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ARITHMETIQUE GENERALE

J'ai publié sous ce titre1, en 1911, un livre clans lequel j'ai
soutenu une thèse en complète opposition avec les idées qui ont
aujourd'hui la vogue auprès des mathématiciens clans le domaine
des nombres.

Depuis quelques dizaines d'années les Mathématiques ont été
soumises à un travail considérable de critique et de revision,
ayant pour but d'apporter plus de rigueur dans les fondements
mêmes de la Science. Celle-ci est évidemment née du désir de
l'homme d'étudier l'Univers, et de la nécessité pour lui de créer
un instrument lui facilitant cette étude. Les premiers chercheurs
ont créé cet instrument sans s'en rendre bien compte, en traçant
sur le sable des figures représentant les corps de la nature. Les
premiers rigoristes furent sans cloute les Grecs qui essayèrent de
définir les lignes dont ils se servaient avec un grand souci cle

précision. La Géométrie fut l'instrument de la Physique et de
l'Astronomie ; l'Arithmétique fut l'instrument cle la Géométrie.

Les modernes dans leur travail de revision et d'épuration se

sont heurtés à des notions mal définies et à des faits indémontrés

; ils ont voulu définir les premières et démontrer les seconds ;

mais, en Géométrie, au" lieu de persévérer clans la voie indiquée
par Leibniz, Gauss, Cauchy, qui cherchaient à donner une
définition de la droite, figure idéale représentant l'image d'un fil
parfaitement tendu, ils se sont arrêtés à un texte incompréhensible

: une droite est une ligne homogène entièrement déterminée
par deux quelconques de ses points suffisamment rapprochés

En Arithmétique, ils ont créé des êtres de raison pure, auxquels
ils ont donné le nom général cle nombres, mais qui n'ont en commun

que ce nom, et certaines règles dites cle calcul suivant
lesquelles il est permis de les combiner en vertu cle conventions
arbitraires. Ces nombres n'ont ainsi aucune signification philosophique,

et cette arithmétique pompeusement appelée logique,
n'est plus qu'un jeu conventionnel analogue au jeu d'échecs.

1 Arithmétique générale. Nombres naturels, qualifiés, complexes, ternions et quaternions.
— 1 Toi. in-8°, XVII, 275 p.; 10 fr.; Hermann & fils, Paris.
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En définitive, ce qui distingue la science moderne « logique »

de la science ancienne &. rationnelle », ce ne sont que les définitions,

car les démonstrations des Grecs étaient souvent plus
logiques, c'est-à-dire plus rigoureuses que bien des démonstrations
de Legendre par exemple. Les définitions rationnelles sont des

descriptions d'êtres idéaux, dits « géométriques », imaginés
comme schèmes d'objets naturels ; ou des explications de

concepts abstraits, conséquences de considérations relatives à ces
êtres géométriques. Les définitions logiques sont des associations
de mots et de symboles écrits, dont la création n'est pas explicable.

De plus en plus, la science actuelle est nominalists et
formelle, et prétend se substituer à la science rationnelle et naturelle.

Les manuels classiques où la jeunesse puise ses premières
connaissances scientifiques ont fait un compromis hybride entre
les deux doctrines. Les notions fondamentales indispensables à

tout enseignement sont rationnelles dans tout le domaine élémentaire

; et à mesure que l'étudiant s'élève dans la science, les
notions nouvelles qu'on lui inculque prennent peu à peu la forme
logicienne ou nominaliste. Ce qui fait qu'en fin de compte, arrivé
à l'âge de raison, l'étudiant s'aperçoit que l'enseignement qu'il a

reçu pendant les dernières années d'études a été en contradiction
absolue avec ses connaissances premières.

A mon avis, il faut que, dès le début, on s'en tienne à une seule
doctrine, qui soit définitive. Quand je dis, dès le début, je ne
veux évidemment pas dire dès le berceau ; j'entends, dès l'instant
que l'on expose à l'enfant des définitions, c'est-à-dire, dès qu'il
est en état de comprendre et de raisonner juste.

Ainsi, l'arithmétique dite raisonnée devrait être enseignée en
trois étapes : première année, les nombres entiers ; deuxième, les
fractions ; troisième, les nombres incommensurables. Eli bien,
si la théorie nominaliste est si merveilleuse, il faut qu'on
l'enseigne, et que l'on, dise aux jeunes gens de 14 ans: Un nombre
entier est un signe d'écriture caractérisant la place qu'il occupe
dans une suite de signes analogues, commençant par le caractère
1 et n'ayant pas de fin (Dedekind, von Helmholtz). On convient
d'appeler somme des nombres entiers a et b le nombre entier qui
correspond à è, si l'on fait correspondre 1 au nombre ci' qui suit
immédiatement a? 2 au nombre a" qui suit immédiatement A, etc.,
sans omission ni répétition; on représente ce nombre parle symbole

a -)- b. On appelle produit de a par è, la somme a -f a -f-
a Ar -\~la obtenue en remplaçant les nombres entiers de 1 k b
inclusivement par des a séparés par des signes -)- ; on représente
ce nombre par le symbole a X b ou ab ; et ainsi de suite.

L'année suivante, on dira à ces jeunes gens qui auront 15 ans,
une fraction, c'est un groupe [a, b) d'un nombre entier a et d'un
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nombre entier Z>, auquel on associe l'ordre dans lequel on écrit
ces nombres (Tannery). On conviendra d'écrire {a, b) — (c, d) si
l'on a a X d b X c.

On appelle somme de («, b) et (c, le nombre £<:/) ; on
appelle produit de ces nombres, le nombre (ac, bd), et ainsi de
suite.

Enfin, l'année suivante, on dira à ces mêmes jeunes gens, « toutes
les fois qu'on a défini un moyen de ranger tous les nombres
rationnels en deux1 classes telles, que tout nombre de Tune soit
moindre que tout nombre de l'autre, que dans la première il n'y
ait aucun nombre plus grand que tous les autres nombres de la
même classe, et dans la seconde aucun nombre moindre que tous
les autres nombres de cette classe, on convient de dire qu'on a

défini un nombre incommensurable (Tannery). Si l'on désigne par
x une variable à laquelle on puisse donner comme valeur numérique

tout nombre de la première classe, et par y une variable à

laquelle 011 puisse donner comme valeur numérique tout nombre
de la seconde classe, on convient de représenter le nombre
incommensurable ainsi défini par le symbole x | y qui s'appelle une
coupure entre les nombres x et les nombres y. Deux nombres
x | y et u | e sônt dits égaux, si l'on a x <g v et u <é y.

On appelle somme de x \ y et u \ e le nombre [x -f- u [y+'1 ;

on démontre que ce symbole représente effectivement une
coupure entre (.r -f- u et y -f- e).

On appelle produit de x | y par u | e le nombre xu | ye ; on
démontre que ce symbole représente effectivement une coupure
entre x. u et y e, etc.

Si un professeur de l'enseignement secondaire se sent une foi
suffisante pour enseigner ces théories, qu'il le fasse donc. Il aura
bien mérité de la Logique

Pour ma part, je ne saurais me résoudre à faire de toute cette
phraséologie la nourriture intellectuelle de mes élèves.

Mais comme il faut pourtant bien leur donner un cours
d'arithmétique raisonnée, je préfère leur définir le nombre entier en
leur expliquant l'idée qu'il représente; et de même pour la fraction,

et le nombre incommensurable.
C'est donc là l'objet de mon « Arithmétique générale ». l'y ai

traité par la même méthode les nombres relatifs, c'est-à-dire les
nombres qualifiés positifs et négatifs, les nombres complexes, et
les quaternions.

Lorsque plusieurs définitions également rationnelles se sont
offertes à moi pour un même concept, j'ai chaque fois choisi la
plus générale, c'est-à-dire celle qui pouvait s'appliquer à toutes

1On aura soin de faire remarquer que ce mot deux et l'idée qu'il représente n'ont rien
de commun avec le caractère 2 qui suit 1 dans la suile immédiate des nombres entiers.
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les catégories de nombres, jusques et y compris les quaternions.
Ceux-ci m'ont donc constamment servi cle critérium et de guide,
et leur étude, préparée ainsi graduellement par l'étude des nombres

des catégories précédentes, n'offre plus aucune difficulté au

lecteur attentif.
La géométrie ayant historiquement et rationnellement servi de

point de départ à l'arithmétique, c'est de la considération des

grandeurs géométriques que j'ai tiré le concept cle nombre. Pour
des raisons que je ne veux pas discuter ici je n'ai considéré que
la géométrie euclidienne.

Chacun sait exactement ou approximativement ce que l'on
entend par mesurer une grandeur géométrique. Pour que cette
opération soit possible, il faut que la grandeur à mesurer et l'étalon
choisi pour la mesurer possèdent certaines propriétés que j'ai
essayé de caractériser en définissant d'abord les grandeurs
géométriques homogenes, puis les grandeurs directement mesurables.
Telles qu'elles figurent dans mon livre, mes définitions sont sans
doute fort abstraites, fort difficiles à comprendre. Mais comme
ce sont principalement les objets qu'elles définissent qu'il importe
de connaître pour saisir l'ensemble de ma méthode, je modifierai
ici mon texte et je me bornerai <à la définition suivante :

J'appelle grandeur géométrique directement mesurable, toute
grandeur qui peut être engendrée par un élément géométrique
animé cl'un mouvement de translation, d'un mouvement de rotation,

ou d'un mouvement hélicoïdal.
L'élément générateur, dans ses positions initiale et finale,

détermine les extrémités cle la grandeur. Toutes les grandeurs qui
ne diffèrent que par l'amplitude du mouvement cle l'élément
générateur constituent une classe cle grandeurs directement
mesurables.

J'admettrai dans un cours d'arithmétique, que toute grandeur
directement mesurable est divisible en parties égales, appartenant
à la même classe, et que plusieurs grandeurs d'une même classe
peuvent être placées bout à bout sur une même figure illimitée,
engendrée par l'élément mobile, de telle sorte que ces grandeurs
puissent être engendrées successivement par le mouvement continu

de l'élément générateur.
Des segments de droite, des arcs d'une même circonférence,

des rectangles cle même hauteur, des angles de demi-droites, des
angles dièdres, des fuseaux d'une même sphère, des arcs d'hélice
cle même pas et sur le même cylindre circulaire droit, etc., sont
cle telles grandeurs.

Les points que j'admets ici peuvent être démontrés dans un
cours de géométrie, ou faire l'objet de postulats ; encore une fois,
cela n'importe aucunement. Pour celui qui ne veut pas faire de
l'arithmétique une science isolée, inutile au physicien, au géo-
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mètre, à l'astronome, il n'y a aucun inconvénient à ce que les
postulats de la géométrie (si. postulats il y a) soient utilisés en
arithmétique.

Ce n'est donc pas en acceptant ou en discutant les démonstrations

que je donne de ces vérités dans mon livre, que l'on pourra
conclure que ma théorie des nombres est à adopter ou à rejeter.

Cette remarque s'applique à toute la théorie des grandeurs
directement mesurables; théorie que j'ai établie minutieusement
et dont deux des principaux points sont :

I. Des grandeurs d'une même classe ne sauraient être, équivalentes

sans être identiques.
II. Si l'on fait croître une grandeur A a partir d'un état initial A0

d'après une loi quelconque et si l'on constate qu'elle reste toujours
moindre qu'une grandeur B déterminée de sa classe, on doit en
conclure qu'elle a une limite C inférieure ou égale à B.

Je définis la somme, l'inégalité, la différence des grandeurs ;

ainsi que les limites de grandeurs variables.
Tout cela constitue un travail préliminaire assez long et assez

ardu. Je l'ai scindé en plusieurs parties, suivant les besoins des
différentes catégories de nombres. Il est clair que dans un cours
classique fait) à de jeunes élèves, on peut supprimer presque toute
cette théorie, en renvoyant aux propriétés des segments de droite
et des arcs de circonférence, quitte à introduire ensuite graduellement,

par des exemples occasionnels, les grandeurs moins simples

qui se présenteront en géométrie.
Dans tout ce qui suit je ne parlerai que de grandeurs directement

mesurables.
Rapport de grandeurs. — Si l'on considère des grandeurs Gl et

G2 d'une classe (Gj, j'appelle rapport de G2 a G1? la manière d'être
de G2 relativement à G1, et je représente cette notion par le

symbole qG
(Cette conception du rapport est celle qu'en avait Duhamel. [Des

méthodes dans les sciences de raisonnement, 2e partie, p. 72],
Malheureusement, lorsque j'ai écrit mon livre, je n'avais pas lu
Duhamel, et je n'ai donc pas employé cette locution: maniéré
d'être relative. N'ayant pas la subtilité d'esprit de ce profond
penseur, je n'ai pas établi de distinction entre le rapport et la
mesure. Cette distinction est pourtant intéressante mais sans
utilité pratique ainsi qu'on va le voir).

Cette manière d'être relative peut être caractérisée soit par les

grandeurs Gt et G2 elles-mêmes, soit par une loi de formation de
G2 à l'aide de Gr

(Cette nouvelle expression n'est pas de moi non plus ; je l'ai
trouvée dans le cours d'analyse de Houel qui s'en sert à propos
des nombres).
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Mesure d'une grandeur, — Mesurer une grandeur, eest la
déterminer avec précision, et à divers points de vue, relativement à

une grandeur de sa classe, connue ou spécifiée, que Von appelle
ÉTALON.

(Cette définition est presque textuellement de Joseph Bertrand).
La détermination en question est réalisée lorsqu'on connaît un

traitement qui, appliqué à l'étalon, reproduit la grandeur
mesurée.

(C'est ici qu'un critique allemand, M. Oskar Perron, de 1 ù-

bingen, a songé à chauffer l'étalon, ce qui ne saurait être une
froide plaisanterie).

La mesure d'une grandeur G2 relativement a un étalon G4

revient donc en définitive à la détermination d'une loi de formation
de cette grandeur au moyen de l'étalon, laquelle loi de formation
prend le nom de mesure de G2 relativement a G, et se représente
par le symbole

mes G2 •

Nombre. — Dans le sens le plus général qu'il convient d'attribuer
à ce mot dans la science mathématique, j'appelle nombre, toute
loi de formation qui, appliquée ci une grandeur d'une certaine
classe G, produise une grandeur déterminée de la même classe.

C'est à une telle loi que se réduisent en fin de compte les
concepts abstraits de rapport et de mesure cle grandeurs.

Rien ne prouve à priori qu'à des grandeurs arbitraires G, et
G2 d'une même classe (G) il corresponde une loi de formation de
G2 à l'aide de G1 ; cependant, dans certains cas simples, par
exemple si G2 est une somme de grandeurs égales à G,, une loi
de formation apparaît à l'évidence.

D'un autre coté, si l'on suppose que l'on ait pu déterminer, au

moyen des grandeurs G, et G2, une loi cle formation de G2 à l'aide
cle Gi, rien ne prouve à priori, que la même loi, appliquée à une
grandeur G3 de la même classe (G) ou à une grandeur H4 d'une
autre classe (H), produit une grandeur déterminée GA ou LI2 de la
même classe que la grandeur choisie. Rien ne permet même
d'affirmer que cette loi sera applicable à d'autres grandeurs que G4 ;

et cependant, clans l'exemple particulier que j'ai cité plus haut,
il apparaît encore à l'évidence qu'il en est ainsi. Rien ne s'oppose
clone à ce que l'on établisse une théorie tout à fait générale,
reposant sur l'existence des lois cle formation et sur la possibilité
d'appliquer ces lois à d'autres grandeurs que celles qui les ont
fait découvrir; quitte à démontrer, chaque fois (pie l'on voudra
utiliser cette théorie dans des circonstances déterminées, que les

.grandeurs considérées satisfont aux conditions requises.
Un nombre n'est donc pas à proprement parler un rapport cle

grandeurs, mais bien la loi de formation de l'une de ces gran-
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deurs à l'aide de l'autre, loi conçue indépendamment des grandeurs
particulières qui lui ont donné naissance. Si je ne devais pas
craindre de m'exprimer d'une manière peut-être difficile à

comprendre par de jeunes intelligences, je devrais dire :

Un nombre, c'est le scheme mental fou le concept schématique)
de tout traitement qui, appliqué à une grandeur quelconque, mais
déterminée dé une classe (G) en fait une grandeur déterminée de la
même classe 1.

Par la suite il est démontré que la connaissance des grandeurs
G2 et Gt et par conséquent de leur manière d'être relative permet
de caractériser celle-ci au moyen d'un nombre, ou loi de formation

de G2 à l'aide de G4 ; ce nombre sera la mesure de G2
relativement à Gj ; on démontre également que la connaissance d'une
grandeur et d'une loi de formation permet de déterminer une
grandeur G2 de la même classe, grandeur G2 dont cette loi de
formation, ou ce nombre, caractérise la manière d'être relativement

à G4, et est la mesure relativement à Gr
Cela étant, et afin de simplifier le langage, on ne fait aucune

distinction entre un rapport de grandeurs et le nombre qui lui
correspond,

Mais il est bien certain que ce sont là deux concepts différents.
Et lorsque l'on énonce une proportion, entre grandeurs, c'est
bien de la manière d'être relative qu'il s'agit, ce qui explique les
énoncés de théorèmes tels que celui-ci :

Deux angles au centre sont entre eux comme les arcs qu'ils
interceptent sur des circonférences égales, décrites de leurs sommets
pour centres.

Symboles représentatifs des nombres. — Ee rapport d'une
grandeur à une grandeur égale s'appelle nombre un ou un tout
court. On le représente par le caractère 1.

Ecrire 1 est donc synonyme cle G2 G,

On représente les nombres au moyen des symboles représentatifs

des rapports de grandeurs, ou des mesures de grandeurs,
ou bien encore au moyen de lettres minuscules, de lettres
grecques, ou cle caractères spéciaux; ainsi une lettre a désigne un
nombre, renseigné comme étant le rapport des grandeurs G2 et
G,, auquel cas ce symbole a remplace simplement les symboles

G2 • r— ou m es G2
Gi 'î

et il inclique un traitement qui appliqué à G, produit G2 ; ou bien

1 Pour employer la manière des logiciens nominalisles, on pourrait donner comme
définition du nombre : un groupe de grandeurs G2 et. (ii d'une même classe, auquel on associe
Vordre dans lequel on les considéré.
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ce symbole a indique par lui-même un traitement connu ou supposé

tel, applicable à des grandeurs arbitraires ou soumises à

certaines conditions, et produisant alors des grandeurs
déterminées. Tels sont par exemple les symboles d'usage courant

3
4, -j > etc-

Nombres absolus, nombres relatifs. — Lorsque, dans la .manière
d'être de G2 relativement à G,, et conséquemment aussi dans la
loi de formation-de G2 à l'aide de Gi on ne tient compte que des

grandeurs elles-mêmes, abstraction faite de toute autre considération,

le rapport de G2 à G1 s'appelle un nombre absolu. Mais on
peut aussi, dans leur manière d'être relative, et dans la loi de
formation qui la caractérise, tenir compte des positions de G2 et
de G^ ; dans ce cas leur rapport est appelé un nombre relatif. Et
à ce dernier point de vue, on peut envisager la simple situation
de G2 relativement à Gd ce qui donnera les nombres qualifiés
positifs et négatifs ou les nombres complexes binaires (cl -f- ib) ;

ou bien, on peut envisager en outre la situation de la figure
constituée par le groupe GiG2 dans un système de repère à trois
dimensions ; cette conception ultime et générale fournira les
quaternions, et même les biquaternions ±.

Produit d'une grandeur par un nombre. — Une grandeur G2

produite par l'application à une grandeur Gi d'un traitement
indiqué par le nombre <2, s'appelle produit de G1 par a. On la
désigne par les symboles :

Gx X a Gj. a G±a

et l'on écrit donc :

G2 — Gj. a (1)

On dit encore que G2 s'obtient en multipliant G1 par a.
Si a est le rapport des grandeurs II2 et \\{ d'une classe (H),

multiplier Gi par jg- c'est donc appliquer à Gt le même traitement
qui, appliqué à 11, produit II2. On a donc alors :

H
G2 — Gi x ~ (2)

1

D'autre part, a peut maintenant se représenter par le symbole

çr puisque, si 1 on applique à Gi le traitement indiqué par a on

1Je me suis trompé lorsque j'ai écrit dans mon avant-propos que les biquaternions ne
sont pas des nombres. La taute en est aux vecteurs équipollents, et au manque d'ouvrages
écrits en français sur ce sujet. J'aurai peut-être un jour le temps d'établir la théorie
rationnelle des bi et tri-quaternions. Ce sera une cinquième partie à ajouter à mon livre.
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G 2 H 2obtient G2 Les symboles 77 et 77- désignent donc ici une mêmebi ni 0

loi de formation, c'est-à-dire un seul et unique nombre. La relation
(2) peut donc s'écrire

G,= GlX (3)

ce que l'on exprime en disant que le rapport des grandeurs G2 et
G1 est un nombre par lequel\ multipliant Gt on obtient G2

Nombres égaux. — Connaissant G1 et G2, on peut mesurer di-
G2

rectement G2 au moyen de G^ et concevoir un nombre — obtenu

par une méthode de mesure qui n'est pas nécessairement la même
H2

que la méthode ayant fourni ou a. Si nous désignons par b ce

nombre nous pouvons écrire les identités :

G2 Gi. b et G2 —Gi. et

Les nombres a et b, qui ont sur G{ le même effet, c'est-à-dire
qui produisent chacun la grandeur G2, sont dits égaux et représentés

chàcun par le symbole sans distinction. On écrira :

G2 H2
b =ou g; H;

•

Il faut bien se garder de confondre des nombres égaux avec
des nombres identiques, quels que soient les symboles qui les
représentent.

Ainsi les svmboles

1 + 1 + 1 et 3

désignent un seul et même nombre, tandis que les symboles

+ Y 2,75 et 2 + —î-j-

désignent des nombres égaux mais non identiques.
On démontre que les produits d'une grandeur quelconque par

des nombres égaux, sont des grandeurs égales.
Somme de nombres. — Considérons clés nombres a et b et une

grandeur arbitraire G que l'on puisse multiplier par ces nombres ;

soient les grandeurs

Gi — G x cl et G2 G X b
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C I

Le nombre -r s'appellera somme des nombres ci et h, et se

représentera conventionnellement par le symbole a b.

On aura donc
Gt + G2

G

d'où
Ga + G b

— a b

G =a+b G)

G (a + b) Ga 4- G b (2)

Gj 4~ G2 Gi G2

G
(3)

La somme des nombres a et b est indépendante de la grandeur G

qui a servi à la définir : soit, en effet, une grandeur H autre que
G (de la même classe que G ou d'une autre classe), et posons

Ga 4~ G b H a 4- H b
s

Il apparaît avec évidence que les nombres s et s' sont identiques^
car ils indiquent que le traitement qu'on a appliqué à G pour
former Ga 4- Gb est absolument le nïême que celui qui a été
appliqué à H pour former Ha 4~ Hb : multiplier G ou H successivement

par a et par b, puis considérer la somme des grandeurs
obtenues. C'est donc à juste titre que le symbole a b ne donne
aucun renseignement au sujet de la grandeur ayant servi à le
définir.

Produit de nombres. — Considérons les nombres a et b, et une
grandeur G.

Soient
Gi — G a et G2 ~ Gi b

en supposant bien entendu que ces produits existent.
G2

Le nombre ^ s'appellera produit de a par b ; on le représentera

conventionnellement par les symboles a X b ou ah
On aura donc

G2
— a X b
br

D'où
(Ga)b
~gT ab pn

G (ab) — (Ga) b (2)

g2 g, g2
G G X Gi '
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Cette dernière formule est fort importante, car elle donne nais-
nance à la première règle de calcul : la suppression des Gj en
diagonale descendante de gauche à droite.

Rapport de nombres. — Considérons les nombres a et b. On
appelle rapport de a à b le seul et unique nombre tel, que le
produit de b par ce nombre est égal à a

Un tel nombre existe. En effet, soit G une grandeur que l'on

puisse multiplier par a et b ; je dis que le nombre répond à

la question.
On a :

Ga G b Gd Gd
h X Gb"G X GlS a

en appliquant la règle de calcul trouvée au numéro précédent.

On démontre que le nombre ^ que l'on convient de

représenter par le symbole est indépendant de G ; à cet effet,

désignons par x un nombre ayant la propriété

b x x ~ a

Multiplions une grandeur H par le produit b X r ou a On
aura

H (bx) Ha (H b) x
d'où

Je dis que

Car on a

Ha
x Wb '

Ha
__

Ga
Üb ~ Gb '

H a'•, Jxr
d'où

{ _ H«\ ^ (_. H a Ga H«
Gx( hï)= (GI>) x ou G7> m

Classification des nombres absolus. — Considérons un nombre
a rapport des grandeurs G2 et G1

1° Si G2 et Gi sont des sommes de grandeurs égales à une
grandeur G, leur rapport est appelé un nombre commensurable.

Dans ce cas on a

G2 G -j- G -f- -(-G
(b G -J- G -j- G
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En particulier, si G2 est une somme de grandeurs égales à G!

leur rapport est appelé un nombre entier.
Dans ce cas on a

G, G, + G>+-.+Gt Gt +
G,

+ +
G1

1 + 4 + a + +
Cj, bi bi bA Crj

2° S il n'existe aucune grandeur telle, que G2 et G1 soient des
G2

sommes de grandeurs égales, le rapport «gr est appelé un nombre

incomm ens arable.
Telle est, exposée avec quelques détails supplémentaires pour

certains points, clans ses grandes lignes pour d'autres, la base de

ma théorie arithmétique. On a pu voir que le fond des idées ne
m'appartient nullement en propre et que de grands mathématiciens

ont eu ces idées-là bien avant moi. Lorsque je m'en suis

aperçu, le livre était imprimé, ce qui explique l'absence du nom
de Duhamel clans mon texte. Mais ce cpii n'avait pas encore été
fait c'est un exposé complet de la théorie générale des nombres
absolus et relatifs conformément à ces principes.

En particulier, les nombres complexes (les imaginaires a -f- ib)
avaient bien reçu une interprétation géométrique ; mais comme
on peut s'en rendre facilement compte, le principe même de cette
interprétation est mauvais ; le nombre complexe ne représente
pas un vecteur d'un plan, et ce vecteur seul ne représente pas le
nombre ; celui-ci est le rapport de deux vecteurs, et le second ne
doit pas être considéré comme appartenant à un axe fixe, unique,
que l'on appelle souvent l'axe des nombres réels ; le symbole i ne
doit pas non plus être considéré comme représentant un vecteur-
unité porté par l'axe perpendiculaire à l'axe des nombres réels ;

ce symbole i est le rapport cle deux vecteurs quelconques
perpendiculaires et égaux, le sens de rotation étant direct du second
vers le premier. Et dans l'extension à l'espace, i sera le vecteur-
unité porté par l'axe perpendiculaire au plan cle repère ; dans le
cas d'une figure plane, cet axe est perpendiculaire au plan de la
figure.

C'est pour ces motifs qu'Argand et ses successeurs ont échoué
dans leurs tentatives d'étendre à l'espace l'interprétation géométrique

des nombres complexes. Leur conception de ces nombres
comme symboles représentatifs de vecteurs était fausse. Le nombre

ne représente pas un vecteur, mais il est le rapport de deux
vecteurs. 11 a fallu le génie de Hamilton pour créer la théorie des
biradiales.

Voilà pourquoi aussi je ne puis me rallier aux théories qui font
des nombres des symboles représentatifs cle grandeurs ; on ne
tient pas compte clans ces théories de ce qu'il n'y a dans aucune
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classe, de grandeur étalon fixe. La théorie que j'ai développée est
donc beaucoup plus générale ; et on le verra aisément, si l'on veut
lire ma théorie des ternions ; ceux-là sont effectivement les
rapports de vecteurs quelconques à un vecteur unique, pris sur l'axe
de repère de tout l'espace. Chaque ternion représente alors sans
ambiguïté un vecteur ; la somme de deux te ruions sera un ternion ;

mais leur produit sera un quaternion, à moins qu'ils soient eopla-
naires avec le vecteur-étalon.

En résumé, la théorie du nombre, rapport de grandeurs
géométriques permet une exposition absolument méthodique et
générale de l'arithmétique. Un même mot n'a pas plusieurs
significations différentes ; la continuité des fonctions somme, produit,
quotient, racine, etc., est assurée, et l'arithmétique garde son
véritable caractère utilitaire et rationnel.

Un mot encore, avant de terminer. Le nombre entier est d'un
emploi courant dans le langage ordinaire. Cet emploi est-il
compatible avec la définition que j'en ai donnée, ou bien le nombre
du public n'est-il pas plus le nombre du mathématicien qu'il n'est
celui du logicien

M. H. Laurent a répondu à l'avance à cette question 1. Les objets
que le nombre entier permet de compter sont désignés dans le
langage courant au moyen d'un terme générique qui les dépouille
de tous les attributs par quoi ils diffèrent. Ainsi quand on
dit cinq animaux, il peut y avoir là des chevaux et des oiseaux
réunis.

Ces cinq animaux sont égaux puisqu'on ne les distingue pas ;

et le mot cinq indique bien la loi de formation de cette collection
d'animaux au moyen d'un animal.

Je demandais récemment à un jeune enfant combien il avait
reçu de bons points à son école. 11 m'a répondu : « Comme ça »

en me montrant quatre doigts ; et il a ajouté en me montrant ses
deux mains ouvertes : « Quand j'en aurai comme ça, je recevrai
une belle image ».

Ainsi donc cet enfant construisait une collection à l'aide de ses

doigts d'après la même loi de formation que sa collection de bons
points à l'aide de l'un de ces petits carrés de carton. Je crois qu'il
ne serait pas possible de trouver une preuve plus éclatante de la
rationalité de ma théorie.

Je prétends que le logicien en échafaudant sa théorie n'a pas
atteint le but qu'il s'était proposé: définir les nombres. Il a

esquivé ce but; il a créé de toutes pièces une série d'êtres, sortes
de mannequins automates, auxquels il a donné le nom de nombres,

mais je le répète il n'a pas défini ce qu'il voulait définir. Les

1 Sur les principes de la théorie des nombres (Collection Svientia, n° 20).
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définitions ne peuvent pas être de perpétuelles créations, ou bien
il leur manquera toujours la vie.

Dans tous les cas, je mets le plus subtil logicien au défi de créer
la moindre théorie, y compris celles de ses nombres, sans faire
appel aux postulats suivants :

1. Postulat de l'espace. — 11 existe des corps naturels distincts
(en particulier moi).

2. Postulat de la conscience humaine. — 11 est possible à l'homme
de prendre conscience des corps naturels, et de concevoir des

abstractions correspondantes. *

3. Postulat du temps. — Il est possible de considérer des objets
(corps naturels ou concepts abstraits) dans un certain ordre de
succession.

4. Postulat du mouvement. — Il est possible de modifier les
situations relatives de plusieurs objets.

5. Postulat du raisonnement. — 11 est possible de raisonner
juste.

Ces postulats sont indispensables à la moindre de nos pensées ;
et principalement à l'écriture.

Juin 1912. Emile Dumont (Bruxelles).

CHRONIQUE

Répertoire bibliographique des Sciences mathématiques.

A la suite du décès de son président, M. Henri Poincaré, la
Commission du Répertoire s'est réunie le 18 décembre 1912 afin
de procéder à l'élection d'un nouveau président et d'aviser aux
mesures que peut nécessiter l'œuvre du Répertoire.

C'est M. H. d'OcAGNE, professeur à l'Ecole polytechnique de
Paris, qui a été désigné comme président. En prenant possession
du fauteuil présidentiel, il est rappelé à la Commission que, à la
suite du décès de M. Rally, les fonctions de secrétaire avaient été
confiées à M. Gérardin (Nancy).

M. Gérardin a expliqué la situation de l'œuvre du Répertoire;
20 séries de fiches sont actuellement étudiées, elles comprennent
2000 fiches et 18,523 titres. Plus de 20,000 titres de mémoires sont
actuellement classés et prêts à être édités; ils donneront lieu à
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