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410 C. CAILLER

but principal demeure l'équation doublement quadratique, la
recherche de ses invariants, le probleme de I'équivalence entre de
semblables équations, etc. Or on peut se demander si le détour
par les fonctions elliptiques offre un avantage bien réel, et si ces
diverses questions ne se résoudraient pas aussi simplement par
les seules ressources de ’Algebre.

En prenant ce point de vue direct, opposé a celui d’'Halphen, il
semble en effet qu'on gagne plutdot; on obtient en tout cas un
exposé aussi approfondi, et peut-étre plus clair, des propriétés de
I'équation dont il s’agit. Il est loisible ensuite de fermer le cercle
par I'étude de l'intégrale elliptique attachée au polyndme dou-
blement quadratique, c¢’est par la que je termine.

Tel est donc l'objectif que j’ai poursuivi; j'ai essayé de dis-
cuter par une marche élémentaire, bien qu’assez a fond, le pro-
bleme algébrique, et de trouver, dans sa résolution, la clef des
premieres propriétés de lintégrale elliptique. Cette marche qui
m’était suggérée par le plan méme de mon cours, tel que je I’avais
d’abord tracé, se confond avec celle qu'ont dii suivre tout naturel-
lement les premiers inventeurs du théoreme d’addition, Euler en
particulier. Il me semble, en la renouvelant, 'avoir sensiblement
perfectionnée; au lieu de me contenter de vérifier des formules en
quelque sorte toutes préparées, jai cherché a mettre partout en
évidence les raisons cachées de ces formules. Ceci ne va pas sans
quelques longueurs.

C’est notamment par ce souci de clarté qu'on s’expliquera la pre-
sence ici des deux premiers chapitres de mon travail: tout élé-
mentaires qu’ils sont, ils font corps avec la suite et ne sauraient
en étre séparés, ce sonteux quirenfermentle secret des propriétés
assez complexes de 1'équation doublement quadratique. On n'y
verra peut-étre pas sans intérét le role prédominant que je fais
jouer, notamment dans la théorie des équations du 4™ degré, aux
polyndémes quadratiques dont les racines se divisent harmoni-
quement deux a deux. L’introduction méthodique de pareils poly-
nomes conjugues, ou orthogonanx, me parait jeter une vive lumiere
sur tout le sujet; aussi me suis-je attardé sur les propriétés de

ces polynomes au dela de ce qui était strictement nécessaire.

II. — Polyndémes du second degré.

2. -— Dans toute la suite nous rencontrerons constamment des
combinaisons homogenes de divers polynomes f, g, 2, ... , les de-
grés de ces polyndomes en & sont zéro, un, ou deux. Nous n'em-
ploierons pas la notation homogene, et nous regarderons toujours
ces polynomes comme de degré 2. Ils possedent deux racines; seu-
lement quand le degré effectifs’abaisse, une des racines, ou toutes
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les deux, se trouve rejetée a l'infini. A ce point de vue, deux poly-
nomes d’'un degré égal a I'unité ne sont jamais premiers entre eux
comme ayant en commun le facteur & — = ; une constante est un
polynome carré dont les deux racines sont a I'infini et dontla de-
rivée est identiquement nulle, etec.

Notons encore qu'une relation telle que A = fg ne peut sub-
sister que dans les deux suppositions que voici: ou bien fet g
sont des carrés parfaits, ayant respectivement pour racines les
facteurs linéaires de /i, ou bien f, ¢, i, ne difféerent les uns des

autres que par un facteur constant. Ce théoréme, évident, ne
“suppose pas non plus le degré effectif égal a 2. En voici une appli-
cation immédiate. ‘

On sait que si y? = ax?* + 2bx + ¢ est 'équation d’une conique
rapportée a un axe de symétrie, les coordonnées 2 et y peuvent,
d’une infinité de manieéres, s’écrire sous la forme

g = -f~ 3=

(<4

o

(1

g | =~

Les trois polynomes f, g, 2, en ¢, sont du second degré et donnent
lieu a I'identité
= af* + 2bfg + ¢g® = FG , (2)

ot F et G désignent certaines combinaisons linéaires de [fet g,
Par exemple si « =% o, on peut prendre

F/a = af + b + ¢/ N1g | GYa=af +1b —y/Nig

la lettre A représente ici le discriminant * — «e¢ du polynome
ax? -+ 2bx -+ c. :

En tout cas si la conique est non décomposable F, G, 4 sont dis-
tincts, car dans le cas contraire on aurait une relation linéaire
entre x, y. On doit donc conclure de (2) que F et G sont des
carres,

F=—= o2, G =, h—= 2y, (3]
et voici la conséquence. Duns la représentation (1) le polynéme h
ne differe que par un facteur constant de cet autre fg' — 'g.
En effet, si B = if + mg et G = I'f + m'g , on a d’abord
FG" — F'G = (/m" — Um)(fg’ — ['g)
/()\l

puils d'apres (3)

FG' — F'G == 22y (oy'— o') = 2h foy" — o)

i

La proposition est prouvée, car les quantités m’ — 'm et
gy — @'y sont évidemment constantes.
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Réciproquement, si /; ¢, ~Areprésentent trois polynomes quadra-
. ' h : .
tiques en ¢, la courbe @& = é , ¥ =~ est une conique, décompo-

o o

sable ou non. Si, /et g restant quelconques, on prend 4 égal ou
proportionnel au polyndme du second degré & = fg' — f'g, notre
conique admet 'axe des & comme axe de symétrie. Cela résulte de
I'identité

(f8' — e =18"— 28""\* + 2({"s — &+ " g+ — 2" ¢

que nous écrivons en abrégé

I

(fe" — '8 = (ge)\f* — 2ifa\fs + (Hg®, (%)
en posant, pour deux polyndémes quelconques qui peuvent coin-
cider

/et =18 —["g — 3" . (51

La quantité (/g) ainsi définie est une constante, comme on le voit
en la différentiant; elle sappelle linvariant simultané des poly-
nomes [ et g; lorsqu’ils deviennent égaux, l'invariant (/] se
trouve égal au quadruple du discriminant B> — AC de la forme
= Ax? + 9Bx + C.

D’apreés 'identité (41, on voit bien ue les formules

i
|
|
|

U |~
~
~-
Uo
o~
30
~

donnent la représentation paramétrique de la conique

32 = ax® + 2bx 4+ ¢, (6)
aux coeflicients a = (gg), b = — (fo', ¢ = (/.

Considérons le polynome &2 = fg" — f'g; de cette définition on
tire les formules

h=[g =g, W=["—[&, K==, 7
d’'ou
hf" — NMf + Rf=0, hg" — k'g" + h'g =10, (8)

c’est-a-dire (Af) =0 et (hg) = 0.

Si on nomme conjugués ou orthogonaur deux polynémes a inva-
riant nul, on montre aisément que les racines de I'un d’entre eux
divisent harmoniquement l'interyalle des racines de 'autre. Les
équations ci-dessus (Af) = (hg) = 0 signifient donc que dans la
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représentation paramétrique de la conique (6), le polynome /4 est
orthogonal a fet g, comme aussia tout polynome /f' 4 mg appar-
tenant a leur faisceau. Et cette régle suflit a déterminer /2, sauf un
coefficient constant, en fonction de deux polyndmes quelconques
du dit faisceau.

Tirons quelques conséquences du systéme (7).

a) Si fet g admettent un facteur commun ¢ — «, les deux pre-
miéres formules (7) montrent que A et 2" admettraient ce méme
facteur ¢ — a; £ serait donc carré parfait. Il n’y a pas d’exception
pour ¢ = = ; f'et g seraient alors tous deux du premier degré et 7
une simple constante.

Inversement, si f'et ¢ sont premiers entre eux, 4 n’est jamais
carré. Car d’abord il ne peut étre constant, parce que, d’apres la
seconde formule (7), /et g seraient dans ce cas identiques, a un

]l”
- |t — a)?, avec

P

facteur pres. En second lieu, si on pose & ==

h" 70, h et A sannulent pour /==oa et comme le déterminant
['g" —f"g" = A" est non nul, fet g possédent tous deux le divi-
seur { — o; cecl en vertu des mémes formules (7). ,

En résumé; si fet ¢ n'ont aucun facteur commun, /4 est non
carré, s'ils en ont un seul, 2 est carré parfait, s’ils en ont deux,
h est nul identiquement. ‘

b) Supposons désormais /et ¢ premiers entre eux, par suaite /

non carré,ou son diseriminant 7 (Ah) différent de zéro. Dans ce

X

cas la conique (6) est non décomposable; en effet, son diseriminant

/

) — (F)(88).= (1"g — 1"’ + f8"1F — ([ — 2™} 18" — 2g¢")

peut aussi s’écrire
{ ol A\ D (fol . (o) ([ VI YT YL —
fo ]/o) (fo /,:’H/g “"/ g)—-ll — 2hh _.illll) 3

ce qui rend la proposition évidente.

¢) Les polynomes f, g, 2 sont linéairement indépendants. Soit
en effet F = /£ 4 mg un polynéme appartenant au faisceau /s g
on ne saurait avoir 2 ==, car la condition d’orthogonalité (AF)
~— 0 donnerait dans ce cas A'* -— 2hh"" — 0, chose absurde 4
n’étant pas carré.

Je dis de plus que si /2 et F possédent ur facteur commun, I est
un carré parfait. in effet, soit £ — « le facteur commun ; la condi-
tion (A} = /2'F" — AF"" — A" = 0 montre que {— « divisera ',
sans diviser 2" puisque / est non carré. C’estdonc que F et [’ sont
tous deux divisibles par ¢ — « et qu’ainsi F est carré ; cette consé-
quence persiste, comme on voit facilement, méme si ¢ — o= . Ré-
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ciproquement toutes les fois que I est un carré exact (t — a2, /
admet le diviseur (¢ — «], la chose est évidente. |

On voit, en somme, que A étant éerit sous la forme
h=A(t—a(t— B, le faisceau (f, g qui contient certainement
deux carrés, comme on a vu plus haut, n’en contient pas d’autre
que ces deux-ci (t —a)? et (¢t — %, Les racines « et § du poly-
néme 2 définissent ce qu’on appelle les points doubles du fais-

ceau, ou de [l'involution ([, g\.

3. — Condition de réalité. — Supposons fet g non seulement pre-
miers entre eux, mais réels; je dis ue les points doubles sont
toujours réels sauf dans le cas ou les racines de fet g sont réelles
et se séparent mutuellement.

En effet, on a

par suite, si un de nos polynémes, par exemple g, a des ra-

cines imaginaires, le quotient~ , continudet—— = a t—= 4 « ,
; 2

reprend la méme valeur pour ces deux valeurs de ¢. 11 admet ainsi
des maxima ou des minima, en méme temps / s’annule. Si
[ et g admettent tous deux des racines réelles, mais que celles

de /, y et d par exemple, soient comprises entre les racines de g,

le quotient i reste continu dans l'intevvalle y d et s’annule a ses
o

extrémités, ainsi /4 s’annule de nouveau. Passons au cas ou les
racines réelles de fet g se séparent mutuellement.

Si on fait dans ce cas varier les coefficients de /et g de maniere
que leurs racines conservent la méme position relative, /4 ne peut
devenir carré parfait, puisque fet ¢ n'acquiérent pas de facteurs
communs; ainsiles racines de 4 = 0 restent réelles ou imaginaires
selon qu’elles I'étaient au début. Or on peut évidemment par les
dits changements amener /& prendre la forme (> — 1) et ¢ la
forme 2¢, polynémes a racines séparées. A cetinstant o =2 (¢ + 1),
et ses racines sont imaginaires, comme le voulait la proposition
énoncée ci-dessus.

l.es cas précédents sont évidemment exclusifs les uns des autres,
et comme A est le méme, a un facteur pres, quand on le déduit de
deux polynémes quelconques I, GG du faisceau (f,g!, on voit que
si fet g sont deux polynomes a racines réelles se séparant mu-
tuellement, F = If + mg et G =1U'f 4+ m'g sont dans le méme

!/

cas, cela quels que soient les facteurs réels I, m, ', m'.

h. — Intégration. — On sait que la représentation paramétrique
(1) est employée dans les éléments pourintégrer les différentielles
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f(r, y) dv, attachées a la conique y* = ax? 4 20a -+ ¢. Disons,
en passant, un mot de cette intégration.

Admettons, pour fixer les idées, que g n’est pas carré parfait;
il y a alors dans le faisceau /— xg deux carrés parfaits. Soient
donc

.
B

fwxig::Al(t——th , f—;rzg:Az(yt——tg)“ . (9)

4

I’équation x = = donne

24

o

gla —ax) = Al(t - tl)"’ , g (x — xz):Ag(t—— l2)2 , (10}
x——xl—ﬁ<t—t1>"
x — x, A2 t— 1,

qui n’est qu'une forme nouvelle pour x ==. On y lit que si
el

puis

t, et t, sont les racines du polynome A, 2, et &, représentent les

extrémums du quotient [ , alors que ¢, et £, sont les valeurs de la
: 8

variable correspondant a ces extremums.
Posons A = gf’ — [fg', désignons par m un facteur de propor-
tionnalité, et revenons a l'identité (4), nous avons

I d .
1:[, Vax2+2bx—|—c :m—f, dx:h.._{)_——_-g_f{_t,
5 g g° m g
On a done
dx _1dt
‘/ax2~'r- 2bx 4+ ¢ m g’

ce qui est la formule bien connue de I’Analyse élémentaire. [l est
aisé, en la généralisant, de adapter a 'intégration des fonctions
rt + s

Vg
constants.
Tirons a cet effet de (10)

rationnelles du type dt, ou r et s sont deux coeflicients

Vg(x —a) = (t — t) /A, Vgx — ag) = (I — LI A,

additionnons celles-ci, aprés les avoir multipliées par deux
facteurs constants, nous aurons

rt - s -
‘/g’— = Cy ‘/."('*‘— Xy + ('2‘/[1/' — Xy .
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Multiplions cette formule a son tour par le facteur

dt  m dx _p dx

7 x ‘/a.?c2 -+ 20x -+ ¢ o ;‘/(.1' — X)) | r — a)

»

il vient
rt + s i i dx ; dx
/‘/— == T‘/T—- ) + 21,‘/1—~_ 1

o
o)

(11)

C’est 1a une formule tres pratique pour lintégration des diffé-
rentielles du premier membre, une fois déterminés en fonction
de 7 et s les parametres b,, b, qu’elle contient.

~

5. — Transformations linéaires. — Nous allons exécuter sur nos
polynomes des transformations du type

- ___a’u + ‘C , - ou U = —————{j/t _’_——‘Z : (12)
TR 't — a
dont le déterminant d = af’ — &8 doit étre différent de zéro. Il
est ici bien‘entendu, a titre de convention expresse, que nous nous
interdisons la suppression des facteurs communs dans les quatre
coeflicients «, o, B, 8’ de la transformation ci-dessus; ces coeffi-
cients comptent ainsi pour eux-mémes et non pas simplement par
leurs rapports mutuels. L'importance de cette convention va res-
sortir 4 'instant.
[.e polynome transformé de f(¢) est, par définition,

A
o(u) = (a'u + ‘C,}zf<%—}—}5%> - (13

Désignons semblablement par y («) le transformé de g (¢, par 7 («)
le polynome orthogonal a la fois a ¢ (i) et y (1) comme A({) est
orthogonal simultanément a f(¢) et ¢(¢). Ona

odu d (v ) d/f
1§ — ‘ iyl — 2 (T} — (o 572302 5 (L ’
dt oy puis i u) ¢ du(*{) (' 4+ 3"V 0g dt<g

donc

n(u) =0 (a"u + B Phit)

ainsi, sauf le facteur d, 7 («) est précisément le transformé de / (¢).
Multiplions 'identité fondamentale (4) par le facteur d¢* (o'« + )",

A .

elle devient, grice a I'égalité précédente,

= lgg)¢" — 2(fg) oy + (Y]
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mais comme d’autre part
=yl e — 2Hevler + (99)7°

la comparaison de ces deux résultats donne de suite les invariants
de ¢ et y. Ce sont

(po) = (N . ley) =(f5) , (v = (g8) 5 (14)

la seconde de ces formules reproduit les deux autres en faisant
simplement coincider les deux formes fet g.

Réciproquement je dis que si quatre polynomes f, g et ¢, y, les
premiers en £, les deux autres en «, sont tels que les relations
d’invariance (14) soient vérifiées, il existe une transformation
linéaire de déterminant J transformant /" en ¢ et g eny. Pourle
montrer, prenons le polynéme doublement quadratique

Fit,u) = flt)ylu) — g(l)olu) ,
nous allons voir que, les conditions ci-dessus étant supposées
~vraies, il se décompose en un produit de deux facteurs linéaires
en t et u.

En effet, le discriminant de I¥, relativement a ¢, s’écrit

F, — 2FF, = (f'y — g’0)* — 2(fy — g9) (f"y — &"9) .

= (" =2 2"+ 5" — T8 ) ve + (57 — 288" ¢,

ou bien, en remplacant les coefficients (), (fg], (gg) par leurs
valeurs (14)

‘{‘PJ]

2

Vo) — 29"y — 9] (oy

2

(a2

12 4 1 .
’}’*z _— QPFt = = L(cp/y
1 7 VIRY
=aley = Y9

Ce discriminant est donc carré parfait et la proposition est dé-
montree.

D’apres le calcul qui précéde on voit que la condition F = 0,
laquelle contient évidemment toutes les transformations possibles
de f'en ¢, et de g en y, se dédouble dans les deux suivantes

¢y — ¢ .

U 4 N
=, et Pt:~——

O7

qui ne different 'une de lautre que par le signe de 0.
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Prenons I'une d’elles, la premiére par exemple: alors les con-
ditions compatibles

w’«/ . ’,f
)]

AR DU N

ou bien

’ Y/ (,0/ s ot X ~ 7 v
f(g -——8')—3(]”——8_): , soit P”:0<g —g/>

On peut donc, au lieu de F =0, poser les deux conditions équi-

valentes
~f v — ¥ ! '
O S & F”::B(fg—g’>, (16
2 \
qui montrent que ¢ est linéaire en «, et « en ¢.
Soit done
ou & -
¢ == ’ + if‘l ¥ (1})
a4 3

la solution des équations ci-dessus (16!, admettons que le facteur
indéterminé qui figure dans les coefficients a, &, 3, 3 a été choisi
dé maniere que a8’ — o3 soit égal a d. Je dis que cette transtor-
mation change fen ¢, et g en y.

Soient en effet @ (', I'(u) les transformées de ¢/, g{t parcette
transformation, ou

(2w + B2 f1ty = ® (u) , (2w + 3ty = T'(w)

iy f_ 9

d'ou > = : a cause de I"(¢, ) =0 on a aussi 2 =5 Donec,

avec un facteur constant de proportionnalité, on a

U ™~

®(u) = Kog(u , Cu) = Kylu .

Je dis que ce facteur K est égal a l'unité.
En effet, récrivons les formules précédentes sous la forme

(@' + B f(t) = Ko (u), (2'w + (Pt = Kyfu) .
odu .
(2w 4 3
f (&) + 20" (a'u + B f(t) = Ko (] .
88" (t) + 2o’ (u + (') g (¢) = Ky"(a) .

et dérivons-les en tenant compte de dt = il vient
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Eliminons entre celles-ci le terme en ('« 4 '), on a

Sife’ — f'g) = Kify — g9l = KF, (t,u) ;
il suffit de comparer ce résultat a la seconde formule (16!, pour
voir que K = 1.

e théoreme est ainsi démontré ; ayant donc choisi a volonté le
signe de d dans la formule (16), il y a deux transformations au dé-
terminant d, déterminées par cette formule méme, qui changent
fen g et geny Enchangeant d en —d, on aura de la meéme ma-
niere deux nouvelles transformations, soit quatre en tout, pour
effectuer le passage du systeme (/g au systeme (¢,7).

Il est a peine besoin de faire remarquer que si de I'équation
_er—ey

!
T B ]

minant — 0, cette transformation changerait f'en — ¢, et gen —y.

on tirait une transformation de ¢ en « au déter-

Terminons par une observation importante.

Nous avons jusqu’a présent pris les polyndomes f et g comme
point de départ; c’est d’eux qu'ont été tirés les invariants a ={//",
b= ..., ainsi que le polyndme conjugué £, pour former les élé-
ments qui figurent dans I'identité fondamentale (4}, Si, a I'inverse,
les données sont a, b, ¢, on vient de voir ue les polyndmes fet g
ne sont plus déterminés qu’aux transformations linéaires pres.
On pourrait, par exemple, prendre pour /et g les polynomes
purement quadratiques

f=At? -+ B, g=At* + B,
les conditions seraient alors
a — — 4AB |, ¢ —-— %A’ h — A’B — BA’

elles pourraient étre encore réalisées d'une infinité de manieéres.

Relativement a la conique fondamentale il y aurait, pour étre
complet, a rechercher encore la signification géométrique du pa-
rametre Z; je me dispenserai de mentionnerici cette interprétation
tres connue et le théoreme classique qui s’y rattache sur le rap-
port anharmonique de quatre points sur une conique.

6. — Systeme de trois polyndémes conjugués. — En résumé,
soient &, , x,, xr, les coordonnées homogeénes d'un point dans un
plan, et /,, /,, [, trois polynomes du second degré, les relations

.T1:[1. x»:lg, .'Tg:]n,

- o

caractérisent une conique. Si on veut que 'axe 2, = 0 devienne,
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relativement a la conique, la polaire du coté opposé, on doit
prendre sauf un facteur constant, [, = /,/', — I, 7,.

Supposons la conique rapportée a un t1'1angle autopolaire son
équation ne contiendra plus que des termes carrés; elle est du
type

2 2 2
A4y —‘}— Ug X'y + Ag X'g — 0 ,

dans ce cas, chacun des polynomes / est le conjugué des deux
autres. Ainsi ces polynomes seront premiers deux a deux et
linéairement indépendants ; aucun n’est carré parfait, en outre ils
donnent lieu a une identité telle que

7.113—}— a2]2+a3]§:0 - (177

Réciproquement toutes ies fois que trois polyndomes, premiers
entre eux, sont liés par une semblable relation, celle-ci est unique
de son espece, et ces polynomes sont conjugués deux a deux.

En effet, en différentiant la relation précédente, on a

0(1/1/; "‘|" 12/2[; —I—‘ 7.3/3/;:
par suité
oy ly oty Iy 3(3’3

bl — Ll ol — Ll Ll — Ll

— 5 ( 7”)

relations ol le facteur de proportionnalité ¢ est nécessairement
constant. L.a proposition est établie.

[1 est clair qu’un systéme de polynomes conjugués le reste par
transformation linéaire: si donc on avait pris 'équation de la
conique sous sa forme la plus réduite soit 2+ 2+ 2. = 0, on
aurait eu

— (24 1), dov L+ L+ lb=0. (18

C’est le systeme conjugué reduit a sa forrie normale; pour cette
forme les trois invariants simultanés sont zéro, et les trois discri-
minants sont égaux a 'unité. On peut, a partir de la forme nor-
male, reproduire le cas général d’un systeme conjugué, en trans-
formant les polynémes ci-dessus a I'aide d’une transformation
linéaire quelconque, apres les avoir affectés de coeflicients con-
stants arbitraires.
Reprenons ce cas général, et désignons par la notation (/, /) le

déterminant /,/', — [,',, et ainsi des autres. On a done

a2l 4 ol =0, (19)
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POLYNOMES BIQUADRATIQUES

et
al=e (L) . al=e(1l) . gl =e(Lh) )
“1/;:‘9(!2[:’:)" d‘zl;:P(IS{D ' as/;:*c(il:) ( 120)
ol =o(L0),  ol=e(L) . l=c(l1). )

Dans ce tableau les deux derniéres lignes proviennent par déri-
vation de la premicre, celle-ci n’étant que la reproduction de la
formule (17") ci-dessus.

Composons avec (20) les quantités

(2l — ) = (G — GL R L) =128
nous trouvons de suite
a (20,0 — ) = o [L(L0) + G (L) + 1(L0) = e(L40) " -

De la la conséquence suivante: le polynome I, a pour discrimi-
nant la quantité

e r s
~ i, 111213) . (21)

Empruntons encore au tableau (20) les combinaisons suivantes;
elles sont constantes comme 1l ressort de la valeur des seconds

membres

12 2 9 oo
aly + ol + ol =— o (L11) , (22)
o bl a4+ ol = o (LLT) . (23]

1I1. — Théorie du polyndéme du quatriéme degré.

- . A . , 2 2 2

7. — Avec trois polyndmes conjugués 7, /,, I, tels que ceux
qu'on a défini au § précédent, composons une forme du 4™ degré,
telle que

2 2 ¥4
—_— . . ¢
| = c, l1 -+ (.212 -+ ¢, ]3 . (21)
I’identité (17') qui régne entre les /;, permet, pour une méme forme

[, de choisir les coeflicients ¢; d’'une infinité de maniéres. On
pourrait par exemple faire ¢, = 0, en chassant complétement de

1 On désigne ici. et plus loin, par i, j, k les indices 1, 2, 3 permutés circulairement d’une

. , ,, ’ ’ 3 . . .
maniére quelconque ; <111213) représente le déterminant fonctionnel des trois polynomes L
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