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UNE LECON D’ALGEBRE ELEMENTAIRE
SUR LES POLYNOMES BIQUADRATIQUES
ET DOUBLEMENT QUADRATIQUES

I. — Préambule.

1. — Lalecon qu’on va lire était destinée primitivement a servir
d’introduction au cours que je professe ce semestre a I'Université
de Geneve sur les fonctions elliptiques. Diverses considérations,
en particulier la longueur de cette étude m’ont engagé, en modi-
fiant mon plan, a renoncer & ma premiere idée. Je me décide a
faire paraitre ici cette lecon, malgré le caractere élémentaire et
méme classique des questions que j’y discute.

En écrivant ces pages je me suis surtout inspiré du grand traité
de G. H. Halphen® que j’ai di consulter & maintes rveprises pour
la préparation de ce cours. On saitla maniere de cet auteur, dense
et pleine. Visant toujours a la perfection il ne touche aucun sujet
sans I'épuiser. Un tel écrivain ne s’accommode guére d’une lecture
cursive, et c’est le plus souvent la plume a la main que je l'ai
étudié.

It est résulté de la toute une série de notes, les unes trés breves,
les autres assez développées, serrant de plus ou moins pres le texte
que je me proposais de commenter. La présente étude n’est, pour
une forte part, qu'une de ces notes; elle s’écarte d’ailleurs beau-
coup du livre d’Halphen. La méthode dont je me sers est partiel-
lement nouvelle, et me parait présenter des caractéres intéressants ;
a défaut d’antres mérites, mon travail aidera peut-étre quelques
étudiants a lire plus facilement les chapitres 9, 10, 11 et 14 au se-
cond volume d'un ouvrage qu’on ne saurait aujourdhui encore
trop recommander.

Au chapitre 9, consacré a 'équation d’Euler, Halphen n’emploie
évidemment les fonctions elliptiques qu’a titre d’auxiliaires: le

! G.-H. Havenex. Traité des fonctions elliptiques et de leurs applications, Paris 1886-1891,
3 vol.in go.

L’Enseignement mathém.. 16¢ annde; 1914. 26




410 C. CAILLER

but principal demeure l'équation doublement quadratique, la
recherche de ses invariants, le probleme de I'équivalence entre de
semblables équations, etc. Or on peut se demander si le détour
par les fonctions elliptiques offre un avantage bien réel, et si ces
diverses questions ne se résoudraient pas aussi simplement par
les seules ressources de ’Algebre.

En prenant ce point de vue direct, opposé a celui d’'Halphen, il
semble en effet qu'on gagne plutdot; on obtient en tout cas un
exposé aussi approfondi, et peut-étre plus clair, des propriétés de
I'équation dont il s’agit. Il est loisible ensuite de fermer le cercle
par I'étude de l'intégrale elliptique attachée au polyndme dou-
blement quadratique, c¢’est par la que je termine.

Tel est donc l'objectif que j’ai poursuivi; j'ai essayé de dis-
cuter par une marche élémentaire, bien qu’assez a fond, le pro-
bleme algébrique, et de trouver, dans sa résolution, la clef des
premieres propriétés de lintégrale elliptique. Cette marche qui
m’était suggérée par le plan méme de mon cours, tel que je I’avais
d’abord tracé, se confond avec celle qu'ont dii suivre tout naturel-
lement les premiers inventeurs du théoreme d’addition, Euler en
particulier. Il me semble, en la renouvelant, 'avoir sensiblement
perfectionnée; au lieu de me contenter de vérifier des formules en
quelque sorte toutes préparées, jai cherché a mettre partout en
évidence les raisons cachées de ces formules. Ceci ne va pas sans
quelques longueurs.

C’est notamment par ce souci de clarté qu'on s’expliquera la pre-
sence ici des deux premiers chapitres de mon travail: tout élé-
mentaires qu’ils sont, ils font corps avec la suite et ne sauraient
en étre séparés, ce sonteux quirenfermentle secret des propriétés
assez complexes de 1'équation doublement quadratique. On n'y
verra peut-étre pas sans intérét le role prédominant que je fais
jouer, notamment dans la théorie des équations du 4™ degré, aux
polyndémes quadratiques dont les racines se divisent harmoni-
quement deux a deux. L’introduction méthodique de pareils poly-
nomes conjugues, ou orthogonanx, me parait jeter une vive lumiere
sur tout le sujet; aussi me suis-je attardé sur les propriétés de

ces polynomes au dela de ce qui était strictement nécessaire.

II. — Polyndémes du second degré.

2. -— Dans toute la suite nous rencontrerons constamment des
combinaisons homogenes de divers polynomes f, g, 2, ... , les de-
grés de ces polyndomes en & sont zéro, un, ou deux. Nous n'em-
ploierons pas la notation homogene, et nous regarderons toujours
ces polynomes comme de degré 2. Ils possedent deux racines; seu-
lement quand le degré effectifs’abaisse, une des racines, ou toutes
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les deux, se trouve rejetée a l'infini. A ce point de vue, deux poly-
nomes d’'un degré égal a I'unité ne sont jamais premiers entre eux
comme ayant en commun le facteur & — = ; une constante est un
polynome carré dont les deux racines sont a I'infini et dontla de-
rivée est identiquement nulle, etec.

Notons encore qu'une relation telle que A = fg ne peut sub-
sister que dans les deux suppositions que voici: ou bien fet g
sont des carrés parfaits, ayant respectivement pour racines les
facteurs linéaires de /i, ou bien f, ¢, i, ne difféerent les uns des

autres que par un facteur constant. Ce théoréme, évident, ne
“suppose pas non plus le degré effectif égal a 2. En voici une appli-
cation immédiate. ‘

On sait que si y? = ax?* + 2bx + ¢ est 'équation d’une conique
rapportée a un axe de symétrie, les coordonnées 2 et y peuvent,
d’une infinité de manieéres, s’écrire sous la forme

g = -f~ 3=

(<4

o

(1

g | =~

Les trois polynomes f, g, 2, en ¢, sont du second degré et donnent
lieu a I'identité
= af* + 2bfg + ¢g® = FG , (2)

ot F et G désignent certaines combinaisons linéaires de [fet g,
Par exemple si « =% o, on peut prendre

F/a = af + b + ¢/ N1g | GYa=af +1b —y/Nig

la lettre A représente ici le discriminant * — «e¢ du polynome
ax? -+ 2bx -+ c. :

En tout cas si la conique est non décomposable F, G, 4 sont dis-
tincts, car dans le cas contraire on aurait une relation linéaire
entre x, y. On doit donc conclure de (2) que F et G sont des
carres,

F=—= o2, G =, h—= 2y, (3]
et voici la conséquence. Duns la représentation (1) le polynéme h
ne differe que par un facteur constant de cet autre fg' — 'g.
En effet, si B = if + mg et G = I'f + m'g , on a d’abord
FG" — F'G = (/m" — Um)(fg’ — ['g)
/()\l

puils d'apres (3)

FG' — F'G == 22y (oy'— o') = 2h foy" — o)

i

La proposition est prouvée, car les quantités m’ — 'm et
gy — @'y sont évidemment constantes.
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Réciproquement, si /; ¢, ~Areprésentent trois polynomes quadra-
. ' h : .
tiques en ¢, la courbe @& = é , ¥ =~ est une conique, décompo-

o o

sable ou non. Si, /et g restant quelconques, on prend 4 égal ou
proportionnel au polyndme du second degré & = fg' — f'g, notre
conique admet 'axe des & comme axe de symétrie. Cela résulte de
I'identité

(f8' — e =18"— 28""\* + 2({"s — &+ " g+ — 2" ¢

que nous écrivons en abrégé

I

(fe" — '8 = (ge)\f* — 2ifa\fs + (Hg®, (%)
en posant, pour deux polyndémes quelconques qui peuvent coin-
cider

/et =18 —["g — 3" . (51

La quantité (/g) ainsi définie est une constante, comme on le voit
en la différentiant; elle sappelle linvariant simultané des poly-
nomes [ et g; lorsqu’ils deviennent égaux, l'invariant (/] se
trouve égal au quadruple du discriminant B> — AC de la forme
= Ax? + 9Bx + C.

D’apreés 'identité (41, on voit bien ue les formules

i
|
|
|

U |~
~
~-
Uo
o~
30
~

donnent la représentation paramétrique de la conique

32 = ax® + 2bx 4+ ¢, (6)
aux coeflicients a = (gg), b = — (fo', ¢ = (/.

Considérons le polynome &2 = fg" — f'g; de cette définition on
tire les formules

h=[g =g, W=["—[&, K==, 7
d’'ou
hf" — NMf + Rf=0, hg" — k'g" + h'g =10, (8)

c’est-a-dire (Af) =0 et (hg) = 0.

Si on nomme conjugués ou orthogonaur deux polynémes a inva-
riant nul, on montre aisément que les racines de I'un d’entre eux
divisent harmoniquement l'interyalle des racines de 'autre. Les
équations ci-dessus (Af) = (hg) = 0 signifient donc que dans la
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représentation paramétrique de la conique (6), le polynome /4 est
orthogonal a fet g, comme aussia tout polynome /f' 4 mg appar-
tenant a leur faisceau. Et cette régle suflit a déterminer /2, sauf un
coefficient constant, en fonction de deux polyndmes quelconques
du dit faisceau.

Tirons quelques conséquences du systéme (7).

a) Si fet g admettent un facteur commun ¢ — «, les deux pre-
miéres formules (7) montrent que A et 2" admettraient ce méme
facteur ¢ — a; £ serait donc carré parfait. Il n’y a pas d’exception
pour ¢ = = ; f'et g seraient alors tous deux du premier degré et 7
une simple constante.

Inversement, si f'et ¢ sont premiers entre eux, 4 n’est jamais
carré. Car d’abord il ne peut étre constant, parce que, d’apres la
seconde formule (7), /et g seraient dans ce cas identiques, a un

]l”
- |t — a)?, avec

P

facteur pres. En second lieu, si on pose & ==

h" 70, h et A sannulent pour /==oa et comme le déterminant
['g" —f"g" = A" est non nul, fet g possédent tous deux le divi-
seur { — o; cecl en vertu des mémes formules (7). ,

En résumé; si fet ¢ n'ont aucun facteur commun, /4 est non
carré, s'ils en ont un seul, 2 est carré parfait, s’ils en ont deux,
h est nul identiquement. ‘

b) Supposons désormais /et ¢ premiers entre eux, par suaite /

non carré,ou son diseriminant 7 (Ah) différent de zéro. Dans ce

X

cas la conique (6) est non décomposable; en effet, son diseriminant

/

) — (F)(88).= (1"g — 1"’ + f8"1F — ([ — 2™} 18" — 2g¢")

peut aussi s’écrire
{ ol A\ D (fol . (o) ([ VI YT YL —
fo ]/o) (fo /,:’H/g “"/ g)—-ll — 2hh _.illll) 3

ce qui rend la proposition évidente.

¢) Les polynomes f, g, 2 sont linéairement indépendants. Soit
en effet F = /£ 4 mg un polynéme appartenant au faisceau /s g
on ne saurait avoir 2 ==, car la condition d’orthogonalité (AF)
~— 0 donnerait dans ce cas A'* -— 2hh"" — 0, chose absurde 4
n’étant pas carré.

Je dis de plus que si /2 et F possédent ur facteur commun, I est
un carré parfait. in effet, soit £ — « le facteur commun ; la condi-
tion (A} = /2'F" — AF"" — A" = 0 montre que {— « divisera ',
sans diviser 2" puisque / est non carré. C’estdonc que F et [’ sont
tous deux divisibles par ¢ — « et qu’ainsi F est carré ; cette consé-
quence persiste, comme on voit facilement, méme si ¢ — o= . Ré-
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ciproquement toutes les fois que I est un carré exact (t — a2, /
admet le diviseur (¢ — «], la chose est évidente. |

On voit, en somme, que A étant éerit sous la forme
h=A(t—a(t— B, le faisceau (f, g qui contient certainement
deux carrés, comme on a vu plus haut, n’en contient pas d’autre
que ces deux-ci (t —a)? et (¢t — %, Les racines « et § du poly-
néme 2 définissent ce qu’on appelle les points doubles du fais-

ceau, ou de [l'involution ([, g\.

3. — Condition de réalité. — Supposons fet g non seulement pre-
miers entre eux, mais réels; je dis ue les points doubles sont
toujours réels sauf dans le cas ou les racines de fet g sont réelles
et se séparent mutuellement.

En effet, on a

par suite, si un de nos polynémes, par exemple g, a des ra-

cines imaginaires, le quotient~ , continudet—— = a t—= 4 « ,
; 2

reprend la méme valeur pour ces deux valeurs de ¢. 11 admet ainsi
des maxima ou des minima, en méme temps / s’annule. Si
[ et g admettent tous deux des racines réelles, mais que celles

de /, y et d par exemple, soient comprises entre les racines de g,

le quotient i reste continu dans l'intevvalle y d et s’annule a ses
o

extrémités, ainsi /4 s’annule de nouveau. Passons au cas ou les
racines réelles de fet g se séparent mutuellement.

Si on fait dans ce cas varier les coefficients de /et g de maniere
que leurs racines conservent la méme position relative, /4 ne peut
devenir carré parfait, puisque fet ¢ n'acquiérent pas de facteurs
communs; ainsiles racines de 4 = 0 restent réelles ou imaginaires
selon qu’elles I'étaient au début. Or on peut évidemment par les
dits changements amener /& prendre la forme (> — 1) et ¢ la
forme 2¢, polynémes a racines séparées. A cetinstant o =2 (¢ + 1),
et ses racines sont imaginaires, comme le voulait la proposition
énoncée ci-dessus.

l.es cas précédents sont évidemment exclusifs les uns des autres,
et comme A est le méme, a un facteur pres, quand on le déduit de
deux polynémes quelconques I, GG du faisceau (f,g!, on voit que
si fet g sont deux polynomes a racines réelles se séparant mu-
tuellement, F = If + mg et G =1U'f 4+ m'g sont dans le méme

!/

cas, cela quels que soient les facteurs réels I, m, ', m'.

h. — Intégration. — On sait que la représentation paramétrique
(1) est employée dans les éléments pourintégrer les différentielles
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f(r, y) dv, attachées a la conique y* = ax? 4 20a -+ ¢. Disons,
en passant, un mot de cette intégration.

Admettons, pour fixer les idées, que g n’est pas carré parfait;
il y a alors dans le faisceau /— xg deux carrés parfaits. Soient
donc

.
B

fwxig::Al(t——th , f—;rzg:Az(yt——tg)“ . (9)

4

I’équation x = = donne

24

o

gla —ax) = Al(t - tl)"’ , g (x — xz):Ag(t—— l2)2 , (10}
x——xl—ﬁ<t—t1>"
x — x, A2 t— 1,

qui n’est qu'une forme nouvelle pour x ==. On y lit que si
el

puis

t, et t, sont les racines du polynome A, 2, et &, représentent les

extrémums du quotient [ , alors que ¢, et £, sont les valeurs de la
: 8

variable correspondant a ces extremums.
Posons A = gf’ — [fg', désignons par m un facteur de propor-
tionnalité, et revenons a l'identité (4), nous avons

I d .
1:[, Vax2+2bx—|—c :m—f, dx:h.._{)_——_-g_f{_t,
5 g g° m g
On a done
dx _1dt
‘/ax2~'r- 2bx 4+ ¢ m g’

ce qui est la formule bien connue de I’Analyse élémentaire. [l est
aisé, en la généralisant, de adapter a 'intégration des fonctions
rt + s

Vg
constants.
Tirons a cet effet de (10)

rationnelles du type dt, ou r et s sont deux coeflicients

Vg(x —a) = (t — t) /A, Vgx — ag) = (I — LI A,

additionnons celles-ci, aprés les avoir multipliées par deux
facteurs constants, nous aurons

rt - s -
‘/g’— = Cy ‘/."('*‘— Xy + ('2‘/[1/' — Xy .
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Multiplions cette formule a son tour par le facteur

dt  m dx _p dx

7 x ‘/a.?c2 -+ 20x -+ ¢ o ;‘/(.1' — X)) | r — a)

»

il vient
rt + s i i dx ; dx
/‘/— == T‘/T—- ) + 21,‘/1—~_ 1

o
o)

(11)

C’est 1a une formule tres pratique pour lintégration des diffé-
rentielles du premier membre, une fois déterminés en fonction
de 7 et s les parametres b,, b, qu’elle contient.

~

5. — Transformations linéaires. — Nous allons exécuter sur nos
polynomes des transformations du type

- ___a’u + ‘C , - ou U = —————{j/t _’_——‘Z : (12)
TR 't — a
dont le déterminant d = af’ — &8 doit étre différent de zéro. Il
est ici bien‘entendu, a titre de convention expresse, que nous nous
interdisons la suppression des facteurs communs dans les quatre
coeflicients «, o, B, 8’ de la transformation ci-dessus; ces coeffi-
cients comptent ainsi pour eux-mémes et non pas simplement par
leurs rapports mutuels. L'importance de cette convention va res-
sortir 4 'instant.
[.e polynome transformé de f(¢) est, par définition,

A
o(u) = (a'u + ‘C,}zf<%—}—}5%> - (13

Désignons semblablement par y («) le transformé de g (¢, par 7 («)
le polynome orthogonal a la fois a ¢ (i) et y (1) comme A({) est
orthogonal simultanément a f(¢) et ¢(¢). Ona

odu d (v ) d/f
1§ — ‘ iyl — 2 (T} — (o 572302 5 (L ’
dt oy puis i u) ¢ du(*{) (' 4+ 3"V 0g dt<g

donc

n(u) =0 (a"u + B Phit)

ainsi, sauf le facteur d, 7 («) est précisément le transformé de / (¢).
Multiplions 'identité fondamentale (4) par le facteur d¢* (o'« + )",

A .

elle devient, grice a I'égalité précédente,

= lgg)¢" — 2(fg) oy + (Y]
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mais comme d’autre part
=yl e — 2Hevler + (99)7°

la comparaison de ces deux résultats donne de suite les invariants
de ¢ et y. Ce sont

(po) = (N . ley) =(f5) , (v = (g8) 5 (14)

la seconde de ces formules reproduit les deux autres en faisant
simplement coincider les deux formes fet g.

Réciproquement je dis que si quatre polynomes f, g et ¢, y, les
premiers en £, les deux autres en «, sont tels que les relations
d’invariance (14) soient vérifiées, il existe une transformation
linéaire de déterminant J transformant /" en ¢ et g eny. Pourle
montrer, prenons le polynéme doublement quadratique

Fit,u) = flt)ylu) — g(l)olu) ,
nous allons voir que, les conditions ci-dessus étant supposées
~vraies, il se décompose en un produit de deux facteurs linéaires
en t et u.

En effet, le discriminant de I¥, relativement a ¢, s’écrit

F, — 2FF, = (f'y — g’0)* — 2(fy — g9) (f"y — &"9) .

= (" =2 2"+ 5" — T8 ) ve + (57 — 288" ¢,

ou bien, en remplacant les coefficients (), (fg], (gg) par leurs
valeurs (14)

‘{‘PJ]

2

Vo) — 29"y — 9] (oy

2

(a2

12 4 1 .
’}’*z _— QPFt = = L(cp/y
1 7 VIRY
=aley = Y9

Ce discriminant est donc carré parfait et la proposition est dé-
montree.

D’apres le calcul qui précéde on voit que la condition F = 0,
laquelle contient évidemment toutes les transformations possibles
de f'en ¢, et de g en y, se dédouble dans les deux suivantes

¢y — ¢ .

U 4 N
=, et Pt:~——

O7

qui ne different 'une de lautre que par le signe de 0.
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Prenons I'une d’elles, la premiére par exemple: alors les con-
ditions compatibles

w’«/ . ’,f
)]

AR DU N

ou bien

’ Y/ (,0/ s ot X ~ 7 v
f(g -——8')—3(]”——8_): , soit P”:0<g —g/>

On peut donc, au lieu de F =0, poser les deux conditions équi-

valentes
~f v — ¥ ! '
O S & F”::B(fg—g’>, (16
2 \
qui montrent que ¢ est linéaire en «, et « en ¢.
Soit done
ou & -
¢ == ’ + if‘l ¥ (1})
a4 3

la solution des équations ci-dessus (16!, admettons que le facteur
indéterminé qui figure dans les coefficients a, &, 3, 3 a été choisi
dé maniere que a8’ — o3 soit égal a d. Je dis que cette transtor-
mation change fen ¢, et g en y.

Soient en effet @ (', I'(u) les transformées de ¢/, g{t parcette
transformation, ou

(2w + B2 f1ty = ® (u) , (2w + 3ty = T'(w)

iy f_ 9

d'ou > = : a cause de I"(¢, ) =0 on a aussi 2 =5 Donec,

avec un facteur constant de proportionnalité, on a

U ™~

®(u) = Kog(u , Cu) = Kylu .

Je dis que ce facteur K est égal a l'unité.
En effet, récrivons les formules précédentes sous la forme

(@' + B f(t) = Ko (u), (2'w + (Pt = Kyfu) .
odu .
(2w 4 3
f (&) + 20" (a'u + B f(t) = Ko (] .
88" (t) + 2o’ (u + (') g (¢) = Ky"(a) .

et dérivons-les en tenant compte de dt = il vient
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Eliminons entre celles-ci le terme en ('« 4 '), on a

Sife’ — f'g) = Kify — g9l = KF, (t,u) ;
il suffit de comparer ce résultat a la seconde formule (16!, pour
voir que K = 1.

e théoreme est ainsi démontré ; ayant donc choisi a volonté le
signe de d dans la formule (16), il y a deux transformations au dé-
terminant d, déterminées par cette formule méme, qui changent
fen g et geny Enchangeant d en —d, on aura de la meéme ma-
niere deux nouvelles transformations, soit quatre en tout, pour
effectuer le passage du systeme (/g au systeme (¢,7).

Il est a peine besoin de faire remarquer que si de I'équation
_er—ey

!
T B ]

minant — 0, cette transformation changerait f'en — ¢, et gen —y.

on tirait une transformation de ¢ en « au déter-

Terminons par une observation importante.

Nous avons jusqu’a présent pris les polyndomes f et g comme
point de départ; c’est d’eux qu'ont été tirés les invariants a ={//",
b= ..., ainsi que le polyndme conjugué £, pour former les élé-
ments qui figurent dans I'identité fondamentale (4}, Si, a I'inverse,
les données sont a, b, ¢, on vient de voir ue les polyndmes fet g
ne sont plus déterminés qu’aux transformations linéaires pres.
On pourrait, par exemple, prendre pour /et g les polynomes
purement quadratiques

f=At? -+ B, g=At* + B,
les conditions seraient alors
a — — 4AB |, ¢ —-— %A’ h — A’B — BA’

elles pourraient étre encore réalisées d'une infinité de manieéres.

Relativement a la conique fondamentale il y aurait, pour étre
complet, a rechercher encore la signification géométrique du pa-
rametre Z; je me dispenserai de mentionnerici cette interprétation
tres connue et le théoreme classique qui s’y rattache sur le rap-
port anharmonique de quatre points sur une conique.

6. — Systeme de trois polyndémes conjugués. — En résumé,
soient &, , x,, xr, les coordonnées homogeénes d'un point dans un
plan, et /,, /,, [, trois polynomes du second degré, les relations

.T1:[1. x»:lg, .'Tg:]n,

- o

caractérisent une conique. Si on veut que 'axe 2, = 0 devienne,
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relativement a la conique, la polaire du coté opposé, on doit
prendre sauf un facteur constant, [, = /,/', — I, 7,.

Supposons la conique rapportée a un t1'1angle autopolaire son
équation ne contiendra plus que des termes carrés; elle est du
type

2 2 2
A4y —‘}— Ug X'y + Ag X'g — 0 ,

dans ce cas, chacun des polynomes / est le conjugué des deux
autres. Ainsi ces polynomes seront premiers deux a deux et
linéairement indépendants ; aucun n’est carré parfait, en outre ils
donnent lieu a une identité telle que

7.113—}— a2]2+a3]§:0 - (177

Réciproquement toutes ies fois que trois polyndomes, premiers
entre eux, sont liés par une semblable relation, celle-ci est unique
de son espece, et ces polynomes sont conjugués deux a deux.

En effet, en différentiant la relation précédente, on a

0(1/1/; "‘|" 12/2[; —I—‘ 7.3/3/;:
par suité
oy ly oty Iy 3(3’3

bl — Ll ol — Ll Ll — Ll

— 5 ( 7”)

relations ol le facteur de proportionnalité ¢ est nécessairement
constant. L.a proposition est établie.

[1 est clair qu’un systéme de polynomes conjugués le reste par
transformation linéaire: si donc on avait pris 'équation de la
conique sous sa forme la plus réduite soit 2+ 2+ 2. = 0, on
aurait eu

— (24 1), dov L+ L+ lb=0. (18

C’est le systeme conjugué reduit a sa forrie normale; pour cette
forme les trois invariants simultanés sont zéro, et les trois discri-
minants sont égaux a 'unité. On peut, a partir de la forme nor-
male, reproduire le cas général d’un systeme conjugué, en trans-
formant les polynémes ci-dessus a I'aide d’une transformation
linéaire quelconque, apres les avoir affectés de coeflicients con-
stants arbitraires.
Reprenons ce cas général, et désignons par la notation (/, /) le

déterminant /,/', — [,',, et ainsi des autres. On a done

a2l 4 ol =0, (19)
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et
al=e (L) . al=e(1l) . gl =e(Lh) )
“1/;:‘9(!2[:’:)" d‘zl;:P(IS{D ' as/;:*c(il:) ( 120)
ol =o(L0),  ol=e(L) . l=c(l1). )

Dans ce tableau les deux derniéres lignes proviennent par déri-
vation de la premicre, celle-ci n’étant que la reproduction de la
formule (17") ci-dessus.

Composons avec (20) les quantités

(2l — ) = (G — GL R L) =128
nous trouvons de suite
a (20,0 — ) = o [L(L0) + G (L) + 1(L0) = e(L40) " -

De la la conséquence suivante: le polynome I, a pour discrimi-
nant la quantité

e r s
~ i, 111213) . (21)

Empruntons encore au tableau (20) les combinaisons suivantes;
elles sont constantes comme 1l ressort de la valeur des seconds

membres

12 2 9 oo
aly + ol + ol =— o (L11) , (22)
o bl a4+ ol = o (LLT) . (23]

1I1. — Théorie du polyndéme du quatriéme degré.

- . A . , 2 2 2

7. — Avec trois polyndmes conjugués 7, /,, I, tels que ceux
qu'on a défini au § précédent, composons une forme du 4™ degré,
telle que

2 2 ¥4
—_— . . ¢
| = c, l1 -+ (.212 -+ ¢, ]3 . (21)
I’identité (17') qui régne entre les /;, permet, pour une méme forme

[, de choisir les coeflicients ¢; d’'une infinité de maniéres. On
pourrait par exemple faire ¢, = 0, en chassant complétement de

1 On désigne ici. et plus loin, par i, j, k les indices 1, 2, 3 permutés circulairement d’une

. , ,, ’ ’ 3 . . .
maniére quelconque ; <111213) représente le déterminant fonctionnel des trois polynomes L
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la représentation (24) un des polynémes Z; choisi & volonté ; en réa-
lité, malgré la présence de trois coeflicients, la formule (24) ne ren-
ferme qu’une double infinité de formes /.

Il importe de remarquer que les seuls carrés contenus dans le

: o . 5 2 2 % 5
faisceau (24) sont précisément 7, /., [ . En effet, prenons un tel
, . . " . 2 N 2 . .
carré (ui ne soit égal ni a /, nia/; son expression serait donc
o 2 9
P=c l + ¢l avec € C, F 0.

1 ‘273 ?

Pour chacune des racines de [. = 0, nous aurions

’

2 2 3 .
('111+6212:0 . et clll . + I, =10

. < ’ / Y v A .
On tire de la (11 12) =0, ou /,=0, condition satisfaite en meme

temps que L = 0; le dit carré 1.? est donc forcément £, saufun
facteur constant. L.a proposition est prouvée.

Remarquons maintenant que, les coefficients constants étant
exceptés, le systeme /,, {,, [, renferme trois parametres; la for-
mule (24), nous 'avons dit, en contient deux autres. Ainsi la défi-
nition de la forme /possede précisément autant de parametres que
le polynome le plus général de son degré; on doit done prévoir
que lout polynome du ™ degre peut revetir la forme (24).

Pour justifier cette présomption, désignons par a, le premier
coeflficient d’une biquadratique X, par y,, 7,, 75, 7, Ses racines
supposées distinctes ; employons les notations () et ({/) pour re-
présenter les dilférences & — y; et y; — y;, et posons

[2 + /3 = (10(12) (x-/k)(xS} s [2 Bt /3

Iy 4+ L
L 4 b= a,(13) (x2)(x4) , ly — I, = a,(24) {x1) (x3)

a,(43) (x1)(x2) | /

i

a,(14)(xd) (x2) , l3 — Iy = a,(32) (1) (xh) , g (25)

L.e calcul direct montre immédiatement (ue ces six relations
sont compatibles; d’ailleurs les trois polynomes 7, /,/, sont pre-
miers entre eux deux a deux puisque tout facteur commun a /,
et /,, par exemple, divisant /, 4+ /, et [, —/;, ne peul exister que
si les racines y, ne sont pas toutes distinctes, cas exclu.

Je dis que ces polyndmes [ sont conjugués; en effet, en égalant
les trois valeurs de

By Iy o
. A / o I 2 3 . 3 e _1_—_2___ \
X = a (#1)(#2) (@3) (#4) = 5 = 0 Eg) — a g s 0 D)

2 2 2 2 2
1

. . o .2 DR 5
nous obtenons une seule identité entre les carrés 7, /,, . KEn
faisant

ar = a,(12)(43) , ay == a,(14)(32) , ag = a,(13)(24) ,
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quantités qui vérifient ’équation

0‘1"*—12‘{—13:07

la dite identité s’éerit

e
N

allj -+ 12/: —+ 7.312 = 0

Les 4 sont donec conjugués; il importe de remarquer qu'ils ne
sont pas ordinairement réduits a la forme normale et que, a
moins que le contraire ne soit expressément indiqué, nous en
déterminerons toujours les coefficients constants conformément
au tableau (25) ci-dessus.

Pour exprimer X en fonction de 7, /:, [, il est préférable d’em-
ployer, au lieu des formes dissymétriques (26), la forme symeé-
trique '

30(17.27.3X = &4, — 7’2”? T (e, — aa) l: + (e, — OL1){: ? (28)
que l'on en déduit immédiatement.

On vient donc de démontrer que, étant donné un polynéme du
4 degré X, il existe toujours trois polyndmes orthogonaux 1; tels
gue X soit un polyndéme de leur fuisceau.

Une telle représentation est unique, car si on avait, par exemple,
de deux manieres différentes

- 2 > 2 2
X=1 —4, et X—=m —m ,
2 1 2
on aurait aussi, en changeant éventuellement le signe de e, ,
ly + ly = a(my + my) [y — ly = — (my — my) ;
a

et alors le conjugué 7, = ([, /,) des polynomes /,, [, serait, a un
facteur constant pres, égal a celui m, = (m, n?,) des polynomes
m,, m,. On démontrerait de méme les égalités /, == m, et I, == m,
qui ont lieu, bien entendu, seulement sous réserve des coeflicients
constants.

(’est donc d’une maniére parfaitement déterminée que les poly-
nomes [; correspondent a X; en outre, sous I'angle de la défini-
tion (24), X peut étre considéré comme un individu extrait d’un fais-
ceau de formes biquadratiques qui possédent en commun les mémes
polynémes conjugués /;, et se trouve étroitement uni avec ces
derniers. | |

Nous avons trouvé plus haut les /;, correspondant & X, et con-
struit le faisceau en partant de 1'édlément X décomposé en ses
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facteurs; c’est un probleme fondamental que d’opérer la méme
construction a 'aide des seuls coeflicients de X. Il suffit pour le
resoudre de déterminer, en fonction de X, une seconde forme
appartenant au méme faisceau.

Pour y parvenir, reprenons les définitions (25} des /;, et écri-

vons pour eux les relations (20) du § précédent. Un calcul rapide
donne

r.n

c=1, et [11“113 = a0, ,
on a donc
oy = (Lh), =L, oL =4, (29)

et, pour le discriminant de /;, la valeur

. U./f .
— 5 (30]
Soit maintenant une forme quelconque
) 2 2 2 57 %4
l=cl + ¢, + ¢l , (307)

du faisceau en question; il s’agit de calculer la valeur des deux
combinaisons suivantes

2 7 2 ” ” 4
el + ¢l + ¢l et clt 4l L, +cll

111

qu’'on a trouvées au § 6 pour le cas ¢, = «;.
Pour les déterminer dans le cas général, tirons de (30') les
égalités

”

-~

12 l, ’ i 2 ”
l:Ecili , §:Ec_ilili , §:Ecili+2"ilili )
l’” AN /4

Intégrons la derniere, et comparons le résultat avec 'avant-der-
niere formule; nous avons

(31)

ll!

. —‘ 14 .
g —‘Zcilili + ¢,
"o n
T __.zci li —C .

Pour déterminer la constante ¢ d’intégration, éliminons ’, et
. g , ,

remplacons les discriminants %(Z’: — 2/, Z;-’) par leurs valeurs (30),
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il vient
C.
T R N . 12 " - -_L
3¢ _Z(‘i<li 21, l;) — = Oy Bl By :; ,
ou
oy g Ug CL'
= — — 2 - . (33)
o U.L-
. 5 ’ , . . ’ b3 .
Appliquons ce résultat général au cas particulier /=X, qui
' . g 1 /1 1
donne, d’apres (28), ¢, = 7(— — ——); dans ce cas on a ¢ =0, et
3] a. a
J k

5}

les formules (31) et (32) deviennent

) - ) O\
_5)—__— thli , — ZCLLL’ X — ZLL'[L"

On tire de la

l\.;

XX" X’

- T = el — (2 AL l) __2(-jck<ljl'k>2 . (34)

Enfin cette derniere relation s’écrit encore, a cause des formules (29)

XY" \l)

ok B N
—5 = Xc iCr
. , . AXX” — 8X72
Voici done formé un nouveau polynéme H— 73 , ap-

partenant au méme faisceau que X; c’est lui quon nomme le
Hessien de X, et dont la valeur en fonction des coeflicients de

X = aq,2* 4+ hayx® + 6a,2? + hagx + a4,
est

H = (a,a; — af).r* + 2{agay — ayag) x®
+ (agas + 2aya3 — 3d? ,) 2+ 2aya4 — azaz)xc + aza, — a ) (35)
La relation (34) nous en donne lexpression en [;; quelques

réductions faciles, ou intervient la condition o, + a, + a, = 0,
amenent le Hessien a la forme

2 2 2
100 = — — L — [ . (36)

er 0 . . . 2

§ 8. -— Proprictés d’invariance. Nous savons que le faisceau [
contient les deux formes X et H; ces polyndmes étant certaine-
ment indépendants, au moins quand les racines de X sont dis-

[’Enseignement mathém., 16¢ anndée ; 1914, ’ 27




4

426 C. CAILLER

tinctes, on peut les adopter comme base du faisceau, a la place
2 T . 4 e
des {;. Nous avons donc trois équations telles que

H 4 e, X = 0,0 . i=1,2,3 (37

Pour déterminer ces constantes 4, et e,, faisons d’abord x égal

. . , 4X X" — 3X72 X3 X’

alaraciney, de X;alors X=—=0, H= — m =i h=5;
1

on a done, dans (37), b; = — T

Ajoutons maintenant les mémes équations, multipliées soit
P4 3 A 1 \ .9 1 ),
par i, soit par e, soit encore par 0‘5<“j — a,); il vient, a cause de
2a,=—0, des équations (28] et (361 pour X et H, et de I'identité (27),

-

3
X . W] . /U o
265_0 — Zelai_o . Zeiai(aj~—1k>h—,}—1112a3 .
On tire immédiatement de 1a
1
e, = — 1—2'(11' — ak) .

Avant de récapituler les divers résultats qui précedent, il est
opportun de changer les notations en éliminant partoutles quan-
tités &, pour mettre a leur place les trois invariants irrationnels e,

du polynome X. Voici la correspondance entre ces quantités

Adg — Og (IO

- — = - 1 2%y — (141(3
€4 3 12[(\ 3)(24) (14)(32)] ,
—_— 11 e dg — (Eg Al _ +) /
&= —p— = 12[t12)u3i (13) (24)] (38)
P2 M Qoriaa89) (121042
€3 — 12 1 [(14)(32) (12)(431] , j
ou bien
%y == hley — e3) , . dy == h(eg — ey) , ag = 4(e; — ey) . (39)

l.es invariants irrationnels e,, dont la somme est nulle, véri-
fient une équation cubique telle que

bs — gps — g3 =0, (40)

avec les conditions

1
Qs = e€3€s + ese;, | ey, Zgg::elewg

,‘,\' [

(les derniéres quantités, évidemment symétriques par rapport aux
racines du polyndome X, sont exprimables rationnellement par
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les coefficients de X : voici la valeur de ces invariants rationnels

ik, 9 2
o —a a — ha a, + 3a_ .
8, = a,a, fa a, + 3a, ? »
/ (41)
3 2 2
S’ : —a. —a a — a. a, -
g, — w a,a, + 2a,a,a, a, a a, a a, ’

Rappelons d’ailleurs que la combinaison

VRN
[N

—83)'-(63 —611;(61*«@2%: A (

joue le role du discriminant de X,

l.a théorie générale conduit donc au résumé suivant ou se
trouvent récapitulées les propriétés les plus essentielles du poly-
nome du 4™¢ degré.

a) Désignons toujours par [/, les polyndémes conjugués, tels

f

qu’ils sont définis au tableau (25); /, a pour discriminant

—_ ajak

A

, on fe, — eJ-Hei — @] . {30”)
Alors, si H représente le Hessien de X, les trois combinaisons
suivantes sont des carrés, a savoir

o

2
l

| =

H—}—e,;x:*

ce sont les seuls carrés contenus dans le faisceau H 4 eX.
b) Mettons au lieu de 4(e, — e,) (e, —e,) e, — e,) = VA, quan-
tité parfaitement déterminée, on a le tableau

(e,— el 4 (e, — e)l: 4 (e, — e L =0 | (277)

XVK: 81(0’2 - ea)lj -+ 82(83 T ()1)12 =+ 83(61 T 82”: ’ ‘28,)

> ) ~ . 2 . 1 PR

X"V A = 3le, (e, — es}l,1 + e,le, — el)l: - » 1o — ezil;] , (327)

4XX" — 3X”? | 2 . e . (A)

H = 73 — ———i—Q(ll—|— lz—|—lg) , (367)

T—iHY’ ‘{H’——1lll A
-——z(‘ — )——‘[;123,' (43)

T2 =—4(H 4 e;X)(H 4 e,X)(H + e5N) = — 4H? + g HN? + g N? . (44) |

Dans le tableau ci-dessus, les diverses formules sont affectées
du méme numéro, avec un accent, que celles dont elles ne sont
qu'une simple répétition; seules (43) et (44) sont nouvelles et ont
besoin de démonstration. '
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11 s’y introduit un covariant T, du sixieme degré, dont l'annu-
] : . H
lation caractérise les extremas du quotient . Or ces extremas.

a cause de

Hod X /1)
H + elx_( ) ‘

AT

<

lg . i :
sont les mémes que ceux du quotient ( 7 ) . a savolr les racines
\ ‘1

de /.. les racines de /,, celles enfin du polynome / /, — /,( ou/,.

S Bl

La partie littérale de la formule 43 T =+ (/,/, est ainsi évi-

1
dente. Quant au coetlicient numérique —, on le trouve en com-
+

parant la valeur des deux membres pour une valeur particuliere
de ., .v =y, par exemple.

On sait par U'Algebre élémentaire que les divers éléments du
tableau A sont des invariants, lesquels. sauf introduction de cer-
taines puissances de d, se 1eplodulsent par les transformations
linéaires de déterminant d. Mais cette plopmete résulte a son tour.
et immédiatement, du tableau lui-méme. ainsi que d une remarque
au sujet du Hessien.

En intégrant 1'équation différentielle 4XX" — 3X'?2 =0, on re-
connait que le Hessien de X est identiquement nul dans le seul cas
ou X est une quatrieme puissance exacte. Or si on opere la trans-

v+ b
X (l’)‘ —+ b’ /)
est une puissance quatrieme en méme temps que N lul-méme.
[.e Hessien H, de Y, s'annulant avec celui H, de X, est divisible
par ce dernier, et l'on a

formation linéaire (z le transformé Y = (¢«'y + 0" *X

H,/ = o’y + 00 i

X

la partie littérale de la formule est évidente, la présence du fac-
teur 02, carré du déterminant de la transformation, se démontre
immédiatement, par exemple par le calcul direct.

Revenons alors au tableau ‘A, et effectuons la transformation
dont il sagit. On voit, d’apres la propriété du Hessien, que e,
acquiert le facteur 9% puis/;, T, g,. g, respectivementles facteurs
0, 0%, 0%, 9°.

Les conditions d’invariance relatives a g, et ¢, qui sont néces-

saires pour 'équivalence, sont aussi suffisantes. Autrement dit,
3

sl deux formes X et Y ont le méme invariant absolu — , ou bien
('“3

encore, st deux formes ont des inyariants irrationnels e; propor-

[
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tionnels entre eux, il existe une transformation linéaire changeant X
en Y.

En effet, dans ce cas, le systeme /; d'un des polyndémes est
transformable dans le systeme /; relatif au second; la chose est
évidente puisque le déterminant de /; étant &(e, — e;jle, — ¢}, la
proportionnalité des ¢; implique celle des invariants fondamentaux

des deux systemes /;. Soit d le déterminant de la transformation
T opérant le passage de I'un a I'autre; reprenons, pour les deux

Q

polynomes les identités (31}, on en conclut de suite
Y = (a/y+ VX . H, =2y + 0I*H,

Ou bien, la méme transformation U qui transforme le premier sys-
teme 1, dans le second, transforme aussi Xen Y.

Il est clair que ces questions d’équivalence se réduisent en réa-
lité au cas 0 = 1 d’une transformation unimodulaire. Pour qu’une
telle transformation de X en Y soit possible, il faut naturellement
que les invariants rationnels g,, g,, ou irrationnelse,, soient les
mémes pour X et pour Y. Supposons cette condition remplie, il
est facile de trouver toutes les substitutions opérant le passage
d’une forme a l'autre.

En effet, soient /; (z) les polynomes conjugués relatifs a X, m, (y)
ceux relatifs a Y. Nous avons

H, 4 ¢,X=—

2 . 2 . < ,
et comme /; doit se transformer en nz;en méme temps que X en Y,
il faut que

| s
I
|

RS

, ou bien YH —XH =0,
x Y

n m

[

. , ., . ay + b ,
cette derniere estune conséquence de I'équation v = ,—j:__—/, qu on
a'y )
cherche pour passer de X a Y.
Si réciproquement nous avons YH — XH, =0, nous aurons
L Iy ‘
aussi — — = — . Suivant la théorie développée au § 5, il résulte

m )
1 ¢ I2

de cette équation et du fait de la concordance des deux discrimi-
nants pour /; et m;, que I'équation

Fila, ) = lm, £ lym =0

se partage en deux équations linéaires. Voici donc le résultat.




430 C. CAILLER

Si deux polynémes biqguadratiques X, Y ont les mémes invariants
ei, 'équation
VI, — X1, =0

se decompose en quatre équations linéuires en x et eny. A chacun
des quatre facteurs correspond une transformation unimodulaire
de X en Y ; il n’en existe pas d’autres.

Remarquons enfin que, dans tout ce qui précede, le degré
effectif de X peut fort bien s’abaisser au troisiéme par le trans-
port a linfini d’une des racines y;. Ainsi parmi les diverses
formes équivalentes a X figure le polynome 42® — g,2 — g, dont
les racines sont, comme nous savons, ¢,, ¢,, e¢,. Il est intéressant
de se procurer les polynomes conjugués »; de cette forme réduite :
ce sont d’apres les définitions (25)

, 2
o= 2(x® — 2e;x — e, — €363 — 2{{x — eq)® — (&g — eglles — eyl]
. 2
ng — 2 (1 — 20,00 — &, == egeq) == 2 [lax — eq)* — (e — e5)(e; — e4)] . (45)
By == 2 [ — oy — e; — egey) == 2[lr — e3)" — (3 — eqlleg — €3] .

Ces polynémés n; ne dépendent ainsi que des e;, propriété qui
n’appartient pas aux conjugués /; d’'une forme X quelconque ayant
les e; pour invariants; on trouvera d’ailleurs les /; en opérant sur
les n; une transformation unimodulaire quelconque.

9. — Théoréeme de Cayley. — On sait que toute forme du fais-
ceau X, H, par exemple «H + 5X posséde les mémes polynomes
conjugués /; que X lui-méme ; il serait intéressant de se procurer,
pour une telle forme, le systéme des invariants et covariants fon-
damentaux qui figurent dans le tableau (A]. Nous nous bornerons
a esquisser rapidement cette question en cherchant d’abord le
Hessien de la forme précédente, lequel faisant partie du faisceau /; .
est lui aussi du type AH 4+ BX.

Or le Hessien contient les coeflicients de la forme au second
degré, on a donc

A =a,0? + 28,ab 4 voa® B = oa.b* 4 2fab + via?
Pour déterminer ces polynomes, partons de la remarque que

4XX" - 3X72
48

voici. Si X est un carré, ou X = /2, son Hessien H =

(//g Qﬁl’ -

A . ’
— g /*- Ce Hessien vautdonc — 3 /%, si A représente le

discriminant de /.
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Appliquons cette remarque a Uexpression

d;

’

2
l

W) =

. . (e, — e)le; — ep) o
dont le Hessien doit étre L (H + e;X). Comparons

ce résultat & la régle générale énoncée ci-dessus; nous avons les
conditions d’identification
(BI: —_— e)(el = e/x)

2 : ]
aye; + 20, e e; + Yo = 3

2 e;le, — e;){e; — ez}
021 Bi —|—- 2(31 Bi + Y1 = Lt ‘]‘_ !

3
Remplacons aux seconds membres

fe, — ej)(ei — e, e;le; — e)(e — e
, et -
3 3

par les valeurs égales

eifl—lﬁgz, et 83_%25’1"5:302?‘*“%'
on obtient a I'instant
o, = 1 By =0 '}'0—‘—%8‘2,
& == 0 , B, — f—; , By, ==t %

Voici done le résultat
Le Hessien de la combinaison all 4 bX est un polynome du méme
faisceau, égal a

h = (1)2 — E’Q(I)H -+ < ab + %”’M)x . (46)

Sion appelle E;les invariants 1rrat10nnels de cette forme «H 4 &X,
on trouvera E; en exprimant que

h+ E,(aH -+ bX)
ou bien,

(0* — a + E;a) H4 (2 ab—}— 5;’—3(? + E,; 0 X
4

se réduit 4 un carré. On a donc, pour déterminer E;, la condition

2

ei(iia—}—l)z— 12)-—-L[) + ab_{_bjaz’
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soit, apres quelques réductions

~ 2 4 -
K, = ae; 4 be; — 224 | (47)
A 18 B Il T/ T / 9 ’ .
Quant au covariant T = 5 (HX" — XH'), ¢’est évidemment un

combinant du faisceau (X, H); si on substitue «H ++ 6X a X, il se
reproduit multiplié par le facteur

1
~7 (40° — g ba® — g ¥ .
[V. — Formes doublement quadratiques.
10. — On nomme forme doublement quadratigue un polyndéme
tel que
F = E(Imnx"‘f”‘ ; (m,n =20, 1, 2) (48)

soit, en le développant suivant les puissances de 'une ou de l'autre
des variables,

F == Xgp* 4 2Xgy 4+ N, = Yoa! 4+ 2Y,x £+ Y, . (49)
Les coeflicients X; et Y;, dans ces représentations, valent
X; = ay,2* + 2a,% + a,, , Y, = a;,)* 4 2a,y + a - (50)

Relativement a ces formes I doublement quadratiques, nous
avons a résoudre plusieurs questionsimportantes qui se rattachent
toutes, plus ou moins directement, au probleme de I'équivalence
de deux pareilles formes par transformation linéaire unimodulaire.
Un role fondamental, dans toute la théorie, est dévolu aux discri-

minants de F relatifs a chaque variable; ce sont les fonctions

.2 - o ,2 I ,
D,x) =X, —XX,, e D (=Y —YY,, (5]

072

que nous représentons le plus souvent par les lettres X et Y.

Commencons par exclure le cas ou X et Y possédent des racines
multiples; 4 ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynomes, ou que si X
possede une racine multiple, Y en possede une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opere dans F une transformation portant sur les deux
variables et telle que

ax’ 41 ' ay’ -+ ¢

— i 7 ) 7 7 YA (52)
a’x’ + b ‘ a'y” 4 8
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le nouveau polynome F’ obtenu aprés avoir chassé les diviseurs
est encore doublement quadratique en 2’ et y'; sauf des facteurs
constants, ses deux discriminants sont les transformés

N = (e’ 4 0 X, Y = (a4 FIPY ()

de N et Y par (52).

Au moyen d’une transformation semblable amenons une racine
de 'équation X = 0 a l'origine w = 0. En vertu de la condition
I = 0, a cette racine v = 0, simple ou multiple, correspond une
racine y de F, celle-la est une racine double. Amenons de nouveau
y a lUorigine des y par une transformation linéaire. Supposons
maintenant que la premiére racine x — 0 soit multiple pour
'équation X = 0; on trouve immédiatement pour satisfaire ces
diverses conditions les deux hypotheses que voici. Ou bien, on a

. . R o o . - - . 9 : -

oy = g = 1,, =0, ou bien ¢, = @, = a, = 0. Si c’est 191 pre

mier systeme qui est vérifié, y =0 est une racine double de Y =0,
. r - 72 ’ Ve

si c’est le second Y, = 0, Y = Y, est un carré parfait; ce

deuxieme cas n’existe par conséquent que si l'équation FF == 0 est
décomposable en deux équations linéaires en y.

De toute maniere il est établi que X ne peut admettre de racines
multiples sans que Y en admette de son coté. Il importe de fixer
par une interprétation géométrique la signification du résultat
précédent.

La courbe K == 0 est une biquadratique C, rencontrée en deux
points seulement par les paralléeles aux axes coordonnés. Elle
possede donc deux points doubles a l'infini, un sur chaque axe;
elle est ainsi de 2m¢ classe et de genre 1. Ce sera méme, parmi les
courbes du 4™ degré, la plus générale possédant deux points
(doubles si, par une perspective, on a pris soin de les transporter
tous deux a l'infini.

Il est aisé de voir que la condition pour que C, possede un troi-
sieme point double est précisément que X admette une racine
double. On apercoit immédiatement ainsi, & cause de la symétrie
des axes, I'équivalence de la dite condition pour X et Y; c’est
donc simultanément que X et Y ont des racines multiples, et dans
ce cas, le genre de C, s’abaisse de 1 a 0.

Si, dans FF = 0, le coeflicient a,, est nul, la courbe n’est plus
que du troisieme degré. Cette cubique C, contient les points situés
a I'infini sur les deux axes, et ce sont des points ordinaires; la
courbe, d’un genre égal a I'unité, ne deviendra unicursale que si X,
et par suite Y, admet une racine double.

Laissons désormais de coté les cas de dégénérescence, nos dis-
criminants X et Y n'auront aucun facteur multiple, et leur degré ne
peut s’abaisser au-dessous du troisieme.
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1. — Forme normale. Equivalence des deux discriminants. —
Désignons par /,, /,, /;, les polyndomes conjugués relatifs a X, par
m,, m,, m, ceux relatifs a Y. Nous savons que les /; sont linéai-
rement indépendants; c’est dire que les quantités .2?, ., 1 peuvent
s’exprimer en fonction linéaire homogene des polyndomes /;; exac-
tement de méme on peut remplacer y2, y. | par certaines combi-
naisons homogenes des m;.

Cela étant, le polynome F peut s’écrire, d'une seule maniere,
sous la forme doublement linéaire

(agmy -~ agmg -+ agmg)ly 4+ (bymy + bgmg 4 bgms) l; +
(Cymy == cgny + cgmg)ly,

i

O
o2

Or je dis que cette réduite a neuf termes se ramene en réalité a
un simple trindme, et que, en numérotant autrement, si besoin
est, les trois polynomes m,, m,, m, dont Uordre importe peu, elle
s'écrira
aglymy 4+ aglymy + aslymg .
Pour établir ce fait supposons, pour plus de simplicité, que les

;. m; ont été réduits a leur forme normale avec des discriminants
égaux a 'unité, et considérons une forme linéaire telle que

/'1111 + /'2/2 + 73/3 ;

son discriminant est, par définition, égal a

L : . Qs )
P (St —236L30]
A cause des conditions d orthogonalité entre les /;, il se réduit a
2 2 2 .2 2,2
f1/1 + /2/2 + /3(3 "

Appliquons cette regle pour trouver les deux discriminants de la
forme bilinéaire ci-dessus (53!, ou l'on suppose, répétons-le, les
[; et m; réduits a leur forme normale. On trouve a l'instant

X - (((1/1 —}—- /}1/2 —I'— Cllgbz + ‘(1211 + /)2/2 + C'2/3)2 + (((3[1 + /13[2 + ('3/3]2

Y — (agmy 4 asmg = azmg)? + (bymyg + by + bymg* 4
(cq iy - cying 4 cgmg)?

Or, par supposition, les /; sont les polynomes conjugués relatifs
a X comme les m; le sont a Y; il faut donc que les seconds
membres des formules pr ecedentes se réduisent tous les deux a la
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forme purement quadratique, par destruction des doubles pro-
duits, de maniere que

X :Aili - ;\272 - Ag/: , et Y == Blnzj + Bzmz 4 Bsm; . (9%

Mais d’aprés un lemme d'Algébre élémentaire, les conditions
moyennant lesquelles les deux sommes de carrés

D = (ayx + by 4+ 122 + (agx + by 4 23 F (@ + bsy —+ 3317 .
D = (a2 + a;y + azz )V + (e 4 -l;gg- A o e A s S L

deviennent purement quadratiques des types
O = Ax® 4 Agr® + As® et T @ = Bia? 4+ Bpy? 4 Py,

sont des plus limitées. On démontre, en effet, aisément la propo-
sition suivante.

Si @ et @ sont tous deux purement gquadratiques et que, en
outre, les constantes A,, A,, A, soient différentes les unes des
autres, les trois polynémes

ayx + by 4 3. g —+ -byy 4 ¢33, asx -+ gy + 53,

se réduisent nécessairement o des mondémes qui, de plus, sont line-
airement indépendants.

Pour ne pas allonger, je laisse au lecteur le soin d’obtenir la
démonstration, facile, de ces divers points; je me borne a en faire
Iapplication aux polyndmes X, Y auxquels je reviens.

Remarquons que les discriminants des six polyndmes /;, n; ont
été supposés égaux a l'unité, et les polynémes eux-mémes réduits
a leur forme normale. On a donc

: EZ?:E/N?:O

si donc, dans la formule (54), pour X, deux coefficients étaient
égaux, par exemple A, = A,, en remplacant /. + 7. parla quantité
égale — [, ce discriminant serait un carré parfait, cas exclu,

I1 faut donc que les formes réduites (54) possédent trois coefli-

cients distinets; des lors, en vertu du lemme ci-dessus. les trois
trindmes

aymy + agmy - azmg hymy 4+ bymg 4 bymg cimy = colg 4+ Cging

dégénerent en trois monomes indépendants. Il suflit de changer
au besoin la numérotation des /7; pour leur donner la forme -

aymy aymy (gms .
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Du méme coup 'expression doublement quadratique I7 apparait
sous sa forme reduite, soit

F = ajlim + aglymg + azlymg . 1 (53)
Quant aux diseriminants, leur valeur correspondante sera
. 2 2 2 2 2 o .
N=al + a,l, 4+ al . (06)
T = (1 m + a m - {1;/)1; . (57)

Or, nous savons que des transformations unimodulaires per-
mettent de passer du systéme /; au systeme ;. les deux théo-
remes fondamentaux suivants s'offrent a présent d'eux-mémes.

a) Les deux discriminants X, Y de la forme ¥ sont transfor-
mables Uun dans Uautre; ils sont équivalents et possedent les mémes
invariants rationnels gi, ow irrationnels e;.

b) A laide d’une transformation linéaire operée sur 'y seul I de-
plent symetrigue en x el en'y.

Arrétons-nous un instant sur les interprétations géométriques
de ces résultats, elles sont classiques et fort simples.

1° Soit d’abord le cas ol la courbe F =—=0 est une cubique; pour
qu'une cubique C, se présente sous la forme I — 0, il sullit de
transporter a I'infini une corde AB de la cubique, puis O dési-
gnant un point quelconque de son plan, de prendre OA, OB pour
axes coordonnes.

Cela étant, Véquation X =—= 0 détermine les abscisses des tan-
gentes menées par le point B, autres que celles qui touchent la
courbe en B;ilya quatle tangentes pareilles puisque C, estde la
sixieme classe.

[’équation Y = 0 déterminera de méme les tangentes menées
a G, par le point A. Le théoreme d’équivalence entre X et Y nous
donne donc la propriété fondamentale de la géométrie des
cubiques.

Qiw’on mene par un pomt A d’une cubique les quatre tangentes a
la courbe telles que leur contact n'ait pas liew en A, le rapport
.anharmonique de ces tangentes est constant quand A varie.

2° Supposons, en second lieu, que la courbe I = 0 soit une bi-
quadratique G, non dégénérée. l.es points A et B sur la droite de
I'infini sont les points doubles de C,; la méme interprétation nous
apprend que

1 Il'est clair que cette méme forme réduite peut étre adoptée, méme si /; m; ne sont pas
réduits a leur forme normale. Les formules qui suivent pour X et Y supposent simplement,

par exemple, que les {;, m; ont Punité pour discriminant.
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Si, par les points doubles d’une C, de genre 1, on mene quatre
tangentes aulres que les tangentes aux points doubles eux-mémes,
ces deux faisceaux de quatre tangentes sont projectifs.

3° Généralisons ceci en considérant une biquadratique gauche
C,. Soient A, B, Ctrois points de la courbe, choisissons ABC comme
plan de l'infini, OA, OB, OC comme axes coordonnés. D’apres
ces conventions, les équations de C, serout

ays + bsx 4 cxy dac 4+ G d oy + =0,
a'ys -+ Vsx 4 ay + 2l 4+ Yy s+ 8 =0

Eliminons z, nous trouvons pour définirla projection de la courbe
sur le plan OX, OY, une équation doublement quadratique I =0.
Done, toujours par la méme interprétation, si par la corde BC on
méne quatre plans tangents a C,, ils ont le méme rapport anhar-
monique que uatre autres plans semblables conduits suivant
CA ; ou bien

Le rapport anharmonique des quatre plans tangents menes a la
biquadratique gauche par une corde quelconque est constant.

4° 11 existe encore d’autres interprétations géométriques du
théoréme d’équivalence; la plus connue, en dehors des précé-
dentes, est celle fournie par le systeme de deux coniques. Elle
résulte aisément du rapport (ui existe entre un semblable systeme
et 'équation doublement quadratique. Halphen a développé ces
relations, avec un grand détail, dans les chapitres 10 et 11 de son
second volume; je me borne a citer ici la proposition qui traduit,
pour deux coniques, le théoreme d’équivalence entre les deux
discriminants X et Y.

Deux coniques étant tracées a volonté dans un plan, le rapport
anharmonique des points d'intersection, pris sur l'une des conigues,

est egal au rapport anharmonique des tangentes communes pris
surlautre*.

12. — Formes symétriques. Conditions d équivalence. — l.e pro-
bleme a résoudre consiste a trouver les conditions a satisfaire
pour qu'une forme I’ soit équivalente a une autre F’'; la premiere
forme doit se changer dans la seconde quand on exécute sur elle
les deux transformations linéaires unimodulaires

ax’ <+ b ¢y’ 4+ d -
= 5 . ¥= 555 » (98)
ax” + b c’y -+ d

Une condition d’équivalence se rencontre immédiatement ; il est
clair en effet que si I se transforme en F', les deux discriminants

' Havenun. fonctions elliptiques, Zwe vol. p. .74,
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doivent étre équivalents deux a deux, XaX'et Y a Y. En écrivant
les conditions de cette double équivalence entre les discriminants,
on se procure toutes les transformations possibles de IF en I,
selon le mode susindiqué (58).

La condition précédente, qui est nécessaire pour l'équivalence
et fournit toutes les équations de la transformation, n’est pas suf-
fisante. Prenons en effet une forme F et essayons de la recons-
truire a partir de ses discriminants X et Y.

Soient e; les invariants irrationnels communs a X et a Y, /; les
polyndémes conjugués de X, m; ceux de Y ; ces polynomes sont de

<

nouveau déterminés par les formules (25), et leur discriminant,

identique pour /; et /72;, vaut comme nous savons, 4{e; — e;] e; — ex) .
On a entre les /; 'identité

N, —e, ;=0 (59)

A ] i

tandis que X est donné par 'expression

F :2“ilé”li , (61)

la représentation bilinéaire de F; son discriminant relatif a y
trouvé suivant les regles du § précédent, sera
O 2 3 2 :
Dy (21 = Nha;(e;, — ;) (e; — e,)1; - (62)
1l faut que D, coincide avec X; en comparant (59) (60) et (62),
on voit que la condition nécessaire et suffisante de cette égalité est

: le; — ¢1 (e; — eyl
Q«(li(e- — ej)(ei —- ek) i J ,

2 ‘/A—'

la quantité g désignant une indéterminée.
On en tire

9
e (e, — e y/s = ..
a. — J A) , ou a. — J ‘/ SO (6))

‘= 3 ‘T YA

tels sont les coeflicients a porter dans (61). On voit, par ce calcul,
que si X et Y sont donnés, F peut prendre une infinité de formes
différentes qui se distinguent les unes des autres par la valeur du
parametre 9.
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Si donc une autre forme F’ a des discriminants X', Y' respec-
tivement équivalents a X et Y, elle donne lieu aux équations

= <> ) ’ ’ (PJ - 8/{)‘/?/ —_— (:'l'
F'=Na.lm, , avec a, =— —
— L 1L l l/t-\

Or toute transformation qui changerait I en F’ changera aussi
XenX, Yen Y, cest-a-dire , en [, et m; en m,; ainsi done I'équi-
valence entre I et I ne saurait avoir lieu a moins que ¢'=— .

Voici donc un nouvel invariant absolu qui vient s’adjoindre aux
deux autres g,, g;, pour que I' se change en ', en méme temps
que X en X' et Y en Y'; il y a, sans plus, trois invariants g,, ¢,, 0
dont ’égalité est nécessaire, mais aussi suflisante, pour la possi-
bilité de la transformation.

Les expressions a; ci-dessus dépendent de trois irrationnelles
/o — e, 1l est aisé de les remplacer par une seule irrationnelle.
Soit en etfet Z un nouveau polynome biquadratique en =, possé-
dant les mémes invariants e; que X et Y ; nommons-en K le Hessien
et n; les polyndmes conjugués.

N

Posons ¢ = — - ; alors, d’apres la formule (37)

n.

Ve—e =377

o~

en substituant ces trois valeurs dans 'équation {61), on voit que
tout polynome ¥ aux discriminants Dy = X et Doy = Y se présente
sous la forme canonique trilinéaire

l .
. __ _ Q
F = QVIZZ(eJ. — eyl lmn;

Répétons que, dans cette forme, le polyndéme Z qui contient 'arbi-
traire z est lui-méme quelconque, pourvu qu’il ait les invariants
e; en commun avec X et Y.

Le théoreme précédent, facile a vérifier par le calcul direct,
‘peut encore s'énoncer comme suit:

Sotent trois polyndmes en X, y, et z du 4™ degré X, Y, L; sup-
posons-les equivalents ou doués des mémes invariants ei. Soient
~encore li, myi, ni leurs polyndmes conjugués ; alors la Jorme triple-
ment quadratique

. |\ ; .
G — Z(ej — e, )i mpn; . (64%)
admet, par rapport awx trois variables, des discriminants Dy, D,,D-

qui sont
De = 3AYZ Dy == 4AZX , D: = 4AXY . (63)
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Toutes les propositions qui préecident concernent des poly-
nomes F quelconques:nous voulons en faire l'application au cas
le plus tmportant qui est celui d'une forme F. non seulement qua-
dratique en . et en y. mais encore symétrique par rapport a ces
lettres. Il va de soi que. dans ce cas. XN et Y d'une part et les /;.m;
de l'autre. ne different que par le nom de la variable. .« chez les
uns. y chez les autres.

Parmi les diverses formes 7Z possédant les mémes invariants
que X. la plus simple. quis'offre d'abord. estlaforme transformee
de N par changement de » en z. de sorte que de méme que
Y= X 7 on ait aussi Z =X z. Ce choix particulier préscute un
intérét spécial dans l'étude du théoreme d'addition des fonctions
elliptiques. Toutefois nous ne l'adopterons pas ici. et nous ferons

.
PR - ;
L — 13% — Lol — &

les valeurs qui s'en déduisent pour les polynomes conjugués n; sont
donc celles consignées sous le n* 45 .

Cherchouns. pour le cas actuel. la constitution du polynome
G 64 . en fonction explicite des variables . y. z. et des coeffi-
cients du polynome X que jappelleral aussi /... Nous avons

€

N = frr = a, 2 = Ga,0% — Huya® = G0 — g

Développons G suivant les puissances de z et remplacons les
n; par leurs valeurs 45 .1l vient

s =N . —ve, Lmn, =Pz - 2Pz — F°
-— J o~ - o

. : ) . ,
P* = 2[ Py — Poilymy == irg — oytlamg — Py — ot lymg
Pli= — 270rg — ey limy = €5 vy — oy by — eoowp — ey g

5] -

& 3T - 7 i
P' == — "/'1“—(’9‘)3) Py — Lo (1M — ...

et il ne reste plus qu'a exprimer ces trois quantités en fonction
des variables . i et des coeflicients de \.

Remarquons pour cela que sideux polynomes doublement qua-
dratiques. et en outre symétriques. [.;,. Mz, — comme le sont les
quantités P/ — deviennent égaux quand . = y. ce qui constitue le
cas de coincidence. ces polvnomes ne different l'un de 'autre que
par un terme du type a & — y %

En effet le quotient Lzy — My doit étre bilinéaire. entier. et en

% — i
outre gauche relativement a la permutation des deux variables.
En écrivant ce quotient sous la forme axy -+ b 4-cy 4 d. il faut
donc que
a =10 . d—10, hdpr=b

i
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et 'on a bien Lyy — My, = a (2 — y). De cette remarque il résulte
qu'une fonction telle que Lz, est completement définie quand on
O*L
X0y
tion que nous allons employer trois fois de suite pour déterminer
les quantités P,

A l'égard de la premiére, on remarquera que dans le cas de
coincidence .« = y, on a /,—=m,; alors, en vertu de I'équation 27 .
P? s’annule. On a donc P® =Al2x — y,%; mais, comme d’autre part,

connait les deux valeurs l..; et < )x ; c'est cette observa-
=y

11 DEPO Y 72
B i c— e [ =

et que la somme nous est connue d’aprés 22, on tire

A=4/1), et PO = 4/ X — 112 .

Appliquonsle méme raisonnement a PW; d’apres 1'équation 28"
on a dans le cas de coincidence

PO = — 2/ AX = — 2)/Xf .

Or, en invoquant le résultat (32",

02P1\ . e 9 . B
DJ'D)‘) ¥ N _Zei‘ef — el =— ER VA

L=
dédoublons doncla forme £, biquadratique en une forme double-
ment quadratique et symétrique; on trouve immédiatement,

d’apres ce qui précede, I'équation

fxy = agx®) 4 2a12y (2 4 3) + azla? + hay 402+ 2a500 + 1 +ag, 166)

et
(1) s N
Py — 2‘/_\;”9:&/
Soit enfin P® = — 2(e, + e,elle, —eilm + .. ; nous avons
3¢’ = ! Se e — 1
e, = — (e, — ez\(eg—— e, +Zg2 ,et Jdee = —fe — e,)le, —el— :3_32 :
donc
: .. 2
Sle, + e,e e, —e) = — o T i Sile,— el

L’Enseignement mathém., 16c année 1914,
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Cette identité, et ses analogues obtenues par permutation,
amenent I , a la forme

‘/A 02 A 9
P;y_ = n S+ %(/A(x——yr

Désignons maintenant par H,, le Hessien def, ., et prenons de
nouveau le cas de coincidence. En vertu des formules (36'), nous
avons

2.2

o P A 2

2 Y J— N\ o (/) .
P.’K.Z‘ T s !l‘/A Hxx , <Dxb‘)> ., p— —'3 2 [ 302‘/ A

Appliquons au Hessien la relation générale (32), nous avons
2 ”
Eli — —4Hxx iy [((’3~—— 61)(6’1—— 82) + ] = *Hxx -+ 4;,72 .

. . . . ’ . 2
Voici donc les conditions a employer pour déterminer P, ,

2pz2
P, =—4/NH_ , et <ap> ——VAH

L X0y

- elles donnent, apres un court calcul, par dédoublement du
Hessien H_,

2 ———
P, = — 4/NH,,

formule dans laquelle H,, a la signification suivante

4ny — &la,a; — aj)x“’)*z + &laja; — ajaz)xey(x 4+ y) + (0 a4 — aj) (x + )2

+ 8(a;a; — a:) xy + blaras — azas) (x + y) + leas — n:) . (67)

Résumons. 87 une équation doublement quadratique et symé-
trigue en X,y admet pour discriminant la forme

X = [, = ax* + a2 4 ...,
 elle a pour expression
Hyy + 2y — F2 —2)* =0, (68)

o les symboles £, et H,, ont les valeurs (66) et (67), tandis que z

désigne une ar bitraire.
De plus, le discriminant relatif a z de cette formule (68) est égal
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au produit /... /, , ainsi que nous savons. On peutdonc ecrire (68)
sous la forme résolue

‘//m’w . (69)
‘2(1» — )

1i

Enfin une derniere forme de la méme relation est digne de
remarque, comme s’étant présentée a Euler! et Lagrange? dans
leurs recherches sur le théoreme d’addition des intégrales ellip-

tiques. La voici. :
AV e — VT,

Dans le carre( xx Yy

x —

— 2‘//;/‘%/ par sa valeur tirée de (69), il vient

) , remplacons le double produit

fxr + fw/ fxl/

+ 4z .
[ — 7

Or, si l'on fait
YT T —9>

et quon remarque les identités

bfw
( - “) faa + ( “9> 6 m" ’

“on voit que la valeur de coincidence est

" 9 O°f 2/
fxx da? 1 »
— ¥ 2 y/
Qxx_ ——— = gfxx = 4ayx® 4+ 8ajx + ha, .

pa

Dailleurs Q. est entier, symétrique et du second degré en
x et y;le terme du'second degré est évidemment

xt ‘34 _ 2‘1,2).2_
(x — y)*

ol 4 )% .

ay

[.a valeur de Q,, se dégage de suite de ce double renseigne-
ment, elle est

Qxy = aylx + y)° + 4oy (x + 3) + hay .

L.a nouvelle forme cherchée pour 1'équation (68) se déduit de Ia,
la voici :

(l//xx — Vi ) = ao(x 43 + bas(x + 3) F S{eat2) . (70)

x — 5

L EuveRr. Institutiones Cal. Integr., vol. 1, Sectio secunda e. VI.
2 LAGRANGE. Oeuvres, éd. Serret, 11, p. 533.
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13. — Détermination des invariants. -— Continuons a nous
limiter aux équations doublement quadratiques symétriques. Ces
équations possedent comme nous savons, trois invariants qui sont
2., &5, et z; la détermination des invariants est extrémement
simple. Car, en premier lieu, g, et g, sontles invariants rationnels
de la fonction D?/: - ny étant donné ils se trouvent ainsi
d’une maniere immédiate. ‘

En second lieu, on a identiquement, comme nous savons,

2 [ At A2T . -
Ky = e Uy o oy — =27 )

a leur tour les expressions f, et Il sont toutes connues quand
[z OU ny, sont donnés ; 1l suffit donec d’identifier les deux
membres de (71) pour avoir le dernier invariant cherché z. On
peut méme, avant de procéder a cette identification, faire 2+ = y,
ce qui ramene 'équation précédente a la forme plus simple

2 -
Fow = ‘72 Hew + 3/l (72)
€
sous 'une ou 'autre de ces diverses formes, on voit que le pro-
bleme de la détermination de z n’offre aucune difficulté.

Halphen a donné, pour trouver les trois invariants, une reégle
sur laquelle il nous faut revenir?; il propose de former une équa-
tion caractéristigue dont les racines seraient proportionnelles aux
trois quantités z — e;. Mais la page 366 ou est formée cette équa-
tion contient, a co6té de quelques obscurités, une erreur qui com-
promet singulierement le résultat énoncé.

Je suppose qu’on ait sous les yeux le passage en question; ony
verra que l'illustre auteur propose de considérer la forme

-

sk 4 (x—y)?

comme une fonction des deux variables
&y =k, x+yr=n.
LLe discriminant de la forme quadratiqﬁe en &p ainsi formée
serait précisément l’équation caractérvistique. Quelques essais

suffisent a montrer l'inexactitude de la regle; la raison en est
facile a découvrir.

L HALPHEN. Fonctions elliptiques, 2me vol. p. 34%, 364-366.
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Prenons généralement la forme
ny == any + bfxy -+ c(x— ¥)?, (73)

A trois coefficients arbitraires; cherchons a en former le discri-
minant D, relatif a y.

Nous savons que D, est du type AHN + Bf,. et que les cons-
tantes A et B sont quadrathues en a, b, c. De plus, sia =06 =0,
F,, est un carré et D, doit s annuler' c’est done que A et B sont
linéaires en c.

Considérons en second lieu le cas @ = 0, et soit

fxy — ng}‘z - ,‘Zle + X,

Le discriminant de f;, est

2
X1 0X2 = e Hxx ;
celui de
Foy = l'fxy + cle — y)*, )
est égal a
(bX, — ex)? — (bX, + ) (bX, + cx?) = — b*H_, — bef, . -

Enfin, et en dernier lieu, si dans (73] on fait « =1, b =z,
¢ = — z°, le polynome F, se confond avec le premier membre de
(68), le discriminant est alors égal au produit

I1 suffit de rapprocher ces trois cas particuliers pour obtenir le
discriminant D, de la formule générale (73), sous la forme

D, = — (b* + ac)H ,, — <‘%3a"’ + %a/) + bc>fxx : (74)

on y lit, une fois de plus, ce fait fondamental qu’il existe une
simple infinité de polyndmes symétriques F,, possédant un déter-
minant donné.

Voici maintenant la conséquence a tirerde (74). Parmi les formes
F,,, & quel caractere reconnaitre celle qui sont décomposables en
facteurs linéaires en weteny ? L.aréponse estimmédiate : il faut et
suffit que le discriminant D, soit un carré parfait. Or, nous con-
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naissons les seuls carrés contenus dans la relation (74); ils dé-
pendent de la condition ~

bbe + g,ab 4 o a®
Co - ; - )
: A (b* 4 ac)

. b4 ol ’
qul peut s’écrire également

—_
LN |
(W]

o
/ 2 e} )
t/' — ael)(c —_ eib — e;a + Z-(l>: 0 .
Cette condition est donc réalisée si & = ae;, quelle que soit la
valeur de ¢; ainsi

Hacy + eifxy + c(x - 9')2

est toujours décomposable en facteurs linéaires. C’est ce qu’on
peut d’ailleurs vérifier a I'instant; car H,, + e¢,/,, se réduisantau

,

carre

1 2 Y
—-[;li:(ax"—i—Qﬁx—{—ﬂ“ ,

€

on obtient le polynéme décomposable

Ho,+ el + cle — ) = (axy + Bz +y) +7v)° + 8(x —y)* . (76)

Mais, c’est ici le point délicat, les facteurs de la décomposition
ne sont pas symetriques en x et en'y, ils ne sauraient donc s’exprimer
en g etenn.

Soit D le discriminant de Fz, par rapport aux variables &, #;
si D s’annule, Fz, est décomposable en facteurs linéaires en &, 7;
ou, si on préfere, F, se partage alors en facteurs bilinéaires rela-
tivementa .z, y et symétrigues. Aussile discriminant de laforme (76)
n’est pas nul, quoique cette forme soit décomposable, parce qu’elle

I'est de maniére non symétrique.

Il est d’ailleurs facile de trouver le discriminant D de la forme
générale par rapport aux variables &, 7. La fonction D est du troi-
sieme degré en a, b, ¢; la condition D=0 entraine la relation (75},
et comme elle n’est pas vérifiée si b=ae,, ellele sera forcément en
annulant le second facteur de la dite relation. On conclut de la

D="4Tl{ae; +be,+ ¢ — £a) s i=1,2,3 (77)

le coefficient numérique de cette formule se vérifie sur un essai
particulier, par exemple en faisant ¢ —= ¢ =0, b =1, F,,—=/,,.
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V. — Les Intégrales elliptiques.

14. — Les résultats précédents s’appliquent immédiatement aux
intégrales elliptiques de premiére espéce. Convenablement inter-
prétés ils contiennent la théorie complete de la réduction de ces
intégrales a la forme normale de Weierstrass sans aucune réso-
lution d’équations de degré supérieur; en outre, et du méme coup,
ils conduisent au théoréeme d’addition des intégrales elliptiques.
Cette fusion en une seule formule de deux théories qui semble-
raient de prime abord étre bien éloignées 'une de l'autre est des
plus remarquables ; elle découle tout naturellement des théorcmes
concernant les équations doublement quadratiques.

Soit F un polynéme doublement quadratique que je suppose
d’abord non symétrique

F=X)?+2Xy+ X, = Y,a? + 2Y o + Y, . (78)
Posons ' = 0, et différentions, il vient
(X, +X)dy 4+ (Y,x + Y)dx =0 ; (78
ou bien, a cause de X,y + X, = + VX0 — X, X, = VX, et

Y, v -+ Y, = \//To
4z, g (79]

VX VYT

Cette formule (78) donne donc une transformation algébrique

d’une intégrale elliptique dx_ en une autre dy, . Pour obtenir
V' X VY
cette transformation explicitement, il faut, X étant donné, re-
trouver la forme I (78), c’est-a-dire décomposer X sous la forme
X =X} — X,X,. Une semblable décomposition est possible de
» * manieres, puisque X, contient trois paramétres et qu’un coeffi-
cient arbitraire peut passer de X, & X,.
A chacune des décompositions ci-dessus correspond une forme
F(78), partant un polyndme Z; d’apreés cet apercu il semblerait que,
X étant donné, il lui corresponde «w* polyndémes transformés Y.

Ny , . . . . , . d.’lf .
S’il en était ainsi, la différentielle S— pourrait, sauf un facteur

/X

constant, se transformer par I'intermédiaire d’'une équation dou-

blement quadratique en toute autre différentielle elliptique -;3:
Y

: Pount ne pas allonger, je supprime dans ce § les discussions de signe des radicaux ; le
lecteur fera bien d’ailleurs de leur vouer P'attention qu’elles méritent.
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Mais nous savons que, en réalité, les choses se passent différem-
ment.

Au liea d'étre quelconques les polynomes X et Y sont toujours
équivalents; comme conséquence de ce fait, parmi nos « * trans-
formations de X en Y, il en existe ! (ui transforment X en un seul
et méme Y. Par exemple, lorsque ¥ est symétrique, Y ne difféere
de X que par la dénomination de la variable; les dites » ! trans-
formations constituent l'intégrale algébrique de 'équation d’Euler
(79) et correspondent au théoreme d’addition, les autres «? trans-
formations changent X en ses équivalents.

Reprenons d’abord le cas général d'une transformation non-
symétrique I = 0, et supposons donnés les polynomes X, Y aux
invariants communs g,, g,.

Il existe o« ' formes F dontles discriminants D, et Dy coincident
respectivement avec X et Y ; nous avons appris a construire toutes
ces formes a la page ( ), et nous avons vu qu’il s’y introduit un
troisieme polyndme arbitraire Z possédant en commun avec X et Y
les invariants g,, g,.

[.es trois discriminants de la forme [, triplement quadratique
ainsi constituée sont, comme nous l'avons vu, '

Dy =4AYZ D, = 4AZX | D: = 4AXY . (80)

o

Si donc on différentie, par rapport aux trois variables, I'équation
F — 0, comme on lavait différentiée en (78) par rapport a v et
a y seulement, on obtient

V/ Dzdz 4+ /Dydy 4 /D ds =0,
ou bien
dz

dx dy
o R — . |
%S - A . VZ 0 (81)

Telle est la formule générale (que nous avions en vue.

Pour 'appliquer reprenons F symétriqueen.2 eten y; donnons-
nous X ==/, et Y=/, , choisissons enfin Z =43 — g,z — gy,
ou g, et g, sont, comme toujours, les invariants de f,.

Dans ces conditions, 'équation F =0, s’écrit sous plusieurs

formes équivalentes dont nous avons vu plus haut les principales;
ce sont - '

ny_}_zfxy—-—z?(x———y):':() ,

- — fxv"‘ ‘//}9590/2/.7/

2w — )’

| ‘//a"—r— ‘/f.;/ﬁ/

o

) = ag(x + ) + bas(x + 5) 4 5@z + 3)
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Toutes ces formules donnent lieu a 1'équation différentielle

dx dy dz

AR
‘/f;(;x ‘//1/1/ \/{.ll'-3 S 8‘22 — 8.

(83)

Si en premier lieu, on suppose ue dans le systeme (82), z repré-
sente une constante arbitraire, dz est nul; dans cette hypothese,
le systeme (82) nous met en possession de l'intégrale générale
de I’équation d’Euler, comme on le voit dans 1'équation (83) dont
le second membre est nul d’aprés 'hypothése. Je n’ai pas a expo-
ser ici par quelles transformations faciles, on en conclut le théo-
reme d’addition des fonctions elliptiques.

Si, en second lieu, nous donnons dans (82) a la lettre y la signi-
fication d'un parametre constant, 'équation différentielle devient,
quelle que soit la valeur de cette indéterminée,

dre dz 85)
‘//xx \/4:3——3' T — O

dans cette acception, le systeme (82) opere la réduction d’une dif-
férentielle elliptique quelconque 7= a la forme normale de
fxx

. dz
Weierstrass ———~

bz — g

5 — 0

Lo O3

Faisons enfin & = y, la premiére formule (82), donne la relation
entre x et z sous la forme

- ax o
ST 5
équivalente, d’aprés (83), a I’équation différentielle
de . d;
/T - 86
‘/fxx \/433 T8, T, (56)

C’est la formule de duplication obtenue, pour la premieére fois,
par M. Hermite. Par son moyen, le méme probléeme de la réduc-
tion a la forme de Weierstrass se trouve résolu rationnellement.
Le procédé usuel, pour démontrer cette formule remarquable,
consiste a la déduire des équations générales (43) et (44) relatives
au polyndme du 4™ degré; ce procédé a le défaut de laisser dans

Pombre la parenté qui unit la transformation (85) avec le théoréme
d’addition.
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Supposons toujours donnée la forme f,,, faisons-lui corres-
pondre un argument elliptique « tel que

B s — Mo , o B!
pu = I Pl = === ;37; : | (871
xx

qui donnent, comme on vient de voir

—— — —du . (88)

Soient de méme ¢ et w des arguments elliptiques correspondant
af,, eta 7 ; on a donc

1 , 2d
pv:—-_?_;/_-f, pv:———;—g{, #:—dv, (89)
vy Ty vy
K , U 2dz
pw = Plw = — g5 ‘/z.__—dw. (90)
De ces formules (87) a (90), nous tirons
H_ + e, L l.
xx L xx 14 _—_— ¢ ;
pu —e —— ————"“—-—— donc U — e — — (91)
on a ainsi
Vi L e = e Vi
— e, = e v—e, = 5=, w —e = 5= (92
P i QV]qx P 4 2 fyg/ P A QVL .

Portons ces valeurs dans 1’équation doublement quadratique
(x = 0, écrite sous sa forme trilinéaire (64), ainsi que dans 'équa-
tion différentielle correspondante (83), nous obtenons le théoreme
suivant;

Si trois arguments elliptigues n, v, w sont liés par la condition

2(%’ — ex)y/ (pu—e;) (pv—A~ ;) lpw —e;) =0, (93)
on a aussi
du-+v+w)=0, ou w 4 v -+ w — const. (94)
o q,(u) ,
Remplacons les y/pu —e; ete... par leurs valeurs P le théo-

reme d’addition précédent prend un autre énoncé.

! T, représente icile covariant T du tableau (A). K et U sont, de méme, le Hessien et le
covariant en question relatifs au polyndéme Z = 423 —g,5 — g, .
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La somme
(63 — €3)G11UG Ve W 4 (B3 — €4) Gy UG VG -+ (€4 — 3) GaUTzva3v (95)

qui est nulle pour v = v—w = 0, lereste quand u 4 v + w=20;
en outre, & cause de la parité des o; (u}, la méme relation est satis-
faite pour toutes les combinaisons des signes - dans la formule

ute+w=20.

Ce résultat est conforme de tout point a I’équation bien connue
dans la théorie des fonctions ¢

‘A —+ ¢ 'e
VA w iﬂ); (96

E(ej — el o (u)o;(v)o;(w) = —— 1l ( 5

il valait la peine de noter ici combien cette formule se rattache
étroitement a 1'équation d’Euler et aux polynomes doublement
quadratiques.

C. Career (Geneve).

SUR L'ORTHOGONALISATION DE FONCTIONS

1. — Considérons le systeme

99 D11 Da. oo

de fonctions arbitraires et linéairement indépendantes de la va-
riable réelle x. Exprimons pareillement par y, celle parmi les
expressions de forme

09t @91+ o a9, + 9,

ou les o sont des constantes réelles, qui rend l'intégrale

X

e
P

f(aocpo + o + a9, 4 4 o, dr

.'l'l
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