**Zeitschrift:** L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

**Band:** 16 (1914)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

**Kapitel:** 3. — Suite de la discussion.

### Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

#### **Conditions d'utilisation**

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

#### Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

**Download PDF:** 10.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

L'opposition de ces deux vocables « Ingénieurs ou Techniciens » appartient à une classification surannée avec laquelle il nous faut compter; ayons néanmoins la franchise de dire nettement que cette opposition ne correspond plus à aucune réalité.

A l'époque où fut fondée l'Ecole Polytechnique, le nom même de cette école avait une signification réelle; les sciences d'une part, les manifestations industrielles d'autre part étaient alors assez simples pour permettre à une même école de mêler ensemble la culture scientifique et la formation technique; il n'en est plus de même aujourd'hui; si l'ingénieur a, plus que jamais besoin d'une culture scientifique solide, il a aussi plus que jamais besoin d'être autre chose qu'un chef administratif de techniciens; technicien lui-même il doit être; il sera donc initié à fond aux travaux personnels du laboratoire ou de l'atelier; de plus en plus la distinction entre manuels et intellectuels est devenue techniquement fausse; et nulle part cette fausseté n'est plus choquante que dans les programmes administratifs et dans les façades de l'éducation des ingénieurs.

Sans aucun doute, quelques bons mathématiciens ont pu devenir des techniciens, comme quelques artisans adroits ont pu devenir de bons ingénieurs, mais l'esprit humain artificiellement coupé en plusieurs tronçons a pu reformer son unité de pensée et d'action à travers les cloisons étanches des classifications factices; il serait toutefois prudent de ne pas exagérer la difficulté demandée à l'initiative individuelle et de revenir à des méthodes plus saines dans l'organisation des enseignements scientifiques et techniques combinés ».

## 3. — Suite de la discussion.

La discussion s'est poursuivie le vendredi soir à la Société des Ingénieurs civils de France sous la présidence de M. Gall. Elle a été résumée dans le Procès-verbal de la séance du 3 avril 1914, publié par la Société dans son bulletin intitulé Résumé de la Quinzaine (1914, nº 7, p. 68-81). M. le Secrétaire administratif A. de Dax, gérant, a bien voulu nous autoriser à reproduire le compte rendu de la discussion rédigé par l'un des secrétaires techniques M. A. Gosse.

Séance de la Société des Ingénieurs civils de France.

M. LE PRÉSIDENT rappelle qu'il y a actuellement à Paris un Congrès international d'enseignement mathématique.

M. l'Ingénieur en Chef des Ponts et Chaussées d'Ocagne, Professeur à l'Ecole Polytechnique, a bien voulu accepter de venir faire à notre Société le compte rendu des premières séances de ce Congrès.

Il lui souhaite la bienvenue ainsi qu'à M. Stäckel et aux nombreux congressistes qui ont bien voulu venir assister à la séance de ce soir. Il cite parmi eux M. Torres y Quevedo, l'inventeur de machines à calculer et à intégrer; Sir George Greenhill, auteur de « The Tabulation of Bessel and other functions »; et M. Fehr, le distingué Secrétaire Général de la Commission Internationale de l'Enseignement mathématique.

M. le Président rappelle ensuite que le Congrès a été inauguré par un rapport extrêmement remarquable de M. Stäckel, Professeur à l'Université

d'Heidelberg; celui-ci, dans un travail de très haute impartialité, a bien voulu rappeler un souvenir qui nous est particulièrement cher, à quelque origine que nous appartenions: ce sont les circonstances qui ont présidé à la création de l'Ecole Polytechnique, il y a cent vingt ans, au mois de septembre 1794. M. le Professeur Stäckel a bien voulu rendre hommage aux idées très générales qui ont présidé à l'organisation de l'enseignement mathématique dans cette Ecole et à l'influence qu'a eu cet enseignement sur la préparation des Ingénieurs du monde entier. M. le Président croit que c'est la première fois que cela a été fait dans un compte rendu de ce genre. Il adresse tous les remerciements de la Société à M. le Professeur Stäckel, en lui disant combien nous avons tous été touchés des sentiments auxquels il a obéi.

M. LE PRÉSIDENT ajoute que M. Torres y Quevedo se mettra très volontiers à la disposition des Membres de la Société, le mercredi 8 avril, de 9 heures à midi, au Laboratoire de Mécanique de M. Kænigs, 96, boulevard Raspail, pour leur montrer ses appareils remarquables.

M. le Président remercie M. Torres y Quevedo de son aimable invitation.

M. M. D'OCAGNE, ingénieur en chef des Ponts et Chaussées, Professeur à l'Ecole Polytechnique, membre de la délégation française à la Commission internationale de l'enseignement mathématique, fait un exposé sommaire de l'échange de vnes qui a eu lieu, aujourd'hui mème, au sein du Congrès international réuni à Paris par les soins de cette Commission, relativement aux questions que soulève la préparation mathématique des ingénieurs, questions qui ont été posées dans un rapport rédigé, à la suite d'une enquête faite dans les différents pays, par M. le Professeur Stäckel, de l'Université de Heidelberg, qui assiste à la séance.

Parmi ces questions, celles sur lesquelles M. d'Ocagne croit devoir particulièrement attirer l'attention des ingénieurs en raison des utiles avis qu'elles pourront sans doute provoquer de leur part, sont les suivantes:

1º Deux systèmes principaux sont en présence pour la formation des futurs ingénieurs; ils consistent l'un à leur faire faire leurs études mathématiques dans une *Université ordinaire*, au milieu des étudiants ne recherchant qu'une pure culture scientifique, pour les diriger ensuite vers des écoles strictement techniques, l'autre à leur enseigner les mathématiques supérieures à part, dans une institution spéciale rattachée aux écoles techniques, et formant avec elle un groupe désigné sous le nom d'*Université technique*.

Des renseignements recueillis par M. le Professeur Stäckel, il résulte que c'est, aujourd'hui, d'une manière générale, le second système, celui des Universités techniques, qui semble devoir prévaloir.

En France, où l'enseignement technique a le plus anciennement reçu une organisation systématique, les circonstances historiques font que cette organisation se présente sous une forme particulière. Toutefois, on peut considérer que l'ensemble de l'Ecole Polytechnique et des diverses écoles d'application qui s'y recrutent constitue une sorte d'Université technique. Une remarque analogue s'applique à l'Ecole Centrale bien que l'enseignement y soit commun à tous les élèves non seulement pendant l'année d'études théo-

<sup>&</sup>lt;sup>1</sup> Les autres membres de la délégation française sont MM. Hadamard, Membre de l'Institut, Professeur au Collège de France et à l'Ecole Polytechnique, et Bioche. Professeur au Lycée Louis-le-Grand. La Commission internationale a pour Président M. le Professeur Félix Klein, de Gœttingue, et pour Secrétaire Général M. le Professeur Fehr, de Genève.

riques, mais encore pendant les deux années techniques, alors que, dans les Universités techniques proprement dites, il y a, après la période d'études scientifiques communes, spécialisation des cours suivis par les diverses catégories d'étudiants suivant la branche à laquelle ils se destinent.

Le système des Universités techniques a l'inconvénient, au regard des Universités ordinaires, d'en réduire sensiblement l'animation. Il a l'avantage de permettre de donner à l'enseignement des mathématiques une orientation plus favorable au développement des applications aux sciences physiques, mécaniques et, par suite, aux sciences techniques, sans d'ailleurs toucher aux principes fondamentaux qui se trouvent nécessairement à la base de tout enseignement mathématique élevé.

2º A quelles bornes doit-on arrêter l'enseignement mathématique dispensé aux futurs ingénieurs? Faut-il, comme le pensent certaines personnes, s'en tenir aux premiers éléments du calcul différentiel et intégral? Ou bien convient-il de tenir compte, dans une certaine mesure, du développement pris par les mathématiques modernes? Au sein de la Conférence internationale, la tendance s'est affirmée de ne pas proscrire systématiquement tout ce qui dépasse tant soit peu les éléments classiques. Nous ne savons pas, en effet, ce que demain nous réserve. Il se peut que telle théorie, qui apparaît aujourd'hui comme purement abstraite, soit susceptible, d'ici quelques années, d'intervenir utilement dans un domaine de la technique. A ce point de vue, l'exemple du calcul des quantités imaginaires est caractéristique. Qui se fût douté, il y a une cinquantaine d'années qu'il dût devenir, entre les mains des électrotechniciens, l'outil vraiment si commode qu'il est aujourd'hui? Il est bon que les ingénieurs soient mis en état de comprendre au moins le sens des principales nouveautés mathématiques afin d'avoir la possibilité, le cas échéant, d'en tirer parti pour tel ou tel objet qui les intéresse.

3º Pour le temps à consacrer aux études mathématiques supérieures préparatoires aux études techniques, l'avis dominant, dans les différents pays, est qu'il est bon de ne pas le réduire à moins de deux ans.

L'idée s'est fait jour en Italie qu'il serait peut-être à propos d'établir une sorte de pénétration réciproque entre l'enseignement théorique et l'enseignement pratique afin, d'une part, d'intéresser de meilleure heure les élèves aux choses de la réalité et, d'autre part, de leur faire utiliser les notions mathématiques qu'ils acquièrent alors qu'elles sont bien fraîches dans leur esprit. Une telle réforme, qui peut séduire à première vue, comporte toute-fois, quand on y regarde de plus près, de sérieuses difficultés de réalisation qui ne sauraient probablement être levées que dans des cas d'espèce.

4º Une autre importante question qui a été examinée est celle du choix du corps enseignant mathématique pour les ingénieurs. Doit-il de préférence se recruter parmi les techniciens ou parmi les mathématiciens de profession? Sur ce point, M. le Professeur Stäckel n'a pas hésité à faire observer que, pour enseigner les mathématiques, quel que soit le but particulièrement visé, il faut, avant tout, être mathématicien. On ne saurait, en effet, enseigner utilement quelque sujet que ce soit si on ne le domine pas et même d'un peu haut. Maintenant, il est clair qu'à cette aptitude mathématique indispensable, il vaudra mieux que le professeur joigne une connaissance assez avertie des besoins des ingénieurs, acquise de préférence par une expérience personnelle. Il ne semble pas que l'on puisse recommander le système consistant à confier un tel enseignement à des ingénieurs n'ayant

jamais rien produit par eux-mêmes dans le domaine des mathématiques et n'en connaissant que la pratique courante.

M. F. Chaudy ne désire présenter des observations que sur quelques

points seulement du remarquable rapport de M. Stäckel.

Tout d'abord convient-il de donner aux futurs ingénieurs l'enseignement mathématique supérieur en dehors des Universités techniques, c'est-à-dire dans les Universités proprement dites, pour leur donner ensuite l'enseignement technique dans les écoles spéciales, ou bien faut-il leur donner cet enseignement mathématique dans les Universités techniques elles-mêmes?

De l'avis de M. Chaudy, il convient de donner l'enseignement mathématique supérieur aux futurs ingénieurs dans les Universités techniques. C'est ce qui se fait, en France, à l'Ecole Centrale ainsi qu'à l'Ecole Polytechnique qui prépare, le cas échéant, aux Ecoles des Ponts et Chaussées et des Mines.

La raison qui, selon M. Chaudy, milite en faveur de cette opinion, c'est que, comme le permet l'organisation de l'Ecole Centrale, par exemple, le Conseil de perfectionnement de cet Etablissement peut servir d'intermédiaire entre les professeurs-mathématiciens et les professeurs de sciences appliquées en vue d'obtenir que les mathématiciens n'enseignent que les parties de leur science qui peuvent servir à l'Ingénieur dans l'exercice de son art.

Le mathématicien professant en Sorbonne a naturellement tendance à pousser très loin son enseignement, plus loin certainement qu'il ne faut pour la formation des ingénieurs.

L'inconvénient qui résulterait pour ceux-ci d'une culture mathématique trop élevée serait de diminuer chez beaucoup le sens inné des applications mathématiques en vue des réalisations pratiques.

Un ingénieur qui a reçu un enseignement mathématique trop élevé eu égard à cet objectif des applications à son art, risque beaucoup d'échafauder plus tard des théories tout à fait à côté des réalités. On a vu des ingénieurs très versés dans les sciences mathématiques prétendre déterminer algébriquement la réaction dont un terrain est capable sous une charge donnée, comme celle de la poussée d'un arc, parce qu'ils ne voyaient pas que la compressibilité des terres est une chose qui échappe au calcul. On en a vu d'autres, et non des moindres, s'attaquer à la théorie de la résistance des poutres en béton armé et qui ne s'apercevaient pas de l'utilité de cet organe essentiel que les constructeurs appellent des étriers. Et tout cela provenait vraisemblablement de ce que ces ingénieurs, plus mathématiciens que physiciens, avaient, en développant trop leur sens mathématique, si on peut s'exprimer ainsi, diminué cette sorte de prescience des choses de la pratique qu'il faut avoir pour bâtir des théories saines.

Ce sens particulier que doivent posséder les ingénieurs, les mathématiciens purs de l'Université proprement dite ou de l'Ecole normale supérieure ne l'ont pas, et c'est pour cela qu'il paraît nécessaire à M. Chaudy que, dans les Universités techniques, les professeurs-ingénieurs se mettent en rapport avec les professeurs-mathématiciens pour leur faire connaître les besoins de leur art, afin que le professeur de mathématiques ne fasse que signaler dans son cours les théories qui paraissent être sans utilité pour les applications, et insiste sur les autres. A ce sujet, M. Chaudy rappelle les services que rendent aux ingénieurs la Statique graphique et la Nomographie, et on ne peut signaler cette dernière sans rappeller les travaux de M. d'Ocagne sur les abaques.

Sur la question de savoir si, dans les Universités techniques, il convient de faire enseigner les mathématiques par les mathématiciens ou par des ingénieurs ayant de fortes connaissances en mathématiques, M. Chaudy est d'avis qu'il faut laisser cet enseignement aux mathématiciens purs, car, comme le dit très bien M. Stäckel dans son rapport, il faut toujours que le professeur domine son sujet. Or, les ingénieurs ne peuvent prétendre à la connaissance approfondie de leur art et des mathématiques. On est mathématicien ou ingénieur, on ne peut être les deux à la fois.

M. C. Montell présente quelques observations sur le rapport de M. Stäckel et sur le commentaire qui en a été fait par M. d'Ocagne.

Il a été dit en premier lieu que la plupart des grandes écoles techniques françaises possèdent leurs chaires théoriques, ce qui dispense leurs élèves d'un séjour préalable dans les facultés de sciences, mais, en revanche, ces élèves doivent subir, dans les classes de mathématiques spéciales des lycées, une préparation très longue.

Pour critiquer la durée de cette préparation, M. Monteil est amené à analyser le rôle des mathématiques dans la préparation aux écoles techniques. Ce rôle est double. En premier lieu, l'enseignement des mathématiques doit procurer une documentation préalable de méthodes et formules. Ce premier point de vue est loin de justifier un développement aussi important des mathématiques spéciales, le secours réclamé par les applications aux mathématiques pures étant très faible.

En second lieu, et il n'échappera à personne que c'est là le côté important de la question, les mathématiques jouent un rôle dans la formation intellectuelle d'un cerveau. Elles y apportent les qualités solides de justesse, de rigueur, et celles subtiles de finesse et d'ingéniosité, toutes qualités pour lesquelles les démonstrations d'algèbre sont le plus efficace des entraînements.

Mais il ne faut pas perdre de vue que les mathématiques ne sont pas l'unique méthode de formation intellectuelle. Les études littéraires, historiques, de droit, aboutissent au même but avec des modalités différentes, et il faut s'en souvenir pour ne pas tracer pour les préparations des programmes trop étroits.

Une observation fort décevante, et dont il n'existe nulle trace dans le rapport, est le fossé entre les sciences d'une part et, d'autre part, les besoins réels que font naître les applications.

M. d'Ocagne a cité un certain nombre de sciences qui constituent, d'après lui, l'intermédiaire entre le champ de la science pure et celui des applications. Ce sont l'Elasticité et l'Hydrodynamique. Il n'est pas douteux que les problèmes concrets qui y sont posés intéressent au plus haut point l'ingénieur, mais ils se traduisent, hélas, par des équations différentielles rebelles à toute intégration, et derrière lesquelles la solution semble plus cachée encore qu'elle ne l'était sous l'énoncé primitif.

Il a fallu alors créer des sciences d'ingénieurs totalement étrangères aux précédentes, ce sont: la résistance des matériaux et l'hydraulique, où la détermination expérimentale directe de quelques fonctions inconnues et aussi quelques complaisances de raisonnement permettent l'aboutissement jusqu'aux solutions numériques.

Restons fidèles à l'enseignement élevé des mathématiques pour leur contribution incontestable à la formation préalable des esprits, mais réduisons énergiquement le séjour, actuellement exagéré, dans les classes de mathématiques spéciales, et invitons les savants à se rapprocher de plus en plus des questions vraiment utiles qu'ils ont toujours volontairement ignorées jusqu'à ce jour, et pour l'étude desquelles ils sont personnellement mal

préparés.

M. Ch. Rabut dit que le plus grave inconvénient reproché au système français de préparation mathématique des ingénieurs, c'est assurément l'exagération du temps passé dans les classes de mathématiques dites élémentaires, élémentaires fortes et spéciales (quatre ans en moyenne, pour la préparation à l'Ecole Polytechnique) comparé au temps accordé à l'enseignement technique proprement dit (deux ans et demi à l'Ecole des Ponts et Chaussées).

Ce contre sens vient de ce que le Concours décisif a été placé, non à la sortie, mais à l'entrée des grandes Ecoles: l'Université, ainsi rendue maîtresse de la préparation, s'arrange naturellement pour garder les candidats le plus longtemps possible; c'est ainsi qu'ils se voient presque obligés de suivre deux fois les cours élémentaires, et deux, trois, quatre, et même cinq fois les cours spéciaux, alors qu'ils ne suivent qu'une fois, et même rapidement, les cours techniques des Ecoles.

Un autre inconvénient non moins grave est que l'objet des cours spéciaux est presque exclusivement sportif, sans valeur éducative, étranger à la formation de l'ingénieur; exemples: les règles de convergence des séries (toujours subtiles, de temps en temps reconnues fausses), la théorie générale des équations algébriques (qui ne peut aboutir à rien moins qu'à leur résolution), l'étude des lignes et surfaces du premier et du second degré au moyen de leurs équations générales (une batterie d'artillerie pour tuer un moineau 1).

Ce second contre sens vient de ce que, parmi les professeurs de spéciales, les examinateurs d'entrée aux Ecoles et les fonctionnaires appelés à rédiger les programmes des concours, les ingénieurs ne figurent qu'exceptionnellement, et toujours en infime minorité.

Ces défauts de l'enseignement ont engendré un mal de plus en plus grand signalé par les ingénieurs de profession: l'abus du calcul dans la Science appliquée.

Formés exclusivement à la méthode déductive, presque étrangers à la méthode expérimentale qui doit être, par excellence, la méthode de la Science appliquée, encore plus étrangers à l'observation et à la critique qui sont les meilleures armes de l'ingénieur, les élèves de nos grandes Ecoles ne parviennent pas toujours à y réformer leur mentalité au contact de professeurs qui ont vécu leur métier, et ils apportent dans l'exercice de leur profession un reste des contre sens de l'enseignement préparatoire, cela au détriment de notre art.

M. Rabut se borne à deux exemples empruntés aux deux matières qu'il a eu l'honneur d'enseigner : la Construction et l'Hydraulique.

Parmi les constructeurs en maçonnerie, les voûtes, qui ne se calculent guère, ne donnent lieu qu'à peu de mécomptes; les grands barrages, au

<sup>&</sup>lt;sup>1</sup> M. Apprll, la plus haute autorité universitaire en matière de pédagogie scientifique, a écrit dans l'Enseignement mathématique, du 15 septembre 1900: « On est arrivé à un ensei- « gnement qui est moins une science qu'un sport et auquel il faut reprocher: l'artifice;... le « dédain des applications, des calcul numériques, des questions simples; l'abus de la géo- « métrie analytique; etc. ».

contraire, dont les dimensions sont rigoureusement déterminées par le calcul, périssent par accident les uns après les autres.

Parmi les constructions métalliques, les premiers ponts construits par Brunel et Stéphenson presque sans calcul, mais après auscultation d'un modèle réduit, sont encore debout, alors que des milliers d'ouvrages, petits et grands, établis depuis sur des calculs minutieux, ont péri en peu d'années, souvent même pendant leur construction. L'auscultation des ouvrages en service en a donné la raison en accusant des déformations très différentes de ce qu'annonçait le calcul usuel, notamment dans les barres de treillis et les fermes en arc.

En Hydraulique, c'est une éclipse presque complète de la science des eaux courantes, due à la persistance d'un enseignement théorique suranné: pendant un demi-siècle, on ignore l'œuvre expérimentale immense de Bazin, qui commence seulement à porter ses fruits. Cinq équations simultanées aux dérivées partielles aboutissant piteusement à la formule (insuffisante, d'ailleurs) de l'écoulement uniforme dans un canal prismatique; n'est-ce pas encore une batterie d'artillerie dressée contre un moineau?

La substitution de la méthode déductive à la méthode expérimentale, seule légitime dans l'enfantement de la Résistance des matériaux et de l'Hydraulique, a été le crime d'avortement exercé contre l'art de construire, et se chiffrant, rien qu'en France, par des centaines de millions en argent et des centaines de vies humaines.

M. Rabut se permet de conclure en souhaitant:

1º Que, saut les premiers éléments, l'instruction mathématique soit donnée aux futurs ingénieurs, non en Sorbonne, mais dans les Ecoles techniques, par des ingénieurs ayant pratiqué leur art avec succès;

2º Que cette instruction soit limitée au strict nécessaire, le premier principe de l'enseignement étant de subordonner l'emploi de la méhode déductive à celui de la méthode expérimentale, de ne jamais calculer ce qu'on peut mesurer.

M. R. Soreau s'excuse de prendre la parole après d'éminents professeurs qui ont une compétence et une autorité particulières sur le sujet en discussion. Il se bornera à présenter quelques observations, comme ingénieur et aussi comme père de famille.

Ayant eu récemment trois fils en mathématiques spéciales, il a pu apprécier le bien fondé des critiques que vient de formuler M. Monteil sur la trop longue préparation donnée dans cette classe. D'autre part, les élèves y subissent un surmenage véritablement abusif. Les programmes actuels comprennent presque toutes les matières d'il y a trente ans augmentées d'une très notable partie des cours d'analyse et de mécanique qu'on apprenait alors à l'Ecole Polytechnique en première, et même en deuxième année; c'est ainsi qu'on y expose la théorie des équations différentielles du second ordre. Certes, le développement donné au calcul différentiel et intégral est une innovation excellente en soi, tant au point de vue spéculatif qu'au point de vue pratique, puisque ce calcul s'impose dès qu'on aborde des problèmes tant soit peu élevés de mécanique rationnelle ou de mécanique appliquée; mais il aurait fallu alléger d'autant les programmes par ailleurs : cet allégement eût été facile et même profitable, car il aurait permis au professeur de dégager plus vigoureusement les théories générales, les seules qui importent. L'enseignement actuel est beaucoup trop touffu : c'est le cas de dire que l'abondance des feuilles masque les arbres de cette forêt.

Les inconvénients d'un tel système sont graves: fatigue marquée de la plupart des élèves, alors qu'on devrait avoir le souci de les faire entrer frais et dispos dans les écoles techniques qui vont leur demander un effort important; prolongation excessive et sans profit des années passées au collège; rendement en définitive médiocre, étant donné qu'on écrème les classes de sciences au profit des mathématiques spéciales, pour ne conduire qu'une partie de leurs élèves dans les écoles techniques.

A qui cet état de choses incombe-t-il? Est-ce, comme on le donnait à entendre, à l'Université, qui cherche à garder ses élèvés le plus longtemps possible? M. Soreau ne le pense pas; il estime même que la faute n'en est pas seulement aux programmes, car il ne suffirait pas de les alléger: en effet, pour discriminer des candidats qui sont trop nombreux, les examinateurs, et, à leur suite, les professeurs auraient tôt fait d'introduire de nombreuses subtilités en marge de ces programmes, qui ne se trouveraient réduits que sur le papier. Pour enrayer un surmenage véritablement insensé, il faut abaisser les limites d'age; de la sorte, n'entreraient en spéciales que les jeunes gens suffisamment surs d'eux-mêmes; quant aux autres, ce serait leur rendre service que d'orienter leur activité vers des carrières différentes, et de leur éviter de rester trois ou même quatre années dans cette classe, souvent pour ne pas franchir le seuil de l'école à laquelle ils se destinaient. Tous les hommes qui se rendent compte du danger que présente pour un pays le gaspillage des forces intellectuelles de la jeunesse, et les pères de famille au premier rang, devraient porter une attention particulière à cette importante question de la limite d'âge, et protester énergiquement quand les pouvoirs publics l'augmentent inopinément de deux années, ainsi qu'ils viennent de le faire pour l'une de nos grandes Ecoles.

En ce qui concerne l'enseignement mathématique dans les écoles techniques elles-mêmes, M. Soreau ne conçoit pas qu'il puisse être réduit au rôle strictement utilitaire préconisé par un de nos Collègues; au surplus, on ne connaît les contingences de la pratique que pour l'heure présente, et les notions théoriques acquises dans les écoles doivent servir pour la vie. Tout au contraire, il faut aux ingénieurs une culture mathématique étendue, qui convienne non seulement aux besoins de la technique actuelle, mais encore aux besoins inconnus de la technique de demain, qui leur permette de collaborer aux progrès incessants de la science, ou tout au moins d'en suivre le développement. Pour de telles fins, l'enseignement mathématique doit être nourri de méthodes générales, et donné par des mathématiciens éminents qui sauront y faire passer un souffle large et puissant, tout en évitant d'alourdir le bel ordonnancement de ces méthodes par des discussions de Sorbonne, par des subtilités d'un intérêt médiocre pour de futurs ingénieurs; sans rien sacrifier de l'ingéniosité de certaines théories, ils ne doivent pas, suivant la remarque très profonde qui termine le Rapport de M. Stäckel, « trop insister sur les finesses de leur science ».

Quand le professeur de mathématiques pures aura donné aux élèves-ingénieurs ce fort enseignement général, quand il aura mis entre leurs mains ce levier d'une puissance incomparable, les professeurs des techniques spéciales pourront venir, et ils seront compris; plus tard, après la sortie de l'Ecole, la technique pourra progresser ou même se modifier profondément: si cette évolution fait appel aux connaissances mathématiques, les ingénieurs ainsi formés la suivront sans peine.

On parlait tout à l'heure des équations générales de l'Hydrodynamique,

et l'on rappelait combien les résultats auxquels elles conduisent sont décevants et concordent peu avec les lois réelles; la faute n'en est pas aux mathématiques, mais à l'application qui en est faite; et ce serait vraiment une prétention singulière que de compter sur une concordance entre des résultats théoriques découlant d'un simple concept, et les résultats expérimentaux obtenus avec un fluide réel. Mais rien ne dit que l'analyse mathématique ne parviendra pas à donner la clé de la mécanique des fluides le jour où nous connaîtrons mieux leur nature intime. M. Soreau a beaucoup étudié une technique de cet ordre, celle de l'Aérodynamique, plus déconcertante encore que l'Hydrodynamique: et voici déjà qu'une connaissance plus complète du rôle de la viscosité et de la compressibilité de l'air permet d'expliquer partiellement certaines singularités apparentes de cette technique.

M. d'Ocagne, au sujet d'une des observations présentées par M. Soreau (dont il a, par ailleurs, beaucoup apprécié la manière de voir) demande à faire, à son tour, une remarque, ajoutant que, bien que professeur à l'Ecole Polytechnique, il n'a pris aucune part à l'élaboration du programme d'admission à cette Ecole, et que, par suite, dans ce qu'il va dire, on ne doit voir à aucun degré un plaidoyer pro domo suâ.

La remarque est celle-ci: on entend souvent dire, comme M. Soreau vient de le faire, que l'on rencontre maintenant dans le programme d'admission des matières qui, naguère, étaient enseignées à l'Ecole, voire en seconde année, et l'on en conclut tout naturellement à l'effroyable surmenage des pauvres candidats. Mais on ne prend pas garde que si ces nouveautés ont, en effet, été introduites dans le programme, bien d'autres théories en ont, par contre. été retranchées, ni, peut-être, que certaines de ces matières nouvelles exigent un moindre effort intellectuel que celles dont elles ont pris la place. Il n'est pas niable, par exemple, que les cas élémentaires d'intégration des équations différentielles, auxquels M. Soreau a précisément fait allusion et qui effraient surtout à cause de leur nom, sont en réalité d'une étude beaucoup plus facile, exigeant une bien moindre dépense cérébrale, que les développements sur la théorie des équations algébriques, comprenant notamment le théorème de Sturm, et divers autres difficiles théorèmes d'Hermite, de Laguerre, etc., avec lesquels devaient être familiarisés les candidats à l'Ecole d'il y a trente ou quarante ans. Des observations analogues pourraient au reste être faites à propos d'autres parties du programme.

Les nouveaux programmes comportent peut-être, dans leur ensemble, une somme un peu plus grande de matières; il ne semble pas toutefois qu'il faille, pour se les assimiler, un effort bien supérieur à celui qu'exigeaient les anciens.

M. Soreau reconnaît volontiers qu'on a supprimé quelques parties des anciens programmes de spéciales, mais quand on en retirait long comme le doigt, on en ajoutait long comme le bras, à tel point que beaucoup de professeurs de cette classe sont véritablement effrayés de tout ce qu'on les force à introduire dans de jeunes cerveaux.

M. Rabut, répondant à M. Soreau, fait remarquer que la limite d'âge a toujours pour effet de réduire le nombre d'années consacrées par les candidats, non pas aux mathématiques spéciales, mais bien aux classes de lettres, aux humanités, ce qui n'est pas désirable 1.

<sup>1</sup> Voir H. Poincané: Les Sciences et les Humanités.

M. le Professeur A. Padoa (Gênes, Italie) se trouve pleinement d'accord avec M. Soreau sur plusieurs points. Mais comme la question dont on s'occupe a été posée par une Conférence internationale, il lui semble bon de l'envisager à un point de vue un peu plus général, et, précisément, au lieu de s'attarder à blâmer ou à exalter l'état actuel de l'organisation des études en France, il trouve préférable d'analyser les tendances qui à ce moment partagent les opinions dans presque tous les pays.

Est-ce seulement au moment où ils vont commencer leurs études techniques que les futurs ingénieurs doivent être séparés des futurs mathématiciens, ou vaut-il mieux les séparer dès la fin des écoles secondaires? Jusqu'à présent, des raisons didactiques et financières s'accordaient pour donner la préférence à la première solution, mais le développement progressif des études théoriques et techniques et la nécessité de ménager les forces des élèves finiront peut-être par imposer la seconde, qui d'ailleurs se trouve déjà réalisée dans plusieurs universités techniques.

Or, dans celles-ci, est-ce aux mathématiciens ou aux ingénieurs eux-mêmes qu'il faut confier l'enseignement des mathématiques pures? On vient de dire, ce soir même, que l'application des mathématiques à des problèmes sur la résistance des matériaux n'avait pas donné des résultats satisfaisants, d'où une prétendue raison de méconnaître la valeur des mathématiques et le vœu que l'enseignement des mathématiques fût animé d'un esprit plus pratique, que seulement un ingénieur aurait pu lui donner. Mais avant d'appliquer un théorème quelconque, il faut s'assurer si les données de la question pratique vérifient l'hypothèse de ce théorème, au moins d'une manière suffisamment approchée; et l'on ne doit jamais rendre responsable les mathématiques des fausses applications qu'on en peut faire. Or, sans nier qu'il y ait des ingénieurs auxquels on pourrait confier un cours de mathématiques, dans la plupart des cas il est à craindre qu'ils feraient prévaloir la tendance technique sur la tendance théorique, en faussant le caractère de cet enseignement qui ne doit pas seulement fournir des règles, mais doit aussi contribuer à la formation de l'esprit scientifique.

Mais alors, en quoi se distinguerait le cours de mathématiques pour les ingénieurs de celui pour les mathématiciens? Certainement, ce n'est pas au point de vue de la rigueur, car sans rigueur il n'y aurait plus de mathématiques. C'est plutôt une question d'opportunité dans le choix des théories à traiter, de mesure dans le développement à donner à chacune d'elles, d'insistance sur les applications numériques des résultats les plus importants, parce que les règles dont on n'a pas appris à se servir avec sûreté et rapidité sont vite oubliées.

Donc, en laissant aux mathématiciens les soins et la responsabilité de l'enseignement théorique et aux ingénieurs les soins et la responsabilité de l'enseignement technique, ce qui est désirable c'est qu'un accord s'établisse entre les mathématiciens et les ingénieurs, et que cet accord devienne toujours plus cordial et plus intime, pour amener à une collaboration continue dans le choix des programmes, leur coordination et leur revision, tant au point de vue général des liens entre la théorie et la pratique, qu'à celui de l'organisation et de la coordination des différents cours d'une même école.

M. J. Legrand rappelle à M. d'Ocagne qu'il a eu l'honneur de l'entendre comme répétiteur de mécanique à l'Ecole Polytechnique, il y a vingt ans. S'il recherche quels avantages il a tirés pour sa carrière de l'enseignement de ses maîtres, il apprécie comme le principal la possibilité d'aborder la

lecture d'un ouvrage de science moderne quelconque sans être rebuté par les notations et les développements de calcul.

Il s'est trouvé aux côtés de collègues qui avaient reçu à l'Ecole Navale une instruction scientifique plus spécialisée en vue d'une carrière unique et qui lui ont semblé éprouver, du fait de cette formation moins générale, plus de difficultés que lui-même dans l'étude des questions de balistique ou de mécanique appliquée. Un ingénieur qui veut se documenter fait appel aux sources étrangères. S'il doit vaincre, outre les difficultés d'une langue qui n'est pas la sienne et de notations inhabituelles, le manque d'entraınement aux développements scientifiques, sa tâche sera rebutante. Il ne faut pas attacher trop d'importance à la valeur des théories scientifiques, qui évolueront, et l'on ne peut prévoir quelles applications s'imposeront plus tard à l'attention d'un jeune homme qui veut entrer à Polytechnique ou à l'Ecole Centrale.

En père de famille, M. J. Legrand recommande la haute culture scientifique, mais surtout comme une gymnastique et un assouplissement.

M. STÆCKEL remercie la Société de l'intérêt qu'elle a bien voulu prendre à la Conférence Internationale de l'Enseignement mathématique et surtout au rapport sur l'enseignement mathématique des ingénieurs. Il est convaincu que les remarques formulées dans la discussion seront d'une grande importance pour les travaux futurs de la Commission Internationale, parce que les problèmes de l'enseignement mathématique des ingénieurs ne peuvent se résoudre que par la collaboration des ingénieurs et des mathématiciens.

M. LE Président dit que les paroles aimables de M. le Professeur Stäckel abrègent beaucoup sa tâche.

Au début de son compte rendu, M. d'Ocagne a bien voulu poser des questions à notre Société et M. le Président remercie à son tour ceux de ses collègues qui ont pris part à la discussion et qui ont répondu d'une façon qui a satisfait si pleinement M. Stäckel.

- M. Chaudy a apporté l'avis de la pratique; MM. Monteil et Rabut ont fait bénéficier la Société du produit de leur haute expérience de professeurs.
- M. Soreau a parlé avec l'autorité d'un père de famille et nul plus que lui n'avait le droit de formuler les observations qu'il a faites, et cela avec la clarté à laquelle il a habitué ses collègnes.

Il remercie M. le Professeur Padoa de son intervention; M. Legrand, qui a bien voulu reprendre la parole et qui a rendu un juste hommage à l'enseignement qui lui a été donné.

- M. le Président croit qu'il ne pourrait mieux faire que de reprendre luimême une phrase qui l'a beaucoup frappé dans le rapport de M. Stäckel, qui dit, en parlant des mathématiques spéciales citées au cours de la discussion:
- « Les mathématiques méritent d'être considérées comme l'un des plus « puissants moyens de l'esprit humain qui dominent l'inertie de la matière ». Ces paroles résument admirablement la discussion qui a eu lieu ce soir.
- M. Androuin, n'ayant pu prendre la parole, vu l'heure avancée, a remis en fin de séance la note suivante:
- M. Androuin pense que l'enseignement spécial à la formation des ingénieurs comprend certaines branches principales qui, énumérées dans l'ordre où chacune d'elles sert à l'intelligence de la suivante, sont : la Science pure (mathématiques, etc.); la Science appliquée (mécanique rationnelle, électricité théorique, etc.); la Technique (mécanique appliquée, électricité indus-

trielle, etc.); la Technologie (étude descriptive des produits industriels et des moyens de production); les Travaux pratiques (bureau, salle de dessin, laboratoire, atelier, chantier, etc.).

L'élève ingénieur doit, évidemment, être assez avancé dans chacune de ces branches, pour profiter pleinement de l'enseignement qu'il reçoit de la suivante; cela, pour la science appliquée, détermine le minimum de science pure à enseigner. La question du maximum sera envisagée un peu plus loin.

Sur la question de savoir si l'enseignement des sciences pures et celui de la technique doivent être donnés à la même époque, M. Androuin répond sans hésiter: oui. En effet, il importe que le futur ingénieur vive le plus tôt possible dans une ambiance propre à le pénétrer de sa profession. Cela lui rend l'étude de la technique infiniment moins pénible, puisqu'il se l'est

assimilée graduellement par le travail naturel de l'esprit.

Il est d'ailleurs très important de réduire au minimum la durée des études. Lorsque les études sont trop longues, en effet, l'ingénieur débute dans l'industrie à un âge où il ne lui est plus très facile d'accomplir dans le rang une période d'apprentissage, sans laquelle il est extrêmement difficile d'acquérir cette intuition que l'un de nos collègues a appelée « le flair de l'ingénieur ». Les études trop longues ont aussi le très grave inconvénient d'être excessivement coûteuses et de fermer la carrière d'ingénieur à ceux des bons sujets dont les parents ne sont pas assez riches.

Dans ces conditions, il semble que, pour la facilité de l'organisation de l'enseignement, il soit préférable d'enseigner les mathématiques aux futurs ingénieurs dans des institutions techniques où ils puissent entrer très jeunes.

Sur les questions de choix des matières à enseigner et du personnel enseignant: Dans l'enseignement des mathématiques aux futurs ingénieurs, l'objectif doit être bien moins de leur enseigner beaucoup que de leur enseigner très bien. La considération d'où découle le minimum à enseigner a été indiquée plus haut. Le maximum ne doit pas trop s'en éloigner, mais l'ensemble de chaque branche enseignée en mathématiques doit former un tout homogène où l'enchaînement de tous les éléments apparaisse d'une manière bien nette.

C'est seulement à cette condition que l'on aura atteint l'objectif principal de l'enseignement mathématique, qui est de donner à l'esprit les qualités d'ingéniosité et de précision dont l'ingénieur a besoin.

La question de l'enseignement limité et spécialisé sur la base de l'utilitarisme immédiat ne se pose mème pas; un tel enseignement jetterait le désordre dans l'esprit des élèves qui, après avoir dans leurs toutes jeunes années étudié l'harmonieux ensemble que présentent les premiers livres de la géométrie et les mathématiques élémentaires en général, auraient la désillusion de se trouver aux prises avec un fatras de théories sans liaison.

Il est donc nécessaire que chaque professeur de mathématiques ait une mentalité de mathématicien, et que, dans la pratique de son enseignement, il attribue la première place à la culture générale tout en se tenant en contact avec les professeurs de sciences appliquées afin de donner à ceux-ci des élèves capables de comprendre facilement les parties de ces sciences appliquées où il est fait usage des mathématiques.

En résumé, l'enseignement doit être dirigé de manière à :

A. — Donner aux élèves une culture générale bien ordonnée dont leur esprit puisse rester indéfiniment imprégné, et cela sans surcharger leur mémoire

B. — Maintenir dans l'esprit des élèves l'équilibre entre cette culture générale et les notions professionnelles.

C. — Réduire au minimum la durée des études, afin de donner aux jeunes ingénieurs les plus grandes facilités pour leur apprentissage industriel, et de laisser la carrière d'ingénieur aussi largement ouverte que possible.

## Erratum.

Rapport général de M. E. Beke, p. 276, lignes 6 à 11.

Dans une lettre datée du 30 juin 1914, M. C. Possé, l'un des délégués russes, nous signale une modification à introduire dans un passage concernant la Russie. La phrase « Ainsi, la revision générale.... » doit être remplacée par la suivante :

« Ainsi, la revision générale du cours des classes précédentes, la discussion des équations du second degré, le dessin projectif, l'application de l'algèbre à la géométrie (homogénéité des formules, construction des formules rationnelles et des racines des équations du second degré, etc.), sont supprimés. »

# POINTS-PINCES, ARÊTES DE REBROUSSEMENT

ET

# REPRÉSENTATION PARAMÉTRIQUE DES SURFACES<sup>1</sup>

Les « points-pinces » de Cayley sont assurément, en un sens, une particularité très spéciale, très exceptionnelle des surfaces. Il ne semble pas, au premier abord qu'il puisse y avoir lieu de s'y arrêter dans un cours d'Analyse destiné aux débutants.

Or je me trouve amené presque obligatoirement à y faire une brève allusion dans l'enseignement très condensé cependant que je professe à l'Ecole Polytechnique.

C'est à propos de la représentation paramétrique des surfaces que je suis conduit à opérer ainsi. Soient les équations

(1) 
$$x = x(u, v), \quad y = y(u, v), \quad z = z(u, v),$$

u et v désignant deux paramètres variables. On se borne généralement à dire que, u et v variant indépendamment de toutes les manières possibles, ces équations définissent:

<sup>&</sup>lt;sup>1</sup> Communication présentée par M. J. HADAMARD, membre de l'Institut, à la Société mathématique de France, le 1<sup>e</sup>r avril 1914, à l'occasion de la Conférence internationale de l'enseignement mathématique.