^ih •

4 XX" 3X/2
Voici donc formé un nouveau polynôme H= ^ ap-

partenant au même faisceau que X; c'est lui qu'on nomme le
Hessien de X, et dont la valeur en fonction des coefficients de

X — d0 :xA -f- ^ox.r?' -f- 6a*x2 + 4azx -f- o4

-est

H [a0a 2 — a*) x* -f- 2 [a0as — ax <y2i ,r'

-j- (o0a4 + Zettas — 3a*)x2 -f- 2(ö?i«4 — a%az)x -f- #2a4 — (35)

La relation (34) nous en donne l'expression en l\ ; quelques
réductions faciles, où intervient la condition ax -|- ce„2 -f- «3 — 0,
amènent le Hessien à la forme

12H - i[ - r - r (36)

§ 8. — Propriétés d'invariance. Nous savons que le faisceau tL

contient les deux formes X et H ; ces polynômes étant certainement

indépendants, au moins quand les racines de X sont dis-
L'Enseignement mathém., 16e année ; 1914. 27
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tinctes, on pent les adopter comme base du faisceau, à la place
des l\. Nous avons donc trois équations telles que

H + r.X i — 1, 2, 3 (37)

Pour déterminer ces constantes h. et efaisons d'aborcl x ég-alII' o
4XX" — 3X'2 X'2 X'

à la racine yA de X; alors X~0, H= ^ — j-ß ; U y ;

1

on a donc, dans (37), bt — j
Ajoutons maintenant les mêmes équations, multipliées soit

par i, soit par a., soit encore par a. (a. — aj; il vient, à cause de
2a. 0, des équations (28) et (36) pour X et H, et de l'identité (27),

2ei 0' .2^ °- 2^ai(ay—

On tire immédiatement de là

^ - A*/ ~ **'

Avant de récapituler les divers résultats qui précèdent, il est
opportun de changer les notations en éliminant partout les quantités

a. pour mettre à leur place les trois invariants irrationnels ei
du polynôme X. Voici la correspondance entre ces quantités

Ci :

a8 — a2 ao

12 12

at — a§ _ «0

12 12

*2 — ai ao

12 12

e2 ~~r^ 4 [(12) (43) - (13) (2411 * > (38)

ou bien

— 4 e2 — c g a2 — 4(p8 — e±) a8 4(ej — c2) (39)

Les invariants irrationnels &f, dont la somme est nulle, vérifient

une équation cubique .telle que

4.V3 — g2s ~ gs 0 (40)

avec les conditions

J 1

— y g2 — <°2 es -}- e2 cx -f- Ci e2 y 82 — - CiC2r8

Ces dernières quantités, évidemment symétriques par rapport aux
racines du polynôme X, sont exprimables rationnellement par
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les coefficients cle X: voici la valeur cle ces invariants rationnels

o- — a a a + 2 a et et — o
Cg o 2 4

1 123

Rappelons d'ailleurs que la combinaison

o2 - 27^ 16 (e2 - e/ies - - Cf)* A (42)

joue le rôle du discriminant de X.
La théorie générale conduit donc au résumé suivant où se

trouvent récapitulées les propriétés les plus essentielles du
polynôme du 4me degré.

a) Désignons toujours par L les polynômes conjugués, tels
qu'ils sont définis au tableau (25) ; L a pour discriminant

ou 4(e. — eJ.)\ei — ek) (30")

Alors, si H représente le Hessien de X, les trois combinaisons
suivantes sont des carrés, à savoir

H + eX -hy (37')
'

ce sont les seuls carrés contenus dans le faisceau H 4- eX.
b) Mettons au lieu de 4(e2 — es) [e3 — ex) [ei — e2) — yA quantité

parfaitement déterminée, on a le tableau

<e2— eS]ll+ {e»- C1]'l+ - e2]ll - 0
• (27')

Xj/A eje2— es)ll -+ e2fe3— <^)/2 + eg(el — (28')

X'VÂ" 3)«^- e8) t*+ e2ie3 - ej £ + ^ - esi Ç (32')

4XX* — 3X'2 I <A)
11 — — — j2[li + l2+ C ' 136 I

T i (HX' — XH'I i IJA ,(43,

T2 - 4 (H + e,X)| H + e>X)< H + (-.X) — 4H* + &HX2 + g,X* (44)

Dans le tableau ci-dessus, les diverses formules sont affectées
du même numéro, avec un accent, que celles dont elles ne sont
qu'une simple répétition; seules (43) et (44) sont nouvelles et ont
besoin de démonstration.
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11 s'y introduit un covariant T, du sixième degré, dont l'annu-

H
lation caractérise les extremas du quotient Or ces extrem as.

à cause de

h_±jVv _ ,y\-
H -f- Ci X \ /i /

/ / N 2

sont les mêmes que ceux du quotient (yj - à savoir les racines

de ll% les racines de celles enfin du polynôme lj2 l2 /l ou /g

La partie littérale de la foi-mule 43 T 7 /, /.2/3 est ainsi

évidente. Quant au coefficient numérique y, 011 le trouve en

comparant la valeur des deux membres pour une valeur particulière
de x, x Y\ Par exemple.

On sait par l'Algèbre élémentaire que les divers éléments du
tableau A sont des invariants, lesquels, sauf introduction de
certaines puissances de $, se reproduisent par les transformations
linéaires de déterminant S. Mais cette propriété résulte à son tour,
et immédiatement, du tableau lui-même, ainsi que d'une remarque
au sujet du Hessien.

En intégrant l'équation différentielle 4XX" — 3X"2 — 0, ou
reconnaît que le Hessien de X est identiquement nul dans le seul cas
où X est une quatrième puissance exacte. Or si 011 opère la

transformation linéaire (y. • Ie transformé Y [a'y -f // 4X

est une puissance quatrième en même temps que X lui-même.
Le Hessien H?/ de Y, s'annulant avec celui Rx de X, est divisible
par ce dernier, et l'on a

H m ô-1 a'r 4- //3 H :

§ x

la partie littérale de la formule est évidente, la présence du
facteur $2, carré du déterminant de la transformation, se démontre
immédiatement, par exemple par le calcul direct.

Revenons alors au tableau A et effectuons la transformation
dont il s'agit. On voit, d'après la propriété du Hessien, que y
acquiert le facteur (f2, puis lt, T, ^, g3 respectivement les facteurs
â, à\ J".

Les conditions d'invariance relatives à g\ et y:i, qui sont nécessaires

pour l'équivalence, sont aussi suffisantes. Autrement dit,
3

si deux formes X et Y ont le même invariant absolu * 011 Lien

encore, si deux formes ont des invariants irrationnels et propor-
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tionnels entre eux, il existe une transformation linéaire changeant X
en Y.

En effet, dans ce cas, le système lt d'un des polynômes est
transformable dans le système 4 relatif au second; la chose est
évidente puisque le déterminant de /• étant 4(öf — eß Un — ek), la
proportionnalité des ei implique celle des invariants fondamentaux
des deux systèmes h. Soit ô le déterminant de la transformation
T opérant le passage de l'un à l'autre; reprenons, pour les deux
polynômes les identités (31), on en conclut de suite

Y — [a'y + //)4X tiij — ô'VcY -j-

Ou bien, la même transformation T qui transforme le premier
système L dans le second, transforme aussi X en Y.

Il est clair que ces questions d'équivalence se réduisent en réalité

au cas ö i d'une transformation uni modulaire. Pour qu'une
telle transformation de X en Y soit possible, il faut naturellement
que les invariants rationnels g2. g3, ou irrationnels e£, soient les
mêmes pour X et pour Y. Supposons cette condition remplie, il
est facile de trouver tontes les substitutions opérant le passage
d'une forme à l'autre.

En effet, soient l, (x) les polynômes conjugués relatifs à X, mt (y)

ceux relatifs à Y. Nous avons

Mx ^ — 7 t. H -j- e \ — — - m2
u 4 y 1 i 1

et comme l) doit se transformer en m* en même temps que X en Y,
il faut que

,2 2

h l,»

4 - 9 ou bien YH — XH — 0

m in x
1 2

cette dernière est une conséquence de l'équation x= 4~ ^, qu'on
cherche pour passer de X à Y.

Si réciproquement nous avons Ylïr —XH{< 0 nous aurons
h _

1*

aussi — — ziz — Suivant la théorie développée au § 5, il résulte
r,\

de cette équation et du fait de la concordance des deux discriminants

pour h et nu, que l'équation

F(,r, y) ltm2 ± m± 0

se partage en deux équations linéaires. Voici donc le résultat.
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Si deux polynômes biquudrutiques X, Y ont les mêmes invariants

ei, Véquation

se décompose en quatre équations linéaires en x et en y. A chacun
des quatre facteurs correspond une transformation unimodulaire
de X en Y ; il n'en existe pas d'autres.

Remarquons enfin que, dans tout ce qui précède, le degré
effectif de X peut fort bien s'abaisser au troisième par le transport

à l'infini d'une des racines yt. Ainsi parmi les diverses
formes équivalentes à X figure le polynôme 4/r3 —g2x —g3 dont
les racines sont, comme nous savons, ex, e2, e3. Il est intéressant
de se procurer les polynômes conjugués /?ide cette forme réduite :

ce sont d'après les définitions (25)

//,— 2(x2 — 2eltr

nt — 2 f,r2 — 2etjc

/?g — 2 {x2 — 2es x

Ces polynômes m ne dépendent ainsi que des et, propriété qui
n'appartient pas aux conjugués h d'une forme X quelconque ayant
les Ci pour invariants; on trouvera d'ailleurs les U en opérant sur
les m une transformation unimodulaire quelconque.

— e\ — e2e3) 2 [(jr — e±\2 ~ — e3i] |
— — ^3^i) 2 [(tr — e3)-— (r2—r3)(r2 — et)] > (45)

— Y — e±e2) 2 [!.r — p3|- — (p3 — — e2\] I

9. — Théorème de Cayley. — On sait que toute forme du faisceau

X, H, par exemple <7II + bX possède les mêmes polynômes
conjugués l£ que X lui-même ; il serait intéressant de se procurer,
pour une telle forme, le système des invariants et covariants
fondamentaux qui figurent dans le tableau (A). Nous nous bornerons
à esquisser rapidement cette question en cherchant d'abord le
Hessien de la forme précédente, lequel faisant partie du faisceau l\
est lui aussi du type AFI -f- BX.

Or le Flessien contient les coefficients de la forme au second
degré, on a donc

A — a0b2 -f- 2[l0ab -)- r0a2 B — atb%2 -(- 2(Yah -f- a2

Pour déterminer ces polynômes, partons de la remarque que
4 X \ " — 3Y/2

voici. Si X est un carré, ou X f2, son Hessien H —:—7^—2—' io
I l'/'j 2ff'\ A

Ï2 f2- Ce Hessien vaut donc — 77 /'2, si A représente le

discriminant de f.
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Appliquons cette remarque à l'expression

H + e, X - i t
/. I

dont le Hessien doit être — — (H -j- eiX). Comparons
o

ce résultat à la règle générale énoncée ci-dessus ; nous avons les

conditions d'identification
2 oo eßlei — ek)

ao ei -iJo ei 4" To — "
g

»
I oc — ej)(e£ — eki

at e£ + 2fii e. + yi ^ •

Remplaçons aux seconds membres

3

par les valeurs égales

et

'1 3 ^
r, o ^i

Ï2 ' el ~ 12
1 6"

on obtient à l'instant
1

ao — i ' éo — ^ ' To — '

A c Ö2 p30 (J1 t-2 Tl T
Yoici donc le résultat

Le Hessien de la combinaison aH -f- bX est un polynôme du même

faisceau, égal à

h fr - ïfffj H + + f X (46)

Si on appelle E;les invariants irrationnels de cette forme all -f- bX,
on trouvera E; en exprimant que

h («H -j- bX)

ou bien,

(è2-f|a2 + E.«)H+ + E./;) X

se réduit à un carré. On a donc, pour déterminer E*, la condition

M'v +l)i -=E,«- +
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soit, après quelques réductions

^ «4+^-1«. (47)

Quant au covariant T ^ (HX' — XIF), c'est évidemment un

combinant du faisceau (X, H) ; si on substitue ali -f- bX à X, il se

reproduit multiplié par le facteur

-1(4V - g,b„* - g,a*,

IV. — Formes doublement quadratiques.

10. — On nomme forme doublement quadratique un polynôme
tel que

[m,n- 0,1,2) (48)

soit, en le développant suivant les puissances de l'une ou de l'autre
des variables,

F — X2y8 -f- 2Xij X0 r= 4 2•** 4" -4 i *' ~~b X •
1 'l<3)

Les coefficients X* et Yi, dans ces représentations, valent

X, — a-HX' + e*a\iX +'rt0i ' ~ ai*y + 2r/ilJ + aLi) • 00

Relativement à ces formes F doublement quadratiques, nous
avons à résoudre plusieurs questions importantes qui se rattachent
toutes, plus ou moins directement, au problème de l'équivalence
de deux pareilles formes par transformation linéaire uni modulaire.
Un rôle fondamental, dans toute la théorie, est dévolu aux
discriminants de F relatifs à chaque variable; ce sont les fonctions

D ix) X2 — XX et D„(v) Y2 — Y Y. (51)
// • ' 1 0 2 X •

'
1 0 2' ^ '

que nous représentons le plus souvent par les lettres X et Y.
Commençons par exclure le cas où X et Y possèdent des racines

multiples; à ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynômes, ou que si X
possède une racine multiple, Y en possède une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opère dans F une transformation portant sur les deux
variables et telle que
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