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UNE LEÇON D'ALGEBRE ELEMENTAIRE
SUR LES POLYNOMES BÏQUADRATIQUES

ET DOUBLEMENT QUADRATIQUES

L — Préambule.

1. — La leçon qu'on va lire était destinée primitivement à servir
d'introduction au cours que je professe ce semestre à l'Université
de Genève sur les fonctions elliptiques. Diverses considérations,
en particulier la longueur de cette étude m'ont engagé, en modifiant

mon plan, à renoncer à ma première idée. Je me décide à

faire paraître ici cette leçon, malgré le caractère élémentaire et
même classique des questions que j'y discute.

En écrivant ces pages je me suis surtout inspiré du grand traité
de G. H. Halphen1 que j'ai dû consulter à maintes reprises pour
la préparation de ce cours. On sait la manière de cet auteur, dense
et pleine. Visant toujours à la perfection il ne touche aucun sujet
sans l'épuiser. Un tel écrivain ne s'accommode guère d'une lecture
eursive, et c'est le plus souvent la plume à la main que je l'ai
étudié.

Il est résulté de là toute une série de notes, les unes très brèves,
les autres assez développées, serrant de plus ou moins près le texte
que je me proposais de commenter. La présente étude n'est, pour
une forte part, qu'une de ces notes; elle s'écarte d'ailleurs beaucoup

du livre d'Halphen. La méthode dont je me sers est partiellement

nouvelle, et me paraît présenter des caractères intéressants ;

à défaut d'autres mérites, mon travail aidera peut-être quelques
étudiants à lire plus facilement les chapitres 9, 10, 11 et 14 au
second volume d'un ouvrage qu'on ne saurait aujourd'hui encore
trop recommander.

Au chapitre 9, consacré à l'équation d'Euler, Halphen n'emploie
évidemment les fonctions elliptiques qu'à titre d'auxiliaires: le

1 G.-H. Halphkn. Traité des fonctions elliptiques et de leurs applications, Paris 1886-1891,
.3 vol. in 8°.
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C AI L L E li
but principal demeure l'équation doublement quadratique, la
recherche de ses invariants, le problème de l'équivalence entre de
semblables équations, etc. Or on peut se demander si le détour
par les fonctions elliptiques offre un avantage bien réel, et si ces
diverses questions ne se résoudraient pas aussi simplement par
les seules ressources de l'Algèbre.

En prenant ce point de vue direct, opposé à celui d'Halphen, il
semble en effet qu'on gagne plutôt; on obtient en tout cas un
exposé aussi approfondi, et peut-être plus clair, des propriétés de
l'équation dont il s'agit. Il est loisible ensuite de fermer le cercle
par l'étude de l'intégrale elliptique attachée au polynôme
doublement quadratique, c'est par là que je termine.

Tel est donc l'objectif que j'ai poursuivi; j'ai essayé de
discuter par une marche élémentaire, bien qu'assez à fond, le
problème algébrique, et de trouver, dans sa résolution, la clef des
premières propriétés de l'intégrale elliptique. Cette marche qui
m'était suggérée par le plan même cle mon cours, tel que je l'avais
d'abord tracé, se confond avec celle qu'ont du suivre tout naturellement

les premiers inventeurs du théorème d'addition, Euler en
particulier. Il me semble, en la renouvelant, l'avoir sensiblement
perfectionnée; au lieu de me contenter de vérifier des formules en
quelque sorte toutes préparées, j'ai cherché à mettre partout en
évidence les raisons cachées de ces formules. Ceci ne va pas sans
quelques longueurs.

C'est notamment par ce souci de clarté qu'on s'expliquera la
présence ici des deux premiers chapitres de mon travail: tout
élémentaires qu'ils sont, ils font corps avec la suite et ne sauraient
en être séparés, ce sont eux qui renferment le secret des propriétés
assez complexes de l'équation doublement quadratique. On n'y
verra peut-être pas sans intérêt le rôle prédominant que je fais
jouer, notamment clans la théorie des équations du 4me degré, aux
polynômes quadratiques dont les racines se divisent harmoni-
quement deux à deux. L'introduction méthodique de pareils
polynômes conjugués, ou orthogonaux, me parait jeter une vive lumière
sur tout le sujet; aussi me suis-je attardé sur les propriétés de
ces polynômes au delà de ce qui était strictement nécessaire.

II. — Polynômes du second degré.

2. — Dans toute la suite nous rencontrerons constamment des*

combinaisons homogènes de divers polynômes /', g, A, les
degrés de ces polynômes en x sont zéro, un, ou deux. Nous
n'emploierons pas la notation homogène, et nous regarderons toujours
ces polynômes comme de degré 2. Ils possèdent deux racines ;

seulement quand le degré effectif s'abaisse, une des racines, ou toutes-
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les deux, se trouve rejetée à l'infini. A ce point de vue, deux
polynômes d'un degré égal à l'unité ne sont jamais premiers entre eux
comme ayant en commun le facteur x — x ; une constante est un
polynôme carré dont les deux racines sont à l'infini et dont la
dérivée est identiquement nulle, etc.

Notons encore qu'une relation telle que h2 fg ne peut
subsister que dans les deux suppositions que voici: ou bien /'et g
sont des carrés parfaits, ayant respectivement pour racines les
facteurs linéaires de A, ou bien gy A, ne different les uns des
autres que par un facteur constant. Ce théorème, évident, ne
suppose pas non plus le degré effectif égal à 2. En voici une
application immédiate.

On sait que si y2 — ax2 -(- 2bx -f- c est l'équation d'une conique
rapportée à un axe de symétrie, les coordonnées x et y peuvent,
d'une infinité de manières, s'écrire sous la forme

Les trois polynômes g, A, en t, sont du second degré et donnent
lieu à l'identité

IE —- af- + 2bfg + eg- FG (2)

où F et G désignent certaines combinaisons linéaires de f et g.
Par exemple si m o, on peut prendre

F\/a af -p [b -j- [/A)g G[/a ~ af -f- [b — [/A) g

la lettre A représente ici le discriminant b2 — ac du polynôme
ax2 -j- 2bx -f- c.

En tout cas si la conique est non décomposable F, G, A sont
distincts, car dans le cas contraire on aurait une relation linéaire
entre x, y. On doit donc conclure de (2) que F et G sont des
carrés,

F =©2, G z= y2 h=zr( ,3)

et voici la conséquence. Dans la représentation (1) le polynôme h
ne diffère qne par un facteur constant de cet autre îg' — Fg.

En effet, si F If -fi mg et G r_z l'f -(- m'g on a d'abord

FG' — F'G zrz (lmf — Vm\ [fg' — fg) :

puis d'après (3)

F G' — F'G zz: 2 yy (<py'— f"{) — -è (w/ — cp'y)

La proposition est prouvée, car les quantités lm' — I'm et
cpy' — y'y sont évidemment constantes.
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Réciproquement, si f g, h représentent trois polynômes quadratiques

en t, la courbe x ~ £
» f \ est une conique, décompo-

sable ou non. Si, f et g restant quelconques, on prend h égal ou
proportionnel au polynôme du second degré h fg' —f'g, notre
conique admet l'axe des x comme axe de symétrie. Cela résulte de
l'identité

W - f'sf (s'2 - W) f + 2 (/"'I - /V.+ fg" > fg + (f2 - 2/T f
que nous écrivons en abrégé

ifg' - f'g)2 (?g)f* ~ W&fë + iff) g2 >

en posant, pour deux polynômes quelconques qui peuvent
coïncider

{fg)=f/g/-f"g-fs" • (5)

La quantité (fg) ainsi définie est une constante, comme on le voit
en la différentiant ; elle s'appelle l'invariant simultané des
polynômes f et gi lorsqu'ils deviennent égaux, l'invariant [ff\ se

trouve égal* au quadruple du discriminant B2— AC de la forme

f= Ax- -f 2Bx + C.
D'après l'identité (4), on voit bien que les formules

_ f „ f'8-fë'

donnent la représentation paramétrique de la conique

y2 — ax2 -f- 2/jx c

aux coefficients a [gg\, h — fg c — i ff

Considérons le polynôme h =fg' —' f'g ; de cette définition on
tire les formules

h fë' - fg /C - fg" ~ f'g h" f'g" -/V Y
d'où

hf" - Vf' + h"f= 0 A*" - AY + AY 0 (8)

c'est-à-dire [hf] — 0 et fhg) 0
Si on nomme conjugués ou orthogonauxdeux polynômes à

invariant nul, on montre aisément que les racines de l'un d'entre eux
divisent harmoniquement l'intervalle des racines de l'autre. Les
équations ci-dessus [hf) (hg) 0 signifient donc que dans la
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représentation paramétrique de la conique (6), le polynôme A est
orthogonal à / et g, comme aussi à tout polynôme // + mg appartenant

à leur faisceau. Et cette règle suffît à déterminer A, sauf un
coefficient constant, en fonction de deux polynômes quelconques
du dit faisceau.

Tirons quelques conséquences du système (7/
aj Si /et g admettent un facteur commun t — a, les deux

premières formules (7) montrent que h et h' admettraient ce même
facteur t — ce; h serait donc carré parfait. Il n'y a pas d'exception
pour a oc ; / et g seraient alors tous deux du premier degré et A

une simple constante.
Inversement, si / et g sont premiers entre eux, h n'est jamais

carré. Car d'abord il ne peut être constant, parce que, d'après la
seconde formule (7), /et g* seraient dans ce cas identiques, à un

h"
facteur près. En second lieu, si on pose A -g- [t — a)2, avec

h" yE 0, h et h! s'annulent pour t — a et comme le déterminant

fg" — f"g' ~ h" est non nul, / et g possèdent tous deux le diviseur

t — a; ceci en vertu des mêmes formules (7).
En résumé; si /et g n'ont aucun facteur commun, h est non

carré, s'ils en ont un seul, A est carré parfait, s'ils en ont deux,
A est nul identiquement.

b) Supposons désormais /et g premiers entre eux, par suite h
1

non carré, ou son discriminant 7- (AA) différent de zéro. Dans ce

cas la conique (6) est non décomposable ; en effet, son discriminant

(fg)2 — i/r)(gg) it"g — fg' + fg"r2 — a"2 ~ 2 ffn) \g'* — '2gg")

peut aussi s'écrire

W — fg? — 2 [fg gg) g" — g*g) h'2 — Ihh" — (h h)

ce qui rend la proposition évidente.
c) Les polynômes /, g, h sont linéairement indépendants. Soit

en effet F If + mg un polynôme appartenant au faisceau f g;
on ne saurait avoir h — F, car la condition d'orthogonalité (AF)

0 donnerait dans ce cas h"2 — 2hk" — 0, chose absurde h
n'étant pas carré.

Te dis cle plus que si h et F possèdent un facteur commun, F est
un carré parfait. En effet, soit t — « le facteur commun ; la condition

(AF) =A/F' — AF;/ — Ar/F 0 montre que t — a divisera A'F',
sans diviser h' puisque A est non carré. C'est donc que F et F7 sont
tous deux divisibles par t — a et qu'ainsi F est carré ; cette
conséquence persiste, comme 011 voit facilement, même si a — ce Ré-
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ciproquement toutes les fois que F est un carré exact (t — «f, h
admet le diviseur [t — a), la chose est évidente.

On voit, en somme, que h étant écrit sous la forme
h — A (t — a) [t — ß), le faisceau (f g) qui contient certainement
deux carrés, comme on a vu plus haut, n'en contient pas d'autre
que ces deux-ci [t — af et [t — ß)~. Les racines a et ß du
polynôme h définissent ce qu'on appelle les points doubles du
faisceau, ou de t involution f g

3. — Condition de réalité. — Supposons f et g non seulement
premiers entre eux, mais réels; je dis que les points doubles sont
toujours réels sauf dans le cas où les racines de fei g sont réelles
et se séparent mutuellement.

En effet, on a

par suite, si un de nos polynômes^ par exemple gy a des

racines imaginaires, le quotient, continu de £ — x à t -f- x
»

reprend la#même valeur pour ces deux valeurs de t. Il admet ainsi
des maxima ou des minima, en même temps h s'annule. Si

feig admettent tous deux des racines réelles, mais que celles
de f y et ô par exemple, soient comprises entre les racines de g,

fle quotient - reste continu dans l'intervalle y S et s'annule à ses

extrémités, ainsi h s'annule de nouveau. Passons au cas où les
racines réelles de f et g se séparent mutuellement.

Si on fait dans ce cas varier les coefficients de f et g de manière
que leurs racines conservent la même position relative, h ne peut
devenir carré parfait, puisque fei g n'acquièrent pas de facteurs
communs ; ainsi les racines de h 0 restent réelles ou imaginaires
selon qu'elles l'étaient au début. Or on peut évidemment par les
dits changements amener f à prendre la forme [C — 1) et g la
forme 21, polynômes à racines séparées. A cet instant h — 2 [C -f- 1),

et ses racines sont imaginaires, comme le voulait la proposition
énoncée ci-dessus.

Les cas précédents sont évidemment exclusifs les uns des autres,
et comme h est le même, à un facteur près, quand on le déduit de
deux polynômes quelconques F, G du faisceau fg), on voit que
si f et g sont deux polynômes à racines réelles se séparant
mutuellement, F If -f- mg et G l'f-\-fn'g sont dans le même
cas, cela quels que soient les facteurs réels /, m, m'.

4. — Intégration. — On sait que la représentation paramétrique
(1) est employée dans les éléments pour intégrer les différentielles
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f (x, y) dx, attachées à la conique y2 ax'1 -|- 2/ai1 -j- c. Disons,
en passant, un mot de cette intégration.

Admettons, pour fixer les idées, que g n'est pas carré parfait;
il y a alors dans le faisceau/*—xg deux carrés parfaits. Soient
donc

f - — Ai (' — fi)2 ' f— **8 ~ A2 P — Ç2 (9)

fL'équation x - donne
S

g(x — xj A±(t — t^2 g (x — xj — A2(t — l2)'4 (10)

puis
x — (t — *Ag
a; - As \t - tj

qui n'est qu'une forme nouvelle pour x ^ On y lit que si
Ö

lt et t2 sont les racines du polynôme A, x\ et xs représentent les

extrêmums du quotient - alors que / et £2 sont les valeurs de la

variable correspondant à ces extremums.
Posons h — gf — fg', désignons par /??. un facteur de

proportionnalité, et revenons à l'identité (4), nous avons

x — - [/ax2 -f- 2 bx -f- c — m - dtr — h — —z

* ér £2 w #

On a donc
1 ^

j/ax2 -j- 2 bx -f- c m g '

ce qui. est la formule bien connue de l'Analyse élémentaire. 11 est
aisé, en la généralisant, de l'adapter à l'intégration des fonctions

9 j S \rationnelles du type—-±I—dt, où e et 5 sont deux coefficientsH IVg
constants.

Tirons à cet effet de (10)

[/g(x — x±) (t — ti) j/Ai — Xi) [t — 4) |/As

additionnons celles-ci, après les avoir multipliées par deux
facteurs constants, nous aurons

rt + >9 / /
^/—

— ri y x — Xt -f- c2y x — x2
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Multiplions cette formule à son tour par le facteur

dt m dx p dx
t j/ ax% —j— 2bx —(— c — «rp x —

il vient
ri + .9 dx dx

r /— dt — ht—7— -j- b2—7- • (tl)/{/g X\/x — Xi_ x\/x — x2

C'est là une formule très pratique pour l'intégration des
différentielles du premier membre, une fois déterminés en fonction
de /* et s les paramètres bA, /;2 qu'elle contient.

5. — Transformations linéaires. — Nous allons exécuter sur nos
polynômes des transformations du type

au. -|- S — ft -\- 3
t — ——— ou u — —t- (12)

a K-j- p a t — a

dont le déterminant 6 =z aßr — afß doit être différent de zéro. Il
est ici bien'entendu, à titre de convention expresse, que nous nous
interdisons la suppression des facteurs communs dans les quatre
coefficients a, a', ß, ßr de la transformation ci-dessus; ces coefficients

comptent ainsi pour eux-mêmes et non pas simplement par
leurs rapports mutuels. L'importance de cette convention va
ressortir à l'instant.

Le polynôme transformé de f(t) est, par définition,

?(«) y« + 1131

Désignons semblablement par y [u) le transformé de g (t}, par rj [u)
le polynôme orthogonal à la fois à 9 [it\ et y (a) comme h (t) est
orthogonal simultanément à f{t) et g{t). On a

dt
1

• puis r' ~?Tu(!) (a'" +

donc
r\(u) oia'ii + ;

ainsi, sauf le facteur ô, rj [a] est précisément le transformé de h [t).
Multiplions l'identité fondamentale (4) par le facteur S* [a'tt +ß')4,

elle devient, grâce à l'égalité précédente,

+ iff) f\
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mais comme d'autre part

ri2 ^ (yy) ?2 — 2 (h) ?ï + (rr1 Y2
»

la comparaison de ces deux résultats donne de suite les invariants
de (p et y. Ce sont

52 iff) > (<py) °2(f$) > (yy) &igg) ' i14)

la seconde de ces formules reproduit les deux autres en faisant
simplement coïncider les deux formes f et g.

Réciproquement je dis que si quatre polynômes fyg et y, y, les
premiers en t, les deux autres en 11, sont tels que les relations
d'invariance (14) soient vérifiées, il existe une transformation
linéaire de déterminant â transformant f en y et g en y. Pour le
montrer, prenons le polynôme doublement quadratique

F (t,u) —f{t)^(u) — g{l)Q[u)

nous allons voir que, les conditions ci-dessus étant supposées
vraies, il se décompose en un produit de deux facteurs linéaires
en t et u.

En effet, le discriminant de F, relativement à t, s'écrit

K -2FF" m - /?)* - m - g?) ty - g"?>

— (y'a 2ff") y2 -f- 2 [f"g -j- /'g" — f'g') y© + [gn — 2gg") /
ou bien, en remplaçant les coefficients [jf), (fg), [gg\ par leurs
valeurs (14)

Ft — 2FFt §2 [jV'Y ~ — 2 (/Y — y'/(?M?Y —Y<p)

|a (/Y - Y»2 •

Ce discriminant est donc carré parfait et la proposition est
démontrée.

D'après le calcul qui précède on voit que la condition F 0,
laquelle contient évidemment toutes les transformations possibles
de / en y, et de g en y, se dédouble dans les deux suivantes

qui ne diffèrent l'une de l'autre que par le signe de â.
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Prenons l'une d'elles, la première par exemple; alors les

conditions compatibles
F o F- /T-fr

1 0

ou bien

ft — 89=^.(/" - \)t-{?'~ t)? ° '

donnent en éliminant le rapport ^

f - i) - s(f-ï) 0 • soit F« 3 (te' - *('

On peut donc, au lieu de F—0, poser les deux conditions
équivalentes

qui montrent que t est linéaire en //. et u en t.
Soit donc

Cf.ll —I— [jt= T •
(X —p

16»

(17)

la solution des équations ci-dessus (16$, admettons que le facteur
indéterminé qui figure dans les coefficients «, a\ß, ß' a été choisi
dè manière que aß' — dß soit égal à â. Je dis que cette transformation

change fen 9?, et g en y.
Soient en effet &[iî r[u) les transformées de f t g è par cette

transformation, ou

{du -j- f)2f[t) <&(u) [du -f fi')*g(t) T (u)

d'où - ~ TT ; à cause de F [t, u) 0 011 a aussi - - Donc,
£ I * ï

avec un facteur constant de proportionnalité, on a

<Ï>(m) K y («) r (u) — Ky lu)

Je dis que ce facteur K est égal à l'unité.
En effet, récrivons les formules précédentes sous la forme

[du + fff(t) Kcp(«) {du -f- ffg(t) Ky(«(

et dérivons-les en tenant compte de dt — ppqjzil vient

%f'(t) + 2a' (du -h — K y [u\

+ ïd (du + {d) g(t) Ky'!«)
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Eliminons entre celles-ci le terme en \a'u -[- ß'\ on a

O ifg' — f'g) K f fY — g y) KFW (g a) ;

il suffît de comparer ce résultat à la seconde formule (16), pour
voir que K

Le théorème est ainsi démontré ; ayant donc choisi a volonté le

signe de $ dans la formule (16), il y a deux transformations au
déterminant â, déterminées par cette formule même, qui changent

f en (p et g'en y. En changeant ô en —ô, on aura de la même
manière deux nouvelles transformations, soit quatre en tout, pour
effectuer le passage du système [fg au système

11 est à peine besoin de faire remarquer que si de l'équation

p __ T
^

91
on une transformation de t en u au déter-

1 Ö

minant — ê, cette transformation changerait f en — (p, et gen —y.

Terminons par une observation importante.
Nous avons jusqu'à présent pris les polynômes f et g comme

point de départ; c'est d'eux qu'ont été tirés les invariants a — j]'
b — ainsi, que le polynôme conjugué h, pour former les
éléments qui figurent dans l'identité fondamentale (4). Si, à l'inverse,
les données sont a., b, c, on vient de voir que les polynômes fei g
ne sont plus déterminés qu'aux transformations linéaires près.
On pourrait, par exemple, prendre pour f et g les polynômes
purement quadratiques

f At2 -h B S — "h B'

les conditions seraient alors

a — — 4AB c =— 4A'B' b A'B — BA'

elles pourraient être encore réalisées d'une infinité de manières.
Relativement à la conique fondamentale il y aurait, pour être

complet, à rechercher encore la signification géométrique du
paramètre t \ je me dispenserai de mentionner ici cette interprétation
très connue et le théorème classique qui s'y rattache sur le
rapport anharmonique de quatre points sur une conique.

6. — Systeme de trois polynômes conjugués. — En résumé,
soient ,v2, ,r3 les coordonnées homogènes d'un point dans un
plan, et f, f trois polynômes du second degré, les relations

X\ — b «r2 /2 ,r8 =: ls

caractérisent une conique. Si on veut que l'axe ,r, 0 devienne,
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relativement à la conique, la polaire du côté opposé, on doit
prendre sauf un facteur constant, /, — l21':) — l3 lr2.

Supposons la conique rapportée à un triangle autopolaire, son
équation ne contiendra plus que des termes carrés; elle est du
type 22a*i.*i + «2^'a + a8.r3 0

dans ce cas, chacun des polynômes l est le conjugué des deux
autres. Ainsi ces polynômes seront premiers deux à deux et
linéairement indépendants; aucun n'est carré parfait, en outre ils
donnent lieu à une identité telle que

7.1 lt -}- a2/'2 -j- 7.3/3 — 0 ; (1/*)

Réciproquement toutes les fois que trois polynômes, premiers
entre eux, sont liés par une semblable relation, celle-ci est unique
de son espèce, et ces polynômes sont conjugués deux à deux.

En effet, en differential!t la relation précédente, on a

^
aiô/i ~jr a2èi èa as è /g — 0 ;

par suité
a-iU X2J2 *3k _ g

^2 ès h ^2 4 U U h ô ^2 — ^2 U

relations où le facteur de proportionnalité q est nécessairement
constant. La proposition est établie.

11 est clair qu'un système de polynômes conjugués le reste par
transformation linéaire: si donc on avait pris l'équation de la
conique sous sa forme la plus réduite soit + + — 0, on
aurait eu

/1 t'2 — 1 k — 'Il lo i [t2 -)- i) d'où l\ -f- /2 -f- il — 0 (18)

C'est le système conjugué réduit à sa forme normale; pour cette
forme les trois invariants simultanés sont zéro, et les trois
discriminants sont égaux à l'unité. On peut, à partir de la forme
normale, reproduire le cas général d'un système conjugué, en
transformant les polynômes ci-dessus à l'aide d'une transformation
linéaire quelconque, après les avoir affectés de coefficients
constants arbitraires.

Reprenons ce cas général, et désignons par la notation (fl'f le
déterminant l2l'2 — et ainsi des autres. On a donc

/]_ -f- "M 1% ~f~ as h — ô (19)
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K'iO
Kol). i20)

Dans ce tableau les deux dernières lignes proviennent par
dérivation de la première, celle-ci n'étant que la reproduction de la
formule (il") ci-dessus.

Composons avec (20) les quantités

*;(2l/t - C) " - Vt + <J !• 2'

nous trouvons de suite

«m- 0 ?MA)+ 4(<?é + >;('/*)] ?(<AQ1 •

De là la conséquence suivante : le polynôme lt a pour discrimina

at la quantité

-km)- <2i>

Empruntons encore au tableau (20) les combinaisons suivantes;
elles sont constantes comme il ressort de la valeur des seconds
membres

a r _j_ a r -}- a f — _ 0 (/ f j") (22)
1 1 2 2 8 3 ' \ l 2 S / ' 1 '

a / / -j- a / / -f- a / / — o l l l (23)1111 222' 333 1 \ 1 2 3 /
X '

111. — Théorie du polynôme du quatrième degré.

7. — Avec trois polynômes conjugués /^, /*, tels que ceux
qu'on a défini au § précédent, composons une forme du 4me degré,
telle que

l=z c f + c f 4- c f (24)
1 1

1

2 2 ^ 3 3
y 1

L'identité (17') qui règne entre les 4, permet, pour une même forme
7, de choisir les coefficients eu d'une infinité de manières. On
pourrait par exemple faire ce 0, en chassant complètement de

1 On désigne ici, et plus loin, par i, j, k les indices 1, 2, 3 permutés circulairement d'une
/ f ,f\manière quelconque ; \ représente le déterminant fonctionnel des trois polynômes l -
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la représentation (24) un des polynômes f choisi à volonté ; en
réalité, malgré la présence de trois coefficients, la formule (24) ne
renferme qu'une double infinité de formes 1.

Il importe de remarquer que les seuls carrés contenus dans le
faisceau (24) sont précisément/*, /*, t. En effet, prenons un tel

carré qui ne soit égal ni à /*, ni à L; son expression serait donc

L2 — c c l avec c c ^ 0
1 1

1

2 2 ' 1 2

Pour chacune des racines de L — 0, nous aurions

L h + °2 l2 — 0
* °l Cill h + A /2 'a — 0 *

On tire delà (fQ 0 ou /g ~ 0 condition satisfaite en même

temps que L ~0; le dit carré L2 est donc forcément If sauf un
facteur constant. La proposition est prouvée.

Remarquons maintenant que, les coefficients constants étant
exceptés, le système f, /2, Là renferme trois paramètres; la
formule (24), nous l'avons dit, en contient deux autres. Ainsi la
définition de la forme / possède précisément autant de paramètres que
le polynôme le plus général cle son degré ; on doit donc prévoir
que tout polynôme du 4me degré peut revêtir la forme (24).

Pour justifier cette présomption, désignons par aQ le premier
coefficient d'une biquadratique X, par y, y2, y3, y4 ses racines
supposées distinctes ; employons les notations (ad) et (if) pour
représenter les différences x — yt et y% — yj, et posons

U 4 z:::: e0 12) (x*4) (x3) /2 — /8 rr: (4o) («rl) {<x2) \

h -p h — ao (14) [xS) (,x'2) /3 — h — C0(32)(erl)fr4) > (25)

l± + h «o (13) (,x'2)(,r4) 4 — /2 — an( 24) (,x-l)(,r3)

Le calcul direct montre immédiatement que ces six relations
sont compatibles ; d'ailleurs les trois polynômes sont
premiers entre eux deux à deux puisque tout facteur commun à l2

et l3, par exemple, divisant /2 -j- l3 et /2 — l3, ne peut exister que
si les racines yL ne sont pas toutes distinctes, cas exclu.

Je dis que ces polynômes l sont conjugués; en effet, en égalant
les trois valeurs de

X a0 {xl)(x2){xi)(xi) —(.12)(43) a0 (14) (32) «0 (13) (24) ' l26J

nous obtenons une seule identité entre les carrés l\, l2, t2. En
faisant

*1 — a0(l2) (43) oc2 — c0(14) (32) oc3 (13) (24)
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quantités qui vérifient l'équation

ai -f- a2 -f- a3 — 0

la dite identité s'écrit

a _|_ a /3 + a t 0 (27)
1 1

1

2 2
1

3 3

Les h sont donc conjugués; il importe de remarquer qu ils ne

sont pas ordinairement réduits à la forme normale et que, à

moins que le contraire ne soit expressément indiqué, nous en

déterminerons toujours les coefficients constants conformément
au tableau (25) ci-dessus.

Pour exprimer X en fonction de /*, /*, il est préférable
d'employer, au lieu des formes dissymétriques (26), la forme
symétrique

+ «,(«, — + *,(«, — \]ll > (28>

que l'on en déduit immédiatement.
On vient donc cle démontrer que, étant donné un polynôme du

4nie degré X, il existe toujours trois polynômes orthogonaux ^ tels

que X soit un polynôme de leur faisceau.
Une telle représentation est unique, car si on avait, par exemple,

de deux manières différentes

,2 .2 2 2
X z— l — / et X — m — m12' 12'

on aurait aussi, en changeant éventuellement le signe de m2,

h + h — ci [mx -f m2) k — /2 ^ \m± — m2) ;

et alors le conjugué /.. — \lxl'j des polynômes lx Ç serait, à un
facteur constant près, égal à celui m3 — [mi/?i,j des polynômes
mx, On démontrerait de même les égalités lx mx et l2 m2
qui ont lieu, bien entendu, seulement sous réserve des coefficients
constants.

C'est donc d'une manière parfaitement déterminée que les
polynômes lt correspondent à X ; en outre, sous l'angle de la définition

(24), X peut être considéré comme un individu extrait d'un faisceau

de formes biquadratiques qui possèdent en commun les mêmes
polynômes conjugués /, et se trouve étroitement uni avec ces
derniers.

Nous avons trouvé plus haut les h, correspondant à X, et
construit le faisceau en partant de l'élément X décomposé en ses
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facteurs; c'est un problème fondamental que d'opérer la même
construction à l'aide des seuls coefficients de X. Il suffît pour le
résoudre de déterminer, en fonction de X, une seconde forme
appartenant au même faisceau.

Pour y parvenir, reprenons les définitions (25) des Ut et écrivons

pour eux les relations (20) du § précédent. Un calcul rapide
donne

p l, et (7 / / V= a a a
4 ' \ 1 U / 128'

on a donc

°-ih('A* > A (A) • A - (A) <29>

et, pour le discriminant de h, la valeur

- (30)

Soit maintenant une forme quelconque

/ c I -4- c I 4- c f 30r)
1 1

1

2 2
1

3 3 '

du faisceau en question; il s'agit de calculer la valeur des deux
combinaisons suivantes

c cn I2 4- c 1' et cil -j-cil -p c l ln111 2 2
1

8 ~ 3 1111 2 2 2 333'
qu'on a trouvées au § 6 pour le cas c. er.

Pour les déterminer dans le cas général, tirons de (304 les
égalités

(31)

Intégrons la dernière, et comparons le résultat avec l'avant-der-
nière formule ; nous avons

-
<32)

3 =2A
Pour déterminer la constante 6* d'intégration, éliminons l", et

remplaçons les discriminants i (l* — 2/,/,) par leurs valeurs (30),
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il vient

3c =2Ci((2 — — «!«» »3 2"^. •

ou

c — — ^ "ags y ~ (33)
3 ^-1 CL.

Appliqu°ns ce résultat général an cas particulier l X, qui

donne, d'après (28), c. \-(- — ; dans ce cas on a c 0, et
o

les formules (31) et (32) deviennent

f 2c<£. *=2^4-
On tire de là

¥ " A:-2'V;2'V4 - (2'vm;-)2 - 2o"ù'/ù • (34)

Enfin cette dernière relation s'écrit encore, à cause des formules (29)

XX" x/2— ~ X =Zcjc^ih •

4 XX" 3X/2
Voici donc formé un nouveau polynôme H= ^ ap-

partenant au même faisceau que X; c'est lui qu'on nomme le
Hessien de X, et dont la valeur en fonction des coefficients de

X — d0 :xA -f- ^ox.r?' -f- 6a*x2 + 4azx -f- o4

-est

H [a0a 2 — a*) x* -f- 2 [a0as — ax <y2i ,r'

-j- (o0a4 + Zettas — 3a*)x2 -f- 2(ö?i«4 — a%az)x -f- #2a4 — (35)

La relation (34) nous en donne l'expression en l\ ; quelques
réductions faciles, où intervient la condition ax -|- ce„2 -f- «3 — 0,
amènent le Hessien à la forme

12H - i[ - r - r (36)

§ 8. — Propriétés d'invariance. Nous savons que le faisceau tL

contient les deux formes X et H ; ces polynômes étant certainement

indépendants, au moins quand les racines de X sont dis-
L'Enseignement mathém., 16e année ; 1914. 27
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tinctes, on pent les adopter comme base du faisceau, à la place
des l\. Nous avons donc trois équations telles que

H + r.X i — 1, 2, 3 (37)

Pour déterminer ces constantes h. et efaisons d'aborcl x ég-alII' o
4XX" — 3X'2 X'2 X'

à la racine yA de X; alors X~0, H= ^ — j-ß ; U y ;

1

on a donc, dans (37), bt — j
Ajoutons maintenant les mêmes équations, multipliées soit

par i, soit par a., soit encore par a. (a. — aj; il vient, à cause de
2a. 0, des équations (28) et (36) pour X et H, et de l'identité (27),

2ei 0' .2^ °- 2^ai(ay—

On tire immédiatement de là

^ - A*/ ~ **'

Avant de récapituler les divers résultats qui précèdent, il est
opportun de changer les notations en éliminant partout les quantités

a. pour mettre à leur place les trois invariants irrationnels ei
du polynôme X. Voici la correspondance entre ces quantités

Ci :

a8 — a2 ao

12 12

at — a§ _ «0

12 12

*2 — ai ao

12 12

e2 ~~r^ 4 [(12) (43) - (13) (2411 * > (38)

ou bien

— 4 e2 — c g a2 — 4(p8 — e±) a8 4(ej — c2) (39)

Les invariants irrationnels &f, dont la somme est nulle, vérifient

une équation cubique .telle que

4.V3 — g2s ~ gs 0 (40)

avec les conditions

J 1

— y g2 — <°2 es -}- e2 cx -f- Ci e2 y 82 — - CiC2r8

Ces dernières quantités, évidemment symétriques par rapport aux
racines du polynôme X, sont exprimables rationnellement par
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les coefficients cle X: voici la valeur cle ces invariants rationnels

o- — a a a + 2 a et et — o
Cg o 2 4

1 123

Rappelons d'ailleurs que la combinaison

o2 - 27^ 16 (e2 - e/ies - - Cf)* A (42)

joue le rôle du discriminant de X.
La théorie générale conduit donc au résumé suivant où se

trouvent récapitulées les propriétés les plus essentielles du
polynôme du 4me degré.

a) Désignons toujours par L les polynômes conjugués, tels
qu'ils sont définis au tableau (25) ; L a pour discriminant

ou 4(e. — eJ.)\ei — ek) (30")

Alors, si H représente le Hessien de X, les trois combinaisons
suivantes sont des carrés, à savoir

H + eX -hy (37')
'

ce sont les seuls carrés contenus dans le faisceau H 4- eX.
b) Mettons au lieu de 4(e2 — es) [e3 — ex) [ei — e2) — yA quantité

parfaitement déterminée, on a le tableau

<e2— eS]ll+ {e»- C1]'l+ - e2]ll - 0
• (27')

Xj/A eje2— es)ll -+ e2fe3— <^)/2 + eg(el — (28')

X'VÂ" 3)«^- e8) t*+ e2ie3 - ej £ + ^ - esi Ç (32')

4XX* — 3X'2 I <A)
11 — — — j2[li + l2+ C ' 136 I

T i (HX' — XH'I i IJA ,(43,

T2 - 4 (H + e,X)| H + e>X)< H + (-.X) — 4H* + &HX2 + g,X* (44)

Dans le tableau ci-dessus, les diverses formules sont affectées
du même numéro, avec un accent, que celles dont elles ne sont
qu'une simple répétition; seules (43) et (44) sont nouvelles et ont
besoin de démonstration.
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11 s'y introduit un covariant T, du sixième degré, dont l'annu-

H
lation caractérise les extremas du quotient Or ces extrem as.

à cause de

h_±jVv _ ,y\-
H -f- Ci X \ /i /

/ / N 2

sont les mêmes que ceux du quotient (yj - à savoir les racines

de ll% les racines de celles enfin du polynôme lj2 l2 /l ou /g

La partie littérale de la foi-mule 43 T 7 /, /.2/3 est ainsi

évidente. Quant au coefficient numérique y, 011 le trouve en

comparant la valeur des deux membres pour une valeur particulière
de x, x Y\ Par exemple.

On sait par l'Algèbre élémentaire que les divers éléments du
tableau A sont des invariants, lesquels, sauf introduction de
certaines puissances de $, se reproduisent par les transformations
linéaires de déterminant S. Mais cette propriété résulte à son tour,
et immédiatement, du tableau lui-même, ainsi que d'une remarque
au sujet du Hessien.

En intégrant l'équation différentielle 4XX" — 3X"2 — 0, ou
reconnaît que le Hessien de X est identiquement nul dans le seul cas
où X est une quatrième puissance exacte. Or si 011 opère la

transformation linéaire (y. • Ie transformé Y [a'y -f // 4X

est une puissance quatrième en même temps que X lui-même.
Le Hessien H?/ de Y, s'annulant avec celui Rx de X, est divisible
par ce dernier, et l'on a

H m ô-1 a'r 4- //3 H :

§ x

la partie littérale de la formule est évidente, la présence du
facteur $2, carré du déterminant de la transformation, se démontre
immédiatement, par exemple par le calcul direct.

Revenons alors au tableau A et effectuons la transformation
dont il s'agit. On voit, d'après la propriété du Hessien, que y
acquiert le facteur (f2, puis lt, T, ^, g3 respectivement les facteurs
â, à\ J".

Les conditions d'invariance relatives à g\ et y:i, qui sont nécessaires

pour l'équivalence, sont aussi suffisantes. Autrement dit,
3

si deux formes X et Y ont le même invariant absolu * 011 Lien

encore, si deux formes ont des invariants irrationnels et propor-
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tionnels entre eux, il existe une transformation linéaire changeant X
en Y.

En effet, dans ce cas, le système lt d'un des polynômes est
transformable dans le système 4 relatif au second; la chose est
évidente puisque le déterminant de /• étant 4(öf — eß Un — ek), la
proportionnalité des ei implique celle des invariants fondamentaux
des deux systèmes h. Soit ô le déterminant de la transformation
T opérant le passage de l'un à l'autre; reprenons, pour les deux
polynômes les identités (31), on en conclut de suite

Y — [a'y + //)4X tiij — ô'VcY -j-

Ou bien, la même transformation T qui transforme le premier
système L dans le second, transforme aussi X en Y.

Il est clair que ces questions d'équivalence se réduisent en réalité

au cas ö i d'une transformation uni modulaire. Pour qu'une
telle transformation de X en Y soit possible, il faut naturellement
que les invariants rationnels g2. g3, ou irrationnels e£, soient les
mêmes pour X et pour Y. Supposons cette condition remplie, il
est facile de trouver tontes les substitutions opérant le passage
d'une forme à l'autre.

En effet, soient l, (x) les polynômes conjugués relatifs à X, mt (y)

ceux relatifs à Y. Nous avons

Mx ^ — 7 t. H -j- e \ — — - m2
u 4 y 1 i 1

et comme l) doit se transformer en m* en même temps que X en Y,
il faut que

,2 2

h l,»

4 - 9 ou bien YH — XH — 0

m in x
1 2

cette dernière est une conséquence de l'équation x= 4~ ^, qu'on
cherche pour passer de X à Y.

Si réciproquement nous avons Ylïr —XH{< 0 nous aurons
h _

1*

aussi — — ziz — Suivant la théorie développée au § 5, il résulte
r,\

de cette équation et du fait de la concordance des deux discriminants

pour h et nu, que l'équation

F(,r, y) ltm2 ± m± 0

se partage en deux équations linéaires. Voici donc le résultat.



430 C CAILLER
Si deux polynômes biquudrutiques X, Y ont les mêmes invariants

ei, Véquation

se décompose en quatre équations linéaires en x et en y. A chacun
des quatre facteurs correspond une transformation unimodulaire
de X en Y ; il n'en existe pas d'autres.

Remarquons enfin que, dans tout ce qui précède, le degré
effectif de X peut fort bien s'abaisser au troisième par le transport

à l'infini d'une des racines yt. Ainsi parmi les diverses
formes équivalentes à X figure le polynôme 4/r3 —g2x —g3 dont
les racines sont, comme nous savons, ex, e2, e3. Il est intéressant
de se procurer les polynômes conjugués /?ide cette forme réduite :

ce sont d'après les définitions (25)

//,— 2(x2 — 2eltr

nt — 2 f,r2 — 2etjc

/?g — 2 {x2 — 2es x

Ces polynômes m ne dépendent ainsi que des et, propriété qui
n'appartient pas aux conjugués h d'une forme X quelconque ayant
les Ci pour invariants; on trouvera d'ailleurs les U en opérant sur
les m une transformation unimodulaire quelconque.

— e\ — e2e3) 2 [(jr — e±\2 ~ — e3i] |
— — ^3^i) 2 [(tr — e3)-— (r2—r3)(r2 — et)] > (45)

— Y — e±e2) 2 [!.r — p3|- — (p3 — — e2\] I

9. — Théorème de Cayley. — On sait que toute forme du faisceau

X, H, par exemple <7II + bX possède les mêmes polynômes
conjugués l£ que X lui-même ; il serait intéressant de se procurer,
pour une telle forme, le système des invariants et covariants
fondamentaux qui figurent dans le tableau (A). Nous nous bornerons
à esquisser rapidement cette question en cherchant d'abord le
Hessien de la forme précédente, lequel faisant partie du faisceau l\
est lui aussi du type AFI -f- BX.

Or le Flessien contient les coefficients de la forme au second
degré, on a donc

A — a0b2 -f- 2[l0ab -)- r0a2 B — atb%2 -(- 2(Yah -f- a2

Pour déterminer ces polynômes, partons de la remarque que
4 X \ " — 3Y/2

voici. Si X est un carré, ou X f2, son Hessien H —:—7^—2—' io
I l'/'j 2ff'\ A

Ï2 f2- Ce Hessien vaut donc — 77 /'2, si A représente le

discriminant de f.
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Appliquons cette remarque à l'expression

H + e, X - i t
/. I

dont le Hessien doit être — — (H -j- eiX). Comparons
o

ce résultat à la règle générale énoncée ci-dessus ; nous avons les

conditions d'identification
2 oo eßlei — ek)

ao ei -iJo ei 4" To — "
g

»
I oc — ej)(e£ — eki

at e£ + 2fii e. + yi ^ •

Remplaçons aux seconds membres

3

par les valeurs égales

et

'1 3 ^
r, o ^i

Ï2 ' el ~ 12
1 6"

on obtient à l'instant
1

ao — i ' éo — ^ ' To — '

A c Ö2 p30 (J1 t-2 Tl T
Yoici donc le résultat

Le Hessien de la combinaison aH -f- bX est un polynôme du même

faisceau, égal à

h fr - ïfffj H + + f X (46)

Si on appelle E;les invariants irrationnels de cette forme all -f- bX,
on trouvera E; en exprimant que

h («H -j- bX)

ou bien,

(è2-f|a2 + E.«)H+ + E./;) X

se réduit à un carré. On a donc, pour déterminer E*, la condition

M'v +l)i -=E,«- +
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soit, après quelques réductions

^ «4+^-1«. (47)

Quant au covariant T ^ (HX' — XIF), c'est évidemment un

combinant du faisceau (X, H) ; si on substitue ali -f- bX à X, il se

reproduit multiplié par le facteur

-1(4V - g,b„* - g,a*,

IV. — Formes doublement quadratiques.

10. — On nomme forme doublement quadratique un polynôme
tel que

[m,n- 0,1,2) (48)

soit, en le développant suivant les puissances de l'une ou de l'autre
des variables,

F — X2y8 -f- 2Xij X0 r= 4 2•** 4" -4 i *' ~~b X •
1 'l<3)

Les coefficients X* et Yi, dans ces représentations, valent

X, — a-HX' + e*a\iX +'rt0i ' ~ ai*y + 2r/ilJ + aLi) • 00

Relativement à ces formes F doublement quadratiques, nous
avons à résoudre plusieurs questions importantes qui se rattachent
toutes, plus ou moins directement, au problème de l'équivalence
de deux pareilles formes par transformation linéaire uni modulaire.
Un rôle fondamental, dans toute la théorie, est dévolu aux
discriminants de F relatifs à chaque variable; ce sont les fonctions

D ix) X2 — XX et D„(v) Y2 — Y Y. (51)
// • ' 1 0 2 X •

'
1 0 2' ^ '

que nous représentons le plus souvent par les lettres X et Y.
Commençons par exclure le cas où X et Y possèdent des racines

multiples; à ce sujet on doit remarquer que les racines multiples
apparaissent ensemble dans les deux polynômes, ou que si X
possède une racine multiple, Y en possède une autre.

En effet, il est évident que X et Y sont des covariants de la
forme. Si on opère dans F une transformation portant sur les deux
variables et telle que
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le nouveau polynôme F' obtenu après avoir chassé les diviseurs
est encore doublement quadratique en x' et y' ; sauf des facteurs
constants, ses deux discriminants sont les transformés

X' | a'x' + b'f X (x) Y" =r (aV -f ß')4Y(r)

de X et Y par (52).
Au moyen d'une transformation semblable amenons une racine

de l'équation X — 0 à l'origine x 0. En vertu de la condition
F — 0, à cette racine x 0, simple ou multiple, correspond une
racine y de F, celle-là est une racine double. Amenons de nouveau
y à l'origine des y par une transformation linéaire. Supposons
maintenant que la première racine x 0 soit multiple pour
l'équation X =0; on trouve immédiatement pour satisfaire ces
diverses conditions les deux hypothèses que voici. Ou bien, on a

"oo "oi — "10 0» 011 bien a00 a0\ aQ2 C'est le Pre"
mier système qui est vérifié, y — 0 est une racine double de Y 0,

si c'est le second Y0 0, Y Y* est un carré parfait ; ce

deuxième cas n'existe par conséquent que si l'équation F 0 est
décomposable en deux équations linéaires en y.

De toute manière il est établi que X ne peut admettre de racines
multiples sans que Y en admette de son côté. Il importe de fixer
par une interprétation géométrique la signification du résultat
précédent.

La courbe F 0 est une biquadratique C4 rencontrée en deux
points seulement par les parallèles aux axes coordonnés. Elle
possède donc deux points doubles à l'infini, un sur chaque axe;
elle est ainsi de 2me classe et de genre i. Ce sera même, parmi les
courbes du 4m<> degré, la plus générale possédant deux points
doubles si, par une perspective, on a pris soin de les transporter
tous deux à l'infini.

11 est aisé de voir que la condition pour que C4 possède un
troisième point double est précisément que X admette une racine
double. On aperçoit immédiatement ainsi, à cause de la symétrie
des axes, l'équivalence cle la dite condition pour X et Y; c'est
donc simultanément que X et Y ont des racines multiples, et dans
ce cas, le genre de C4 s'abaisse de 1 à 0.

Si, dans F — 0, le coefficient a22 est nul, la courbe n'est plus
que du troisième degré. Cette cubique C3 contient les points situés
à l'infini sur les deux axes, et ce sont des points ordinaires; la
courbe, d'un genre égal à l'unité, ne deviendra unicursale que si X,
et par suite Y, admet une racine double.

Laissons désormais de côté les cas de dégénérescence, nos
discriminants Xet Y n'auront aucun facteur multiple, et leur degré ne
peut s'abaisser au-dessous du troisième.
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11. — Forme normale. Equivalence des deux discriminants. —

Désignons par lx l2 l3 les polynômes conjugués relatifs a X, par
m] m2, m3 ceux relatifs à Y. Nous savons que les U sont
linéairement indépendants; c'est dire que les quantités x2, x, 1 peuvent
s'exprimer en fonction linéaire homogène des polynômes h ;

exactement de même on peut remplacer y2, y, 1 par certaines
combinaisons homogènes des mi.

Cela étant, le polynôme F peut s'écrire, d'une seule manière,
sous la forme doublement linéaire

\ai/at 4- a2m2 -f- rsm3\lt -\- {h±m± -f b2in2 -j- b2 m?j \ l2

(Cl Illi -J- C2 II! 2 "F ('s '»3> 4; • (5o)

Or je dis que cette réduite à neuf termes se ramène en réalité à

un simple trinôme, et que, en numérotant autrement, si besoin
est, les trois polynômes m], m2, mz dont l'ordre importe peu, elle
s'écrira

i U na 4~ (f2l2ni2 4~ o3l3m3

Pour établir ce fait supposons, pour plus de simplicité, que les
li. lin ont été réduits à leur forme normale avec des discriminants
égaux à l'unité, et considérons une forme linéaire telle que

fi h -f" fï 4 -f- /s h ;

son discriminant est, par définition, égal à

l [(2/p!- mA cause des conditions d'orthogonalité entre les il se réduit à

ff+ ft+'11 1 '22 1 '33

Appliquons cette règle pour trouver les deux discriminants de la
forme bilinéaire ci-dessus (53), où l'on suppose, répétons-le, les
U et nii réduits à leur forme normale. On trouve à l'instant

X ~ {Cl II -f- bLl2 -(- 6-1 /3)3 -p \e2 ù -f" b2l2 -f- C£/g) 2 -j- I C 3 /1 -f- b3I2 -f- c3/3)2

Y [atmt 4- a2m2 4- asm3)'2 4- (faïUi 4- b2m2 bsm3|2 4-

bi //?! 4- c2m2 4- c3 msl8

Or, par supposition, les U sont les polynômes conjugués relatifs
à X comme les nii le sont à Y ; il faut donc que les seconds
membres des formules précédentes se réduisent tous les deux à la
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forme purement quadratique, par destruction des doubles
produits, de manière que

X Atf± -j- A2f -|- As/g et Y m Baiy ff- B2/»2 -f- Bsmg (5-ïJ

Mais d'après un lemme d'Algèbre élémentaire, les conditions
moyennant lesquelles les deux sommes de carrés

$ — [Gtx -f- éyv -j- -j- {a2x -j- ù2y -f- c%z)'2 -f- [ct3x -f- l\r -f- £g ")' •

— | Gtx -j- a2y + gz ~ ê + I f'i--1' + 4ar + 0 - ê + B'i-*' + CA' 4~ r3~l~ •

deviennent purement quadratiques des types

<î> m Atx' -f- A2r -j- A3c-2 et Y' ~ Bi.r'2 -|- B2y2 -f- Bs"-2

sont des plus limitées. On démontre, en effet, aisément la proposition

suivante.
Si & et <2>' sont tons deux purement quadratiques et que, en

outre, les constantes A,, A2, A3 soient différentes les unes des

autres, les trois polynômes

a±x + b±y -f- Ci" a2x -f--f>2y -j- c2z as.r -f b3y -f- csz

se réduisent nécessairement à des monômes qui, de plus, sont
linéairement indépendants.

Pour ne pas allonger, je laisse au lecteur le soin d'obtenir la
démonstration, facile, de ces divers points ; je me borne à en faire
l'application aux polynômes X, Y auxquels je reviens.

Remarquons que les discriminants des six polynômes U. nu ont
été supposés égaux à l'unité, et les polynômes eux-mêmes réduits
à leur forme normale. On a donc

si donc, dans la formule (54), pour X, deux coefficients étaient
égaux, par exemple A, A2, en remplaçant -f- f parla quantité
égale — If ce discriminant serait un carré parfait, cas exclu.

11 faut donc que les formes réduites (54 possèdent trois coefficients

distincts; dès lors, en vertu du lemme ci-dessus, les trois
trinômes

cii ni \ H- ci<iin2 -j- g3iii3 Y nii -}- b2m2 -j— h3m3 l'iiiii -}- c2m2 -j- c3m3

dégénèrent en trois monômes indépendants. 11 suffit de changer
au besoin la numérotation des nu pour leur donner la forme -

Gi na G 2 1112 G s Hl S



C. CAILLER
Du même coup l'expression doublement quadratique F apparaît

sous sa forme réduite, soit

F <?i /j m-i -f- a2l2m2 -f- a2/2m3 1 (55)

Quant aux discriminants, leur valeur correspondante sera

X — a" 1" -)- a* l~ 4- al' (56)
1 1

1

2 2
1

3 S
1 '

Y ~ a m 4- a m -4- a />> (57)
1 1

1

2 2
1

3 3
' '

Or, nous savons que des transformations unimodulaires
permettent de passer du système tL au système ni]. Les deux
théorèmes fondamentaux suivants s'offrent à présent d'eux-mêmes.

a) Les deux discriminants X, Y de la forme F sont transformables

l'un dans Vautre; ils sont équivalents et possèdent les mêmes
invariants rationnels gï, ou irrationnels ei.

b) .4 l'aide d'une transformation linéaire opérée sur y seul F
devient symétrique en x et en y.

Arrêtons-irous un instant sur les interprétations géométriques
de ces résultats, elles sont classiques et fort simples.

1° Soit d'abord le cas où la courbe F 0 est une cubique ; pour
qu'une cubique C3 se présente sous la forme F — 0, il suffit de

transporter à l'infini une corde ÀB de la cubique, puis 0
désignant un point quelconque de son plan, de prendre OA, OB pour
axes coordonnés.

Cela étant, l'équation X 0 détermine les abscisses des
tangentes menées par le point B, autres que celles qui touchent la
courbe en B ; il y a quatre tangentes pareilles puisque C3 est de la
sixième classe.

L'équation Y — 0 déterminera de même les tangentes menées
à C3 par le point A. Le théorème d'équivalence entre X et Y nous
donne donc la propriété fondamentale de la géométrie des
cubiques.

Qu'on mène par un point A d'une cubique les quatre tangentes à
la courbe telles que leur contact n ait pas lieu en L, le rapport
anharnionique de ces tangentes est constant quand A varie.

2° Supposons, en second lieu, que la courbe F 0 soit une bi-
quadratique C4 non dégénérée. Les points A et B sur la droite de
l'infini sont les points doubles de C4; la même interprétation nous
apprend que

1 II'est clair que cette même forme réduite peut être adoptée, même si !| m± ne sont pas
réduits à leur forme normale. Les formules qui suivent pour X et Y supposent simplement,
par exemple, que les L, ///i ont l'unité pour discriminant.
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Si, par les points doubles d'une C4 de genre 1, on mène quatre
tangentes autres que les tangentes aux points doubles eux-mêmes,
ces deux faisceaux de quatre tangentes sont projectifs.

3° Généralisons ceci en considérant une biquadratique gauche
C4. Soient A, B, C trois points de la courbe, choisissons ABC comme
plan de l'infini, OA, OB, OC comme axes coordonnés. D'après
ces conventions, les équations de C4 seront

ayz -j- bzx -f- cxy -f- a f -j- A -j- itz -j- o 0

a/yz -f- f/zx -}- c'xy -j- %fx -f- rfy -f- y'z -j- o/ zzz 0

Eliminons s, nous trouvons pour définir la projection de la courbe
sur le plan OX, OY, une équation doublement quadratique F — 0.

Donc, toujours par la même interprétation, si par la corde BC on
mène quatre plans tangents à C4, ils ont le même rapport anhar-
monique que quatre autres plans semblables conduits suivant
CA; ou bien

Le rapport anharmonique des quatre plans tangents menés à la
biquadratique gauche par une corde quelconque est constant.

4° 11 existe encore d'autres interprétations géométriques du
théorème d'équivalence ; la plus connue, en dehors des
précédentes, est celle fournie par le système de deux coniques. Elle
résulte aisément du rapport qui existe entre un semblable système
et l'équation doublement quadratique. Halphen a développé ces
relations, avec un grand détail, dans les chapitres 10 et 11 de son
second volume; je me borne à citer ici la proposition qui traduit,
pour deux coniques, le théorème d'équivalence entre les deux
discriminants X et Y.

Deux coniques étant tracées à volonté dans un plan, le rapport
anharmonique des points d'intersection, pris sur Vune des coniques,
est égal au rapport anharmonique des tangentes communes pris
sur l'autre1.

12. — Formes symétriques. Conditions cVéquivalence. — Le
problème à résoudre consiste à trouver les conditions à satisfaire
pour qu'une forme F soit équivalente à une autre F' ; la première
forme doit se changer dans la seconde quand on exécute sur elle
les deux transformations linéaires unimodulaires

^ ex ~F b cy -j- d ^Cl X -j- h v T —|— (I
^

Une condition d'équivalence se rencontre immédiatement ; il est
clair en effet que si F se transforme en F', les deux discriminants

1 Hai.imikn. tonctions elliptiques, ïme vol. ]
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doivent être équivalents deux à deux, X à X' et Y à Y'. En écrivant
les conditions de cette double équivalence entre les discriminants,
on se procure toutes les transformations possibles de F en F',
selon le mode susindiqué (58).

La condition précédente, qui est nécessaire pour l'équivalence
et fournit toutes les équations de la transformation, n'est pas
suffisante. Prenons en effet une forme F et essayons de la reconstruire

à partir de ses discriminants X et Y.
Soient et les invariants irrationnels communs à X et à Y, U les

polynômes conjugués de X, nu ceux de Y ; ces polynômes sont de
nouveau déterminés par les formules (25), et leur discriminant,
identique pour U et nu, vaut comme nous savons, k[et — ej) [et — ef] -

On a entre les U l'identité

—ek)l]=0 (59)

tandis que X est donné par l'expression

y (60)

Soit donc

F=2V<"li' (61)

la représentation bilinéaire de F ; son discriminant relatif à y
trouvé suivant les règles du § précédent, sera

IXy (.»•) — eß K' — (6"2>

Il faut que Dy coïncide avec X ; en comparant (59) (60) et (62),
on voit que la condition nécessaire et suffisante de cette égalité est

• pi \ej — eté

1/Ä"

la quantité q désignant une indéterminée.
On en tire

' jej " |/P —

|/A
(63)

tels sont les coefficients à porter dans (61). On voit, par ce calcul,
que si X et Y sont donnés, F pent prendre une infinité de formes
différentes qui se distinguent les unes des autres par la valeur du
paramétre Q.
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Si donc une autre forme F' a des discriminants X', Y'
respectivement équivalents à X et Y, elle donne lieu aux équations

6;
V'— y.a'Xm'i avec at= J eiV?'

/A
Or toute transformation qui changerait F en F' changera aussi

X en X7, Y en Y', c'est-à-dire /• en l\ et mi en mi ; ainsi donc
l'équivalence entre F et F7 ne saurait avoir lieu à moins que q' q.

Yoici donc un nouvel invariant absolu qui vient s'adjoindre aux
deux autres g2, g3, poui1 que F se change en F7, en même temps
que X en X7 et Y en Y7; il y a, sans plus, trois invariants g3, q
dont l'égalité est nécessaire, mais aussi suffisante, pour la possibilité

de la transformation.
Les expressions at ci-dessus dépendent de trois irrationnelles

i/o — et, il est aisé de les remplacer par une seule irrationnelle.
Soit en effet Z un nouveau polynôme biquadratique en possédant

les mêmes invariants que X et Y ; nommons-en K le J lessien
et m les polynômes conjugués.

Posons Q —- — 5
; alors, d'après la formule (377)

2j/Z

en substituant ces trois valeurs dans l'équation (61), on voit que
tout polynôme F aux discriminants Dy X et Dx — Y se présente
sons la forme canonique trilinèaire

2j/5Z2(<7 ~ III Il,

Répétons que, dans cette forme, le polynôme Z qui contient l'arbitraire

s est lui-même quelconque, pourvu qu'il ait les invariants
et en commun avec X et Y.

Le théorème précédent, facile à vérifier par le calcul direct,
peut encore s'énoncer comme suit:

Soient trois polynômes en x, y, et z du 4me degré X, Y, Z ;

supposons-les équivalents ou doués des mêmes invariants û\. Soient
encore h, nii, ni leurs polynômes conjugués ; alors la forme triplement

quadratique
G 2 (<7 — ek)ii"'int " <64)

admet, par rapport aux trois variables, des discriminants Dx, D v, D -

qui sont
D* 4AYZ Dy 4AZX — 4AXY ,65)
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Toutes les propositions qui précèdent concernent des

polynômes F quelconques ; nous voulons en faire l'application au cas
le plus important qui est celui d'une forme F. non seulement
quadratique en x et en y. mais encore symétrique par rapport a ces
lettres. Il va de soi que. dans ce cas. X et 4 d'une part et les h- nu
de l'autre, ne différent que par le nom de la variable, x chez les

uns. y chez les autres.
Parmi les diverses formes Z possédant les mêmes invariants

que X. la plus simple, qui s'offre d'abord, est la forme transformée
de X par changement de x en r.. de sorte que de même que
Y X y on ait aussi Z X r- (le choix particulier présente un
intérêt spécial dans l'étude du théorème d'addition des fonctions
elliptiques. Toutefois nous ne l'adopterons pas ici. et nous ferons

les valeu rs qui s'en déduisent pour les polynômes conjugués /y son t

donc celles consignées sous le n° 45

Cherchons, pour le cas actuel, la constitution du polynôme
G 64 en fonction explicite des variables x\ y. z. et des coefficients

du polynôme X cpie j'appellerai aussi /h.. Yous avons

X fxa: — <7f .V4 — 4 nt x* — (><y2 ./ - — h.5 — nA

Développons G suivant les puissances de ~ et remplaçons les
nt par leurs valeurs 45 il vient

G m, — ef. h"',», p° — -61 - — P*

P 0 — 2 [ p2 — Cgi 4m% — • f,o — Ci! /2ms — y yc Lmz

P 1 — 2 e-, ' p% — Po /i rnx — e% pz — (y — ez y — y 4 mz

P 2 — — 2 — 'mV p2 — pz — ••• •

et il ne reste plus qu'a exprimer ces trois quantités en fonction
des variables x. y et des coefficients de X.

Remarquons pour cela que si deux polynômes doublement
quadratiques. et en outre symétriques. F^. — comme le sont les
quantités Pi — deviennent égaux quand x~y> ce qui constitue le
cas de coïncidence, ces polynômes ne diffèrent l'un de l'autre que
par un terme du type a x — y -.

En effet le quotient Exy — doit être bilinéaire. entier, et en
x — y

outre gauche relativement à la permutation des deux variables.
En écrivant ce quotient sous la forme axy -f bx -f-cy -h d. il faut
donc que

Cl 0 <7 0, /; y r — U
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et l'on a bien hxy — Mxy a [x — y)'2. De cette remarque il résulte
qu'une fonction telle que Lxy est complètement définie quand on

connaît les deux valeurs \,xx et (^ ^ \ ; c'est cette observa-
J x=y

tion que nous allons employer trois fois de suite pour déterminer
les quantités P$,

A l'égard de la première, on remarquera que dans le cas de
coïncidence x y, on a /. /«.; alors, en vertu de l'équation 27

P° s'annule. On a donc P° — Ajif— y y2 ; mais, comme d'autre part.

et que la somme nous est connue d'après 22 on tire

A =: 4pA et P° ~ 4[/A(,r — y)2

Appliquons le même raisonnement à PAJ » d'après l'équation 28';
on a dans le cas de coïncidence

P(0= -.yix -2[/Afxx

Or, en invoquant le résultat 32'

/ ô2pi\ ^ „ 9
' ~ ^ ' 'J ~ e*} ~ 3x" t7 A ;

dédoublons donc la forme fxx biquadratique en une forme doublement

quadratique et symétrique; on trouve immédiatement,
d'après ce qui précède, l'équation

fxf =~ aox~J
2

H~ -cixxy[x -j- r) -J- a2(x~ -}- 4,ry 12j -{- 2«3j.y -f- r) ~\~ (U (661

et
Pd) — 2[/Jfxy

Soit enfin P(2)—— 2(<q -f e2e3)(e2 — e3)lyn± -f ; nous avons

0, - e2l(e3— éM + et 3e2es — — — ep - i ^ ;

donc

3 [e -j- le (6 — 6 zz: — ——— — - o- / g — p jv 1
1

2 3M 2 3 2 4 D2! 2 S

L'Enseignement mathém., 16e année 1914. 90
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Cette identité, et ses analogues obtenues par permutation,

amènent P* à la forme

Désignons maintenant par \\xx le Hessien de fxx, et prenons de

nouveau le cas de coïncidence. En vertu des formules (36;), nous
avons

C -(Sr"L,=-f 2,;'

Appliquons au Hessien la relation générale (32), nous avons

2 fi=- 4HL - ¥ tK-~ + •••]=- «C + v, •

Voici donc les conditions à employer pour déterminer Pxy

Pxx ^ VA Hxx ' et ~ 3^ H-rx ;

elles donnent, après un court calcul, par dédoublement du
Hessien Hxx

formule dans laquelle H a la signification suivante

4Hxy — 4(aof,a — a[)x2y2 4- 4(a0as — ata2)xy(x + y) -j- (r0a4 — (x +y)2

-f 8{atcrà —a^xy 4~ 4(ata4 — a%at)[x 4- r) + 4(û2a4 — /*) (67)

Résumons. Si une équation doublement quadratique et symétrique

en x, y admet pour discriminant la forme

X ~ fxx a0xl 4~ ie1xri 4-

elle a pour expression

Hxy + zfxy -z2(x —0 (68)

où les symboles ïxy et Hxy ont les valeurs (66) et (67), tandis que z
désigne une arbitraire.

De plus, le discriminant relatif à z de cette formule (68) est égal
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xx fyy i ^1
sous la forme résolue
au produit fxx fyy ainsi que nous savons, On peut donc écrire (68)

fxy V'fxx !yy /gm3- 2(x-yf
Enfin une dernière forme de la même relation est digne de

remarque, comme s'étant présentée à Euler 1 et Lagrange 2 dans
leurs recherches sur le théorème d'addition des intégrales
elliptiques. La voici.

Dans le carré remplaçons le double produit

— 2\/fxx( par sa valeur tirée de (69), il vient'xx'yy

fxx 4" fyy

(x — y
yy "'xy ^ _

Or, si I on fait
Q fxx + fyy 2/xy

oc y ~

(X — Jl»

et qu'on remarque les identités

nf.vy\_ii .*

v (>x yxx•et i öä 2 xy ~ yxxv / x—y \ / x=y

on voit que la valeur de coïncidence est

f -YX• XX ^x.2 ^ n
Q-xx — y — %fxx ~ -f- 4c2

D'ailleurs Qxy est entier, symétrique et du second degré en
x et y ; le terme du second degré est évidemment

X4 -f- i4 — 2x2rJ
°° _ r)ä - °0 (* +

La valeur de Q se dégage de suite de ce double renseignement,

elle est

Qxy " ao (x ~f~ j)2 ~f~ + y) -f- 4tf2 •

La nouvelle forme cherchée pour l'équation (68) se déduit de là,
la voici :

V/« - Vr
x — y

yy _ «B(x +yf + + y (70)

1 Eulkr. Institution es Cal. Tntegr., vol. 1, Sectio secunda c. VI.
2 Lagrangk. Oeuvres, éd. Serret, II, p. 533.
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13. — Determination des invariants. — Continuons à nous

limiter aux équations doublement quadratiques symétriques. Ces

équations possèdent comme nous savons, trois invariants qui sont
g.2, gz, et z ; la détermination des invariants est extrêmement
simple. Car, en premier lieu, et gz sont les invariants rationnels
de la fonction D — f ; 1Q étant donné ils se trouvent ainsi

y !xx ' xy
d'une manière immédiate.

En second lieu, on a identiquement, comme nous savons,

Vxy- l nxy+ ~ ~ .ri2] ; (71)

à leur tour les expressions fxyetIlsont toutes connues quand
fxx, ou Fxy, sont donnés ; il suffît donc d'identifier les deux
membres de (71) pour avoir le dernier invariant cherché s. On

peut même, avant de procéder à cette identification, faire x y,
ce qui ramène l'équation précédente à la forme plus simple

^XX — ^xx "h *fxx\ ' C ï)

sous l'une ou l'autre de ces diverses formes, on voit que le
problème de la détermination de s n'offre aucune difficulté.

Halphen a donné, pour trouver les trois invariants, une règle
sur laquelle il nous faut revenir1; il propose de former une équation

caractéristique dont les racines seraient proportionnelles aux
trois quantités z — et. Mais la page 366 où est formée cette équation

contient, à côté de quelques obscurités, une erreur qui
compromet singulièrement le résultat énoncé.

Je suppose qu'on ait sous les yeux le passage en question ; on y
verra que l'iiiustre auteur propose de considérer la forme

S¥xy + (* —J)2

comme une fonction des deux variables

xy — l x + y r]

Le discriminant de la forme quadratique en £rj ainsi formée
serait précisément l'équation caractéristique. Quelques essais
suffisent à montrer l'inexactitude de la règle; la raison en est
facile à découvrir.

1 Halphiïn. Fonctions elliptiques, 2»»« vol. p. 344, 364-366.
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Prenons généralement la forme

F*y <(H*y + hfxy + c (* ~ fi*' <'3)

à trois coefficients arbitraires ; cherchons à en former le
discriminant Dy relatif à y.

Nous savons que Dy est du type AH^ + Bfxx et que les
constantes A et B sont quadratiques en a, by c. De plus, si a b 0,

Fxy est un carré et doit s'annuler; c'est donc que A et B sont
linéaires en c.

Considérons en second lieu le cas a 0, et soit

fxy= V2 + + Xe

Le discriminant de fXiJ est

celui de

x; - x0x, - bxx

Fty~hfxy+ '

est égal à

{hXi-cxY-(bX+c)(bX0 +cx*) -b> Uxx~ bcfxx

Enfin, et en dernier lieu, sj dans (73) on fait a= 1, b=z,
c — — z2, le polynôme ¥xy se confond avec le premier membre de

(68), le discriminant est alors égal au produit

^
/4s8 — %. — s? f03 ' XX

Il suffit de rapprocher ces trois cas particuliers pour obtenir le
discriminant Dy de la formule générale (73), sous la forme

Dy= b»+ ac) Exx - + f ah + bc^ (74)

on y lit, une fois de plus, ce fait fondamental qu'il existe une
simple infinité de polynômes symétriques Fxy possédant un
déterminant donné.

Voici maintenant la conséquence à tirer de (74), Parmi ies formes
Fxy, à quel caractère reconnaître celle qui sont décomposables en
facteurs linéaires en x et en y La réponse est immédiate : il faut et
suffit que le discriminant Dy soit un carré parfait. Or, nous con-
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naissons les seuls carrés contenus dans la relation (74); ils
dépendent de la condition

4he -i- ab <n\a2

61
4 (b2 -j- ac)

qui peut s'écrire également

V'— aet) (7 — e{b — + ° ' (75)

Cette condition est donc réalisée si b aeé. quelle que soit la
valeur de c ; ainsi

Exy + Gifxy + C(X — i)2

est toujours décomposable en facteurs linéaires. C'est ce qu'on
peut d'ailleurs vérifier à l'instant; car Hxx -f~ etfxxse réduisant au
carré

—
4 h — (a^2 ~t~ + y)2

on obtient le polynôme décomposable

Exy + eifXy + c(x — y)2 (axy -b + j) + y)2 -f B(.X — y)2 (76)

Mais, c'est ici le point délicat, les facteurs de la décomposition
ne sont pas symétriques en x et en y, ils ne sauraient donc s'exprima-
en § et en y.

Soit D le discriminant de FXy par rapport aux variables £, rj ;

si D s'anaule, FXy est décomposable en facteurs linéaires en £, rt ;

ou, si on préfère, FXy se partage alors en facteurs bilinéaires
relativement à.r, y et symétriques. Aussi le discriminant de la forme (76)
n'est pas nul, quoique cette forme soit décomposable, parce qu'elle
l'est de manière non symétrique.

Il est d'ailleurs facile de trouver le discriminant D de la forme
générale par rapport aux variables £, 7. La fonction D est du
troisième degré en «, b, c; la condition D~ 0 entraîne la relation (75),
et comme elle n'est pas vérifiée si b — aei, elle le sera forcément en

annulant le second facteur de la dite relation. On conclut de là

D=4n (ae) + bei + c — ^ a) ; i =z 1, 2, 3 (77)

le coefficient numérique de cette formule se vérifie sur un essai

particulier, par exemple en faisant a c 0, b i, Fxy fxym
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V. — Les Intégrales elliptiques.

14. — Les résultats précédents s'appliquent immédiatement aux
intégrales elliptiques de première espèce. Convenablement
interprétés ils contiennent la théorie complète de la réduction de ces

intégrales à la forme normale de Weierstrass sans aucune
résolution d'équations de degré supérieur; en outre, et du même coup,
ils conduisent au théorème d'addition des intégrales elliptiques.
Cette fusion en une seule formule de deux théories qui sembleraient

de prime abord être bien éloignées l'une de l'autre est des

plus remarquables; elle découle tout naturellement des théorèmes
concernant les équations doublement quadratiques.

Soit F un polynôme doublement quadratique que je suppose
cl'abord non symétrique

F X y2 + 2XtJ + X0 Y + 2Yt* + Y0 (78)

Posons F — 0, et différentions, il vient

(^ST -f- — 0 ; (78')

on bien, à cause de X2z/ + X1 -f- l/X* — X0X2 [/X, et
4

2 :v ~h 4 =zr \/ 4

X'. + '/l — il •• (79)
ex V*

Cette formule (78) donne donc une transformation algébrique
d'une intégrale elliptique en une autre 4^=

• Pour obtenir5 1 H
j/X (/Y

cette transformation explicitement, il faut, X étant donné,
retrouver la forme F (78), c'est-à-dire décomposer X sous la forme
X^X; — X0X2. Une semblable décomposition est possible de
ce * manières, puisque X1 contient trois paramètres et qu'un coefficient

arbitraire peut passer de X0 à X2.
À chacune des décompositions ci-dessus correspond une forme

F(78), partant un polynôme Z ; d'après cet aperçu il semblerait que,
X étant donné, il lui corresponde oc 4 polynômes transformés Y.
S'il en était ainsi, la différentielle pourrait, sauf un facteur

constant, se transformer par l'intermédiaire d'une équation
doublement quadratique en toute autre différentielle elliptique

Cy"

1 Pour ne pas allonger, je supprime dans ce § les discussions de signe des radicaux • le
lecteur fera bien d'ailleurs de leur vouer l'attention qu'elles méritent.
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Mais nous savons que, en réalité, les choses se passent différemment.

Au lieu d'être quelconques les polynômes X et Y sont toujours
équivalents; comme conséquence de ce fait, parmi nos co 4

transformations de X en Y, il en existe oc1 qui transforment X en un seul
et même Y. Par exemple, lorsque F est symétrique, Y ne diffère
de X que par la dénomination de la variable ; les dites co 1

transformations constituent l'intégrale algébrique de l'équation d'Euler
(79) et correspondent au théorème d'addition, les autres co 3

transformations changent X en ses équivalents.
Reprenons d'abord le cas général d'une transformation non-

symétrique F — 0, et supposons donnés les polynômes X, Y aux
invariants communs g2. gs.

Il existe oc
1 formes F dont les discriminants D?/ et coïncident

respectivement avec X et Y ; nous avons appris à construire toutes
ces formes à la page et nous avons vu qu'il s'y introduit un
troisième polynôme arbitraire Z possédant en commun avec X et Y
les invariants g*2, g3.

Les trois discriminants de la forme F, triplement quadratique
ainsi constituée sont, comme nous l'avons vu,

Dar =«4AYZ Dy 4ÄZX Ds 4AXY (80)

Si donc on différentie, par rapport aux trois variables, l'équation
F 0, comme on l'avait différentiée en (78/) par rapport k .v et
à y seulement, on obtient

|/Ivxdx + |/ETydy 4- j/RT^ 0

ou bien
Jxrfk 0. |81)

i/X ^ (/Y ^ l/Z

Telle est la formule générale que nous avions en vue.

Pour l'appliquer reprenons F symétrique en :v et en y ; donnons-
nous X — fxx et Y fyy, choisissons enfin Z 4s3 — g2z — g.,
où g2 et g3 sont, comme toujours, les invariants de fxx.

Dans ces conditions, l'équation F 0, s'écrit sous plusieurs
formes équivalentes dont nous avons vu plus haut les principales ;

ce sont

H*y +=4= o

V4» - Vfyy

\ x — y

fxy L'txxÇjy

ao(x 4- yf 4- W* + y) 4- 4 4- -)

(82)
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Toutes ces formules donnent lieu à l'équation différentielle

+^ - —t (83)
Vf.i-x f/j/.'/ v/i"3 02z o3

Si en premier lieu, on suppose que clans le système (82), z représente

une constante arbitraire, dz est nul; dans cette hypothèse,
le système (82) nous met en possession de l'intégrale générale
de l'équation cl'Euler, comme on le voit dans l'équation (83) dont
le second membre est nul d'après l'hypothèse. Je n'ai pas à exposer

ici par quelles transformations faciles, on en conclut le théorème

d'addition des fonctions elliptiques.
Si, en second lieu, nous donnons clans (82) à la lettre y la

signification d'un paramètre constant, l'équation différentielle devient,
quelle que soit la valeur de cette indéterminée,

doc dz

i//-" vAprrvrry
clans cette acception, le système f82) opère la réduction d'une
différentielle elliptique quelconque --===, à la forme normale de

V ïXX

Weier s trass
\/r±z* -y2-- — gz

Faisons enfin x y, la première formule (82), donne la relation
entre x et 2 sous la forme

H
_ XX

~r ' (85)
* XX

équivalente, d'après (83), à l'équation différentielle

2dx dz

i/7~ l/TT FT '
V 'XX V TS" g2Z —

C'est la formule de duplication obtenue, pour la première fois,
par M. Hermite. Par son moyen, le même problème de la réduction

à la forme de Weierstrass se trouve résolu rationnellement.
Le procédé usuel, pour démontrer cette formule remarquable,
consiste à la déduire des équations générales (43) et (44) relatives
au polynôme du 4me degré; ce procédé a le défaut de laisser dans
l'ombre la parenté qui unit la transformation (85) avec le théorème
d'addition.
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Supposons toujours donnée la forme fxx, faisons-lui
correspondre un argument elliptique u tel que

H T 1

XX A XX
P« -J- ' P«=~-W ' (87)

'XX f1 XX

qui donnent, comme on vient de voir

2d,

Cr
— — du

XX

Soient de même c et w des arguments elliptiques correspondant
à fyy et à Z ; on a donc

pv -hi, />'"=-7mlyy Tyy v 'yy

K U 2dz
P'"--z- Z¥2- 7?=-^' |90>

De ces formules (87) à (90), nous tirons

+ eifxx li
pu-ei - ~ -=4T> donc 2—; (91)

'CCX IXX V înrr

on a ainsi
l£ "Ç az7.

/p~'i W' (92)

Portons ces valeurs dans l'équation doublement quadratique
G 0, écrite sous sa forme trilinéaire (64j, ainsi que dans l'équation

différentielle correspondante (83), nous obtenons le théorème
suivant;

Si trois arguments elliptiques u, v, w sotit liés par la condition

— ek){/[pu — ei) [pv — et) (pw — et) 0 (93)

on a aussi

d(u -f- c + »') 0 ou u -f- v + w — const. (94)

CT i(ll)
Remplaçons les y/pu — ee- etc... par leurs valeurs ; le théorème

d'addition précédent prend un autre énoncé.

1 ^xx rePr®sente ici le covariant T du tableau (A). K et U sont, de même, le Hessien et le
covariant en question relatifs au polynôme Z — 423 — g2z — g2
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La somme

h 2 — "s) aiïtcjit'ffi4- (e3 — et) a2 icj2vg2iv + [et — e2)vzuazvcr3«< (95)

qui est nulle pour u v w — 0, le reste quand u -j- v T~ w — 0 ;

en outre, à cause de la parité des <sL (u), la même relation est satisfaite

pour toutes les combinaisons des signes ± dans la formule

u ± u ± w 0

Ce résultat est conforme de tout point à l'équation bien connue
dans la théorie des fonctions a

2 (e/ — (") (>'1Gi("')~Y~115 (" ~
2

"
: *% '

il valait la peine de noter ici combien cette formule se rattache
étroitement à l'équation d'Euler et aux polynômes doublement
quadratiques.

C. Cailler (Genève).

SUR L'ORTHOGONALISATION DE FONCTIONS

1. — Considérons le système

?0- "•

de fonctions arbitraires et linéairement indépendantes de la
variable réelle x. Exprimons pareillement par ipr celle parmi les
expressions de forme

"oh) + «1?! + ••• 4- ®,._l + 9r '

où les a sont des constantes réelles, qui rend l'intégrale

X"u

("o?o T" "i?i T ••• ar \ \ T" ?r)2
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