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SUR DEUX APPLICATIONS
DES COORDONNÉES INTRINSÈQUES

1. — Dans un article « Sur quelques généralisations de la
transformation de M. E. Koestlin », qui paraîtra prochainement dans
les « Annales cle VAcadémie de Porto », nous avons traité Yarcuïde.
Nous y avons généralisé cette courbe 1 en remplaçant l'axe recti-
ligne par une axe curviligne (voir la définition au n°2). De même
nous avons mentionné plusieurs générations et les propriétés
principales des courbes, dont l'équation intrinsèque est

(1) R — ae"1^ cos //ç ou (l'j U := aoe;n^

Ces courbe's, que nous avons nommées logarithmoïdales, ont
été signalées comme semblables à leurs développées successives

par M. G. Loria 2, nous les avons traitées comme causticoïdes de
la spirale logarithmique2. La logarithmoïde [n — 1) a fait l'objet
de plusieurs articles de M. Koestlin; (voir Mitt. math. nat. Verein
Württemberg, (2), 9, 1907, p. 21-30; (2), 11, 1909, p. 54); elle a
aussi été mentionnée par d'autres auteurs4.

Dans ce qui suit, nous allons déduire une relation intéressante
entre les trois courbes associées à une courbe (C) à l'aide des
coordonnées intrinsèques.

2. — Si l'équation intrinsèque de (C) a la forme

(2) (C) EE fis H) ~ 0

on aura la courbe de Mannheim, représentée par l'équation ponctuelle

(3) (M) r) 0

1 Voir la thèse de M. Kokstlin : Über eine Deutung der Gleichung, die zwischen dem
Bogen einer Kurve und der Neigung der Tangente im Endpunkte des Bogens einer ebenen Kurve
besteht, Tubingen, 1907. — H. Wiki.bit.nkr, Spezielle ebene Kurven. Leipzig, 1908, p. 373.

2 Voir Spezielle Ebene Kurven, 2» éd., Leipzig, 1910-11, t. II, p. 260.
3 Voir Nils Gram?, Über Kurven mit gleichartigen successiven Developpoiden, thèse, Lund,

1894 ; G. Loria, II, p. 309.
4 L• Braude, Über einige Verallgemeinerungen des Begriffes der Evolutoïde, Archiv der

Math, und Physik (3), XX, p. 44-52; E. Turkikrk, L'Enseign. Math. XV, 1913, p. 236 ;
H. Wiiîliîitnkr, Spez. Eb. Kurven, p. 373.
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comme lieu du premier centre de courbure quand on fait rouler 1

(C) sur l'axe des x.
En cherchant à l'aide de l'équation

(4) cls — Rr/cp

le rayon de courbure comme fonction de sa déviation çp, on aura
l'équation intrinsèque sous la forme

(5) (C) /iiR f) 0

Alors la radiale 2 de (C) est le lieu des extrémités des rayons
vecteurs équipollents aux rayons de courbure de (C) ; son équation
polaire est

(6) j\[r to) r-- 0

Enfin, en représentant la courbe (C) par l'équation

(7) .s- /gi 9)

Yarciiïde de (C) aura l'équation tangentielle :

(8) x cos o -f- y sin o — /jlo) cos z> — 0

Elle sera l'enveloppe des droites parallèles aux normales de (C)
qui coupent l'axe des x aux points dont les abscisses sont égales
aux arcs correspondants de (C).

En dérivant (8) ou l'équation équivalente

(8') x 4* v ig — — 0

on aura les coordonnées cartésiennes du point de contact Pf.r, y),
savoir

(9) x z—s — R sin <p cos f y — R cos2 0

De là, on déduit
i.t — .s-)2 r2 ~ R2 cos2 o

le point P (x, y) est donc la projection du point E (x ,v, y R),
c'est-à-dire du point correspondant de la courbe de Mannheim IM

sur la tangente (8).
3. — D'après un théorème publié par M. Saxtangelo et quelque

temps après par l'auteur3, on peut faire rouler la radiale (R) de

1 Voir A. Mannhiüm. Géom. cinèmp. 500 ; G. Loria, 11, p. 231 ; H. VViklkitner p. 227
Vuir de même notre thèse Über einige Verallgemeinerungen des Beginnes der Munnheirnschen
Kurve, Heidelberg, 1911.

2 Voir G. Loria, 11, p. 289 ; H. Wuîlkitnkr, p. 362.
5 Voir G. B. Santangiîlo, Salle carve di Mannheim, salle radiale e and generalizzazione

di esse, Rend. Cire. Mat. Pal., 29, 1910, 011 notre thèse, ou enfin notre article Ueber Boll- and
Fusspunktkurven, Rend. Cire. Mat. Pal., 34, 1912.
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la courbe (G) sur la courbe de Mannheim (M) de sorte que tla
roulette du pôle est l'axe des x, théorème qui est identique aux
théorèmes bien connus de Steiner et de Habich sur les roulettes à
base rectiligne et sur les poda ires (Wieleitner, p. 207, 208). En ce
cas la tangente g de (À) et l'ordonnée de (M) ou le rayon de (R)
forment toujours Tangle y ; g est donc identique à une droite
immobile menée par le pôle de (RJ, De là, il résulte :

Quand on fait rouler la radiale (11) sur la courbe de Mannheim
(M) on aura comme enveloppe d'une droite g, menée par le pôle de
(R), une certaine arcuide de (C),

Par variation de g on aura les oc1 différentes arcuïdes de (C),
liées entre elles par la transformation de Koestlin, c'est-à-dire
par une rotation constante de chaque tangente autour de son tracé
sur l'axe des x.

Applications. — a) Soit (C) une circonférence de rayon a, alors
la courbe de Mannheim est une droite g parallèle à Taxe des x à

la distance d ; la radiale est une circonférence congruente pour
laquelle le pôle est situé au centre. En la faisant rouler sur g on
aura, d'après Chasles [G. Loria, II, p. 142) comme enveloppes des
diamètres un système de cycloïdes congruentes, représentant les
arcuïdes de (C).

b) Supposons que (C) est une cycloïde

(10) .s2 + \\2 a2

G R, F

OU

(11) K — a cos i© — ©0)
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Alors la radiale est la circonférence

363

(12) r — a cos (ç — ç0)

la courbe de Mannheim est une circonférence à double extension

(12') x2 + J2 a2

En faisant rouler (12) de même courbure sur (12'), on aura comme
roulette du pôle (qui est ici, d'après (12) un point P de sa

périphérie) l'axe des x cle (12'). L'enveloppe d'une droite (g) menée

par P est une astroïde oblique, parallèle à l'enveloppe du diamètre
de (12) qui est parallèle à g.

ci L'arcuïde d'une astroïde droite, représentée par

(13) 4s2 -j- R2 ci1

OU

(13') .s-
(É sin 2(o — ç0) R — ci cos 2(ç — ç0)

est une hypocycloïde de Steiner, dont l'extension est indépendante
de la position de l'astroïde; son équation tangentielle est

(14) x cos <p -f- r sin o — — sin 2(c — ç0) cos ç — 0

elle aura donc toujours l'axe des m comme tangente à l'origine1.
La radiale de (13) est la rosace à quatre feuilles
' (15) v — a sin 2a

la courbe de Mannheim est l'ellipse correspondante:

(15') kx~ -j- g2 a2

De là, il résulte :

Quand on fait rouler la rosace (15) sur Vellipse (15/) de sorte
que la roulette du pôle soit l'axe des x on aura comme enveloppe
d'une droite quelconque g menée par le pôle un système d'hypo-
cycloïdes tricuspidales congruentes entre elles,

d) Enfin la spirale logarithmique

(16) R as

aura comme courbe de Mannheim la droite y ax; la radiale est
une spirale congruente. On aura donc sans aucun calcul l'arcuïde,

1 Voir Laguerriï, Œuvres, 11, p. 580; Wikf.eitner, p. 384; quant à une généralisation de ce
théorème et de quelques autres, mentionnés dans cet article, voir aussi notre petit opuscule :

Le s coordonnées intrinsèques, Gauthier-Villars, 1914.
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c'est-à-dire la logarithinoïcle comme enveloppe d'une droite menée
par le pôle de la spirale qu'on fait rouler sur la droite.

4. — De même nous allons regarder les arcuïdes d'une famille
de courbes à courbure proportionnelle. On aura une telle famille
de courbes par la variation de la constante c dans l'équation
intrinsèque

(17) \\ cf(s)

Les courbes de Mannheim dont les équations ponctuelles sont

(17') r — cf\x)

sont affines entre elles par rapport à l'axe des x. L'équation polaire
des radiales est

on aura donc toutes ces courbes par une seule par la multiplication

du rayon polaire et de l'angle polaire avec deux constantes
réciproques entre elles. Enfin les arcuïdes de R — fis] et de
R — cf(s) ont les équations

(19) (A) x -{- y tg y — ä — 0

(19r) |A/) X -j- )• tg JKD 5 0

On aura donc (A1) en divisant l'angle cp compris entre la
tangente de (A) et l'axe des x dans un rapport constant.

Applications. — a) Soit (C) une circonférence dont l'arcuïde est
une cycloïde. Toutes les courbes à courbure proportionnelle sont
des circonférences semblables ; cle là il résulte :

Quand on divise Vangle entre la tangente (normale) d'une cycloïde
et la tangente aux sommets (directrice) dans un rapport constant,
l'enveloppe de ces droites est une cycloïde semblable.

bj Soit (C) une spirale logarithmique R — as alors toutes les
courbes à courbure proportionnelle sont des autres spirales :

R ats; de là on déduit :

Quand on divise l'angle de contingence d'une logarithmoïde par
rapport à l'axe fondamental (tangente) dans un rapport constant
on aura comme enveloppes des droites une autre logarithmoïde.

c) Supposons enfin comme (C) une astroïde oblique

(20) x cos o + y sin — cos o cos (© — ®0) — •

Elle est l'arcuïde de la cycloïde s cos(cp — cp0) ou R2 4- -s'2 1 ;

l'axe des x est une tangente double de l'astroïde. En appliquant
R/

la transformation s s', R =- -y la cycloïde aura comme courbe
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à courbure proportionnelle une astroïde droite, dont Parcuïdê est

une hypoeycloïde de Steiner. On trouve donc :

Quand on dédouble l'angle d'inclinaison de la tangente cartable
d"une astroïde oblique par rapport à une tangente double, l'enveloppe

de ces droites est une hypoeycloïde tricuspidale.
Si par exemple l'équation cartésienne de l'astroïde est

(21) [x — ap3 -j- y" — 62 s — 0

celle de l'hypoeyeloïde tricuspidale est

(21') x cos-q -j- y sRi 9 — 'la cos3 9 — 0

il y a donc au point de rebroussement de (21), situé à l'origine,
un rebroussement de la courbe (21') ; le sommet opposé de (21'j
est situé dans l'autre rebroussement de (21), c'est-à-dire au point
{.r 2a, y 0)

Pour la croix de Malte

(22) x cos 9 -j- y sin 9 — a cos2 9 0

dont l'axe des x est la tangente au point auto-tangentiel, la podaire
de la transformée

(22') x cos 9 -j- y sin 9 — a cos 9 cos 29 — 0

est un trifolium droit1.
L. Braude (Bierstadt -Wiesbaden).

1 Voir G-. Loria, 1, p. 170; F. G. Tkixkira, Traité de courbes spéciales remarquables planes
et gauches, Coïmbre. 1908, t. 11, p. 188 : H. Wikleitniïr, p. 149.
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