Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 15 (1913)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: N° 15. — La valeur éducative de la géométrie

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

sur la géométrie moderne, mais devrait comprendre également des applications géométriques du calcul différentiel et intégral. Il faut féliciter Cambridge et Oxford d'avoir refusé d'accorder aux méthodes graphiques plus d'importance qu'elles n'en méritent, et cela malgré l'insistance avec laquelle certains enthousiastes chantent leurs merveilles. Les méthodes graphiques appliquées à la résolution de questions de statiques sont utiles à l'ingénieur, mais ne présentent que peu d'importance pour le mathématicien. Les questions des examens de statique et de dynamique présentent un réel progrès sur celles du passé, car elles n'étaient autrefois qu'une source de perplexité pour l'étudiant.

Un point sur lequel l'auteur insiste tout spécialement, c'est l'importance de la géométrie pure dont les méthodes ne présentent pas l'aridité de celles de l'analyse élémentaire.

L'un des inconvénients inévitables d'un système d'examens c'est la publication de manuels écrits spécialement à leur effet. Il existe pourtant d'excellents manuels n'ayant en vue aucun examen particulier, mais ils n'ont pas obtenu jusqu'à présent le succès qu'ils mériteraient.

Le jury chargé de la décision des questions d'examens devrait être composé d'experts suffisamment nombreux et vraiment capables. Toute question artificielle, ou dont la solution ne dépend pas de quelque méthode ou principe important, devrait être éliminée sans scrupule.

On trouvera en appendice deux rapports publiés par la « Mathematical Association », l'un, publié en 1904, porte le titre : Report on Advanced School Mathématics, et l'autre, paru eu 1907, intitulé : Report on Entrance Scholarships at the Universities. On y a joint également des spécimens de questions d'examens provenant des Universités de Cambridge, Oxford et Londres.

Nº 15. - La valeur éducative de la géométrie.

The Educational Value of Geometry¹, by Mr. G. St. L. Carson, Head Mathematical Master at Tonbridge School. — Comme le titre l'indique, ce rapport n'envisage pas la géométrie au point de vue de ses applications dans d'autres sciences où de son importance pratique, ni même relativement à la place qu'elle occupe dans l'éducation mathématique proprement dite. Il se propose uniquement d'établir les raisons pour lesquelles cette branche est universellement acceptée comme un élément nécessaire de l'éducation générale. Pour cela, il est nécessaire d'expliquer d'une façon quelque peu détaillée ce qu'est réellement la géométrie. Cette branche est basée sur un certain nombre de faits fondamentaux qui résultent de l'expérience. Il importe d'insister sur cette nature particulière des principes fondamentaux. Pour cela il s'agira:

- 1. De distinguer ce qui est essentiel de ce qui est secondaire dans l'appréciation des points, lignes et plans et dans leurs relations mutuelles.
- 2. De baser sur cette appréciation des raisonnements logiques, sous forme d'enchaînements continus.
- 3. De discuter la dépendance mutuelle des principes et de les établir d'une façon précise.

¹ 1 fasc. de 17 p.; prix: 1 ¹/₂ d.; Wymann & Sons, Londres.

Cette façon de procéder est commune à toute forme de construction humaine, et, à ce point de vue, la valeur éducative de la géométrie est indiscutable.

Un autre facteur qui a son importance et sur lequel on n'insiste malheureusement pas assez, c'est la valeur esthétique de la géométrie. La contemplation de systèmes logiques inattaquables tels qu'on en trouve dans les mathématiques évoque en nous une idée de perfection différente de celles

qu'on rencontre dans la littérature et dans les arts.

Au point de vue éducatif, l'étude de la géométrie peut se diviser en trois périodes correspondant aux trois divisions citées plus haut. Dans la première, on cherchera surtout à stimuler et développer l'imagination. Dans la seconde c'est le raisonnement qui joue le principal rôle. Dans la troisième on discutera les principes qui servent de base au corps géométrique et l'on recherchera leurs relations mutuelles. On ne s'occupera pas ici de cette troisième division car elle ne rentre généralement pas dans le cadre des études scolaires.

Dans la première époque de l'éducation géométrique, il s'agira donc de stimuler l'imagination de l'enfant en développant les impressions qu'il est capable de ressentir. Pour cela, il faudra faire appel à des notions qui lui sont familières (maisons, routes, montagnes, îles, etc.). Il n'est pas difficile de concevoir des problèmes répondant à cette condition, stimulant l'imagination, développant l'esprit de recherche et le raisonnement géométrique dans ses formes les plus simples. On peut diviser ces problèmes en cinq groupes :

1. Construction de triangles et de polygones, les données n'étant que des

longueurs.

2. Simples constructions pour déterminer la hauteur de bâtiments, la route de vaisseaux, etc., dépendant des indications de la boussole et d'angles d'élévation.

3. Construction de triangles et de polygones, les données étant des longueurs et des angles.

4. Extension des questions précédentes à des problèmes comportant plus d'un seul plan.

5. Détermination d'un point par l'intersection de deux lieux géométriques ou de ses limites lorsqu'il est astreint à rester à l'intérieur ou à l'extérieur de plusieurs lieux géométriques.

Les applications devront se faire d'abord relativement à des objets définis, puis sur des représentations mentales de classes d'objets, ensuite sur des abstractions (point, ligne, couleur, etc.) et pour finir on considérera le procédé lui-même dans toute sa pureté. Cette façon d'opérer peut être regardée comme une introduction aux idées de groupe et de fonction.

La transition entre ce stage préliminaire et le premier cours de géométrie formelle se fera par l'introduction progressive du raisonnement déductif et en cessant graduellement l'emploi d'objets concrets servant à renforcer l'imagination. Dans un premier cours de géométrie toute proposition qu'il est possible de faire accepter à l'enfant sans mesure d'aucune sorte devrait être adoptée comme un postulat. Cette définition comprend: 1. L'égalité des angles opposés par le sommet, 2. Les propriétés des parallèles relativemement aux angles, 3. Les propriétés des figures qui sont évidentes par symétrie, 4. Les propriétés des figures qui peuvent être démontrées par superposition. Tout théorème proprement dit devrait démontrer une propo-

sition nouvelle qu'il n'aurait pas été possible d'apercevoir par intuition directe, symétrie ou superposition.

Si l'on se demande où les méthodes de la géométrie se présentent avec le plus d'unité, de simplicité et de beauté, il faut répondre que c'est en géométrie de position et en géométrie projective. Ces branches doivent-elles rester la propriété exclusive des mathématiciens de profession et sont-elles vraiment hors de portée de l'adolescent? L'auteur pense que les notions et méthodes élémentaires de la géométrie projective peuvent être comprises par des élèves ordinaires, qu'elles présenteront un plus grand intérêt qu'une forme quelconque de la géométrie euclidienne et que leur valeur éducative est de beaucoup supérieure. Des expériences concluantes ont été faites à ce propos, soit sur des élèves individuels, soit sur de petites classes.

En ce qui concerne la dépendance mutuelle des postulats, une discussion détaillée ou systématique serait déplacée dans un programme scolaire; cependant quelques exemples de déduction de postulats les uns des autres pourraient être traités; il serait alors possible de faire réaliser à l'élève l'idéal d'une géométrie basée sur le plus petit nombre d'axiomes possible. L'auteur est également convaincu que tout étudiant ayant l'idée de poursuivre son éducation à l'université devrait avoir quelques notions sur la nature de la géométrie non-euclidienne.

Pour bien se rendre compte des tendances actuelles de l'enseignement de la géométrie en Angleterre, il suffit d'examiner les transformations qu'il a subies ces derniers temps. Il y a quelques années Euclide y était encore exclusivement en usage. Peu à peu, les différentes écoles se libérèrent de cette stricte obligation, et en 1903 l'Université de Cambridge publia un programme où il était spécifié que les examinateurs accepteraient toute démonstration systématique des questions proposées. Il faut noter aussi deux points importants : l'introduction des cours préliminaires et la pratique des exemples numériques. Le but de ces préliminaires est de familiariser l'enfant avec les notions fondamentales du sujet; ils consistent principalement en exercices de mesure et de construction; il faut seulement regretter que la géométrie de l'espace n'y occupe pas une place plus importante. De tels cours devraient être basés sur l'extension graduelle de l'expérience et de l'imagination de l'enfant, ce qui n'est malheureusement pas le cas; il est enfin regrettable d'y rencontrer cette tendance, dont il a été question plus haut, à faire intervenir des procédés numériques à propos des postulats.

On trouvera dans une circulaire publiée par le Board of Education (No 711, 1909) d'intéressants renseignements sur les transformations de ces dernières années et quelques conseils pratiques concernant l'enseignement. C'est surtout dans les écoles secondaires modernes qu'on constate une amélioration sensible, beaucoup plus que dans les établissements de l'ancien type qui sont restés comparativement stationnaires. C'est que les écoles modernes ont à leur disposition des maîtres qui non seulement connaissent bien leur sujet mais savent également comment l'enseigner. C'est là surtout qu'il faut chercher la raison de ce progrès, plutôt que dans les récents changements de programme.

¹ Traduite dans l'Ens. math. du 15 mai 1910, p. 238-253.