Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 16 (1914)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: N° 34. — Examens de mathématiques à Oxford.

Autor: Dumur, J.-P.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 09.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

l'uniformité des tables de calcul et des tableaux officiels de disposition des opérations.

IV. — Le quatrième et dernier chapitre est consacré à l'historique de la question des études de géomètre en Prusse et en Bavière. Le chapitre se termine par des propositions de réforme qui semblent avoir trouvé un appui considérable dans les cercles intéressés. Ces propositions seraient : 1. Les études de géomètre ne devraient être accessibles qu'à des candidats possédant le certificat de maturité; 2. La durée minimum des études devrait être portée de deux à trois ans; 3. La pratique préalable d'une année comme « Elève » devrait ètre maintenue et le diplòme définitif ne devrait ètre accordé qu'après plusieurs années de pratique.

Tels sont les principaux points exposés par les auteurs dans leur intéressant rapport sur la préparation mathématique des géomètres.

L. CRELIER (Bienne-Berne).

ILES BRITANNIQUES

Nº 34. — Examens de mathématiques à Oxford.

Mathematical Examinations at Oxford¹, by Mr. A. L. Dixox, Fellow and Tutor of Merton College, Oxford.

- I. Examens pour le titre de « Bachelor of Arts ». Il faut remonter à l'année 1800 pour trouver les origines du système d'examens actuellement en vigueur. A cette époque, chaque candidat pouvait se présenter soit à l'examen habituel de passage, à la fin de chaque terme, soit à un examen plus sévère à Pâques, auquel on accordait des « honours » selon le mérite. En 1807 des « honours » en « disciplinis mathematicis » ainsi qu'en « literis humanioribus » fûrent introduits. En 1852 on intercala le « First Public Examination » ou « Moderations » entre les « Responsions » et le « Public Examination ». A partir de cette époque, il était donc nécessaire pour obtenir son titre de passer les examens suivants :
- 1. « Responsions » un examen de passage en latin, grec, arithmétique et à choix Euclide, livres I, II, ou algèbre.
- 2. « Moderations » un examen de passage ou d' « honours » en « Classics » avec à choix logique ou Euclide, livres I, II, III, et algèbre.
- 3. Un examen de passage ou d'« honours » sur deux branches finales, l'une devant être « Literae Humaniores » et l'autre pouvant être à choix les mathématiques, les sciences naturelles ou le droit et l'histoire moderne.
- « Honours » en « Moderations », en « disciplinis mathematicis » pouvaient être également obtenus à la suite d'examens sur les mathématiques pures, tenus deux fois par an. Pour les examens finaux « final honour school » figuraient aussi les mathématiques appliquées, « Mixed Mathematics ».

Les règlements concernant ces examens se trouvent dans une brochure intitulée « New Examination Statutes, 1852 ». On y trouve une copieuse liste des livres en usage (80 à 90 titres).

Ce n'est qu'à partir de 1886 que les étudiants en mathématiques purent s'abstenir d'un examen de passage en « classics » dans les « moderations ».

¹ Un fasc. 117 p.; Prix 6 d. Wyman and Sons, Londres.

Depuis cette époque, les candidats qui ont passé les « Responsions » et qui désirent se vouer aux mathématiques ont encore deux examens à subir : les « Mathematical Moderations » au bout d'un ou deux ans et le « Final Honour School of Mathematics » après trois ou quatre ans.

A titre de renseignement, l'auteur nous expose les règlements concernant ces deux examens, publiés en 1877 par le « Board of Studies ». Les connaissances requises n'étaient pas très étendues. Pour les derniers examens on n'exigeait pas de la part du candidat une spécialisation dans l'une ou l'autre des branches des mathématiques, ni une connaissance approfondie des développements modernes. Par contre on accordait plus d'importance à son habileté dans la résolution de problèmes variés sur divers sujets, à son exactitude et à sa rapidité dans ses calculs. On ne craignait pas, à cette époque, les questions à artifices. L'éducation universitaire consistait principalement à développer la rapidité de pensée et la souplesse de l'esprit et non pas à former des hommes de connaissances profondes et étendues.

Actuellement il en est tout autrement, on insiste particulièrement sur l'acquisition de connaissances solides et d'une ampleur suffisante sans perdre son temps sur les à côté du sujet et sans chercher à obtenir une habileté tout à fait superflue dans les manipulations. Par diverses réformes, on s'est efforcé:

- 1. D'introduire plus tôt l'étude des mathématiques appliquées ;
- 2. D'accorder une plus grande liberté dans les méthodes de travail afin d'éviter un entraînement excessif dans les manipulations;
- 3. De permettre aux candidats une certaine spécialisation dans quelques sujets avancés en accordant quelque liberté dans le choix des sujets d'examen;
- 4. De donner une place importante à la théorie de l'électricité à l'examen final.

Le rapport nous fournit l'histoire détaillée des réformes successives qui furent apportées aux programmes d'examens à partir de 1884. En 1911 (programme actuellement en vigueur) les sujets d'examen pour les « Moderations » étaient :

- 1. Algèbre : Théorie des équations ; Trigonométrie plane et sphérique ;
- 2. Géométrie pure ; géométrie analytique à deux dimensions ; géométrie analytique à trois dimensions jusqu'aux propriétés les plus simples des surfaces du second ordre, la théorie des surfaces homofocales étant exclue.
- 3. Calcul différentiel et intégral avec applications simples à la géométrie plane et de l'espace; équations différentielles;
- 4. Les éléments de la statique des solides et des fluides; les éléments de la dynamique des points matériels et des solides rigides à deux dimensions.

Pour le « Final Honour School of Mathematics » de 1913, les candidats étaient examinés sur les sujets suivants :

Algèbre; théorie des équations; trigonométrie plane et sphérique; séries et produits infinis;

Géométrie pure et analytique à deux et à trois dimensions;

Calcul différentiel et intégral ; équations différentielles.

Les éléments de la théorie des fonctions d'une variable complexe, avec applications aux fonctions élémentaires et aux fonctions elliptiques.

Les éléments du calcul des différences finies.

Les éléments du calcul des variations.

Statique et dynamique des points matériels, des solides rigides et des cordes; les éléments de la dynamique analytique; statique des barres légèrement inclinées.

Hydrostatique; les éléments de l'hydrodynamique; vagues liquides.

Attraction ; théorie du potentiel.

Electrostatique; magnétostatique; courant électrique constant; électromagnétisme; electrodynamique; courants diélectriques.

Vibration des cordes; propagation du son; vibration de l'air dans les tuyaux.

Les éléments de l'optique géométrique.

L'astronomie sphérique.

II. — Examens pour « scholarships » universitaires. A Oxford il existe deux « scholarships » universitaires en mathématiques. Ce sont en réalité des prix accordés après examen aux meilleurs candidats de l'année. Les candidats pour le « Senior Scholarship » doivent avoir passé les examens pour le titre de « Bachelor of Arts », mais ne doivent pas avoir achevé sept années d'études depuis leur immatriculation. Les candidats pour le « Junior Scholarship » doivent être des non-gradués, immatriculés depuis moins de deux ans. Chaque examen comprend généralement 6 parties.

Il y a une trentaine d'années, le « Junior Scholarship Examination » comprenait l'algèbre; la trigonométrie et la théorie des équations; la géométrie pure; la géométrie analytique; le calcul différentiel, problèmes. On n'exigeait aucune connaissance du calcul intégral. En 1903, on introduisit le calcul intégral et les équations différentielles. A partir de 1904 on accorda une plus grande liberté quant aux méthodes utilisées. Actuellement l'examen porte toujours exclusivement sur les mathématiques pures, mais le champ des connaissances requises va constamment en s'accroissant.

Le « Senior Scholarship Examination » est une récompense et un encouragement pour les candidats qui désirent continuer l'étude des mathématiques après avoir obtenu leur titre. Les sujets d'examen étaient les mêmes que ceux du « Final Honour School », mais on en exigeait une connaissance plus étendue. Les six parties se répartissaient comme suit : I, II mathématiques pures ; III problèmes sur les mathématiques pures ; IV, V mathématiques appliquées ; VI problèmes sur les mathématiques appliquées. Ce règlement subit diverses modifications jusqu'en 1911, époque à laquelle l'examen fut aboli. Actuellement le « Senior Scholarship » est accordé au candidat qui présente la meilleure dissertation sur un sujet de son choix en mathématiques pures ou appliquées.

On trouvera en appendice une reproduction des questions d'examen pour les « Moderations; Final Honour School; Junior University Scholarship; Senior University Scholarship » des années 1885 et 1911. Par leur comparaison, le lecteur pourra se rendre compte des modifications introduites et des tendances actuelles.

J.-P. Dumur (Genève).