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SUR

LES SPIRALES LOGARITHMIQUES OSCULATRICES
A UNE COURBE PLANE

1. — La théorie des développoïdes des courbes planes permet
de donner une définition géométrique simple des courbes décrites
sur les rayons de courbure d'une courbe comme diamètres. Soit (C)
la courbe plane considérée; soient M un point courant de cette
courbe (C) et C, le centre de courbure cle (Cj associé à M. Une
droite d issue de M et faisant avec la normale MC, un angle
indépendant de la position cle M sur la courbe (C) touche la clévelop-
poïcle (D) qu'elle enveloppe en un point D qui est la projection
orthogonale de C,, sur d. Le lieu des divers points D, ainsi associés

à un même point M de (Cj au moyen des droites d issues cle

ce point M, est clone la circonférence (42) de diamètre MC,
A chaque point M cle la courbe (C) est ainsi associé un cercle

(42) qui est tangent à (C) en M. Lorsque M se déplace sur (C), le
cercle (42) enveloppe une courbe qui se décompose en la courbe (C
et en une nouvelle courbe (S) ; les points cle contact M et S du
cercle (42) avec les deux parties cle son enveloppe sont symétriques
l'un de l'autre par rapport à la tangente au centre m cle (42 au lieu
de ce point m.

Je me propose d'indiquer ici une construction simple et une
définition géométrique curieuse du point S.

2. — La courbe (C) est définie comme enveloppée par la droite
d'équation

x cos © -j- y sin © — Xù

tô(<p) étant une certaine fonction de l'angle cp ; xà', tâ", tà'"
représentent les dérivées successives de cette fonction par rapport à (p.

Les coordonnées de M sont

x — 60 cos © — îjS' sin ©

r n© tü) sin © -{- rtf cos ©
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les axes coordonnés étant rectangulaires, celles du centre de courbure

Cj sont
xt — — to7 sin 9 — to" cos 9 ;

Vi C0/ cos 9 — to" sin 9 ;

le centre w du cercle (&) a donc pour coordonnées

to — to"
\ ,r0 ~ cos 9 — to7 sin 9

j to to
/ V0 — to/ COS 9 + sin 9 ;

d'où résultent les expressions :

^9 — -9 ~t~ ^"t sin r 4- + 6>'"> cos J •

\ + t.d") cos 9 — (to7 ~f to'77) sin 9 J :

je poserai
R — (to -j- to")

R désignant un nombre algébrique dont la valeur absolue est le

rayon de courbure de {C) ; les expressions précédentes deviennent

— — (R sin 9 -j- R' cos 9) ;

^ 1— R cos 9 -f- R7 sin 9) ;

«9 2

la droite MS a donc pour coefficients directeurs

R cos 9 — R' sin 9 R sin 9 -j- R7 cos 9

et son équation est

X(R sin 9 -f- R7 cos 9) -f- Y (— R cos 9 -j- R' sin 9) — toR7 — Rto7 ;

elle passe par le centre de courbure C2 de la développée (Cp
correspondant au point Ci de cette développée : les coordonnées de
C2 sont, en effet, données par les équations

X cos 9 -j- y sin 9 =r — to"

— .r sin 9 -f- y cos 9 zz: — tow

Ainsi donc pour obtenir le point S, où le cercle (JÖ) touche la se-
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conde partie de son enveloppe, il suffit de projeter orthogonaleinent
le centre de courbure de sur Ici droite MC2 qui joint M au
centre C2 de courbure de la développée (Cd).

3. — Supposons que la courbe (C) soit une développante de

cercle; le point C2 est alors un point fixe, centre de la développée
(Ci) qui est un cercle; les points M et S sont inverses 1 un de

l'autre par rapport an cercle (Cp. La courbe (S) est donc la courbe
inverse de la développante de cercle.

D'où il résulte que la courbe (S) qui est associée à une développante

de cercle est la spirale tractrice compliquée.
4. _ Proposons-nous de déterminer les cas où la courbe (S)

dégénère en un point fixe. Soit 0 ce point fixe. Il faut que le

cercle (ß) passe par 0.

Le rayon de ce cercle étant ^ il résulte des expressions des

coordonnées de son centre eo que la condition nécessaire et suffisante

pour que le cercle (S2) passe par un point fixe 0 est que la
fonction ri de cp satisfasse à l'équation différentielle du second
ordre

riri" — ri'2 0 ;

l'intégrale générale de cette équation est

ri Ae}"?

A et m étant deiix constantes arbitraires.
Le seul cas de dégénérescence est donc celui pour lequel la

courbe (C) est la spirale logarithmique.
Le point S est alors fixe et coïncide avec le pôle de la spirale

logarithmique.
5. — La remarque précédente nous amène à donner une nouvelle

définition géométrique de la courbe (S).
Les spirales logarithmiques du plan 0xy dépendent de quatre

paramètres; en chaque point M d'une courbe (C) une spirale
logarithmique {2} est osculatrice à (C) ; le contact entre les deux
courbes est du troisième ordre ; la courbe (C) n'est pas, en général,

traversée par la spirale logarithmique.
Supposons la courbe rapportée à la tangente M.z' et à la

normale M y au point M supposé non singulier; soit

X2 xz
y — yg + 6p + •••

le développement en série de l'ordonnée de la courbe (C).
Les coordonnées de Ct sont :

Xt 0 Vi - R
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celles de C* sont
R8

p•r, - r2 R ;

le point S projection de C4 sur la droite M.C2 a donc pour
coordonnées :

It*p IIP2
a ~ U4 + P2 ' ' ~ R4 + P1

'

Ces mêmes résultats découlent d'ailleurs des calculs du 2°; le
centre C4 est défini comme intersection de deux droites

— x sin © y cos © — w' 0

x cos © -j- T + Co" — 0 :

la droite C4S a donc une équation de la forme

— x sin © —j— y cos © — &)' -f- aix cos © -j- y sin © -j- a]") — 0 ;

cette droite devant être perpendiculaire à MC2, on a

R
A

R ' ;

les coordonnées a, b du point S sont alors données par le système
d'équations :

/ R3

^
a cos © -}- b sin © — ?;o

p2 _j_ r/2 •

• i R2 R/
— a sin © -J- b cos © — Zô — p/2

;

en prenant 0 pour origine et la tangente pour axe des :,v, c'est-à-
dire en posant

on a

f é co — 0, rx> ~ 0

R2 R'
^ _ R8

R2 —j— R'2 — R2 -f R'2 '

ces expressions ne sont autres que celles qui ont été indiquées
antérieurement, puisque P a pour expression

R3
P — __ _R'

Considérons d'autre part la spirale (2j osculatrice à (G) en M.
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Désignons par S son pôle, par a et b les coordonnées de ce pôle ;

soit
rnf)

P Po »

son équation par rapport à des axes issus du pôle S et parallèles
aux axes (M#?/). En écrivant que la spirale passe par M et touche
JVLr, on obtient

CL

1R~~ 7) '

a2 b2 ~ pj exp. ^2m arc tang — ^ :

l'équation de la spirale est donc

2 a bx — ay (x — a)2 + (r — b)2
— arc ta h g —7 5 77, log 5—;—y- ;

b cix -j- by — ce — b~ ci -}- b

elle vérifie l'équation différentielle du premier ordre

y' [ax -j- by — ù2 — b2) -j- bx — ay — 0 ;

en dérivant cette équation deux fois, il vient pour .# ~ 0, y 0 :

(in - 0 (dL\-h-fdA\- ab

\dx)o~ W/o" + 2 ' («2 + <>2)2
'

pour exprimer que les courbes (C) et [2) ont à l'origine un contact

du second ordre, il suffit d'identifier ces expressions avec les
suivantes :

/^j\ __ £ /£j\ _ £
\dx2)o " R ' \dxy0~~ P '

on obtient ainsi les expressions de a et de b :

Rs P RV2

R4 + P2 ' R4 + P2
'

elles sont identiques à celles que l'on avait obtenues pour les
coordonnées de la projection de (£ sur MC2.

Le point S de contact du cercle (42) avec son enveloppe est clone
le pôle de la spirale logarithmique osculatrice en M à la courbe (C).

La courbe (S) enveloppe du cercle (42) est le lieu des pôles des

spirales osculatrices à la courbe (C).
Lorsque (C) est algébrique, cette courbe (S) est nécessairement

algébrique puisque elle est l'enveloppe des cercles (42) ; si la
courbe (C) est unicursale, il en est de même de la courbe (S). Il
est remarquable de constater que des courbes transcendantes, les
spirales logarithmiques osculatrices, permettent ainsi de faire
correspondre une courbe algébrique à une courbe algébrique. Il
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convient d'observer en outre que les courbes transcendantes oscu-
latrices à des courbes données, algébriques ou non, n'ont donné
lieu jusqu'ici à aucun mémoire. La théorie des Spirales logarithmiques

osculatriees à une courbe donnée se présente cependant en
Cinématique : la spirale logarithmique est en effet la courbe qui
doit rouler sur une base rectiligne pour que son pôle engendre
une roulette rectiligne; ce cas se présente, en général, chaque fois-
qu'une base quelconque coupe la roulette imposée, elle-même
quelconque. La roulette peut toujours être assimilée à une spirale
logarithmique au voisinage du point d'intersection (la spirale os-
culatrice), puisque les petits axes de la base et de la trajectoire
imposée voisins du point d'intersection peuvent être remplacés-
par les éléments de tangentes aux deux courbes en ce point.
(H. Bolasse et E. Turrière, Exercices et compléments de
Mathématiques générales, § 263, p. 203.)

6. — Le cercle Q enveloppe une courbe qui est constituée par
l'ensemble des courbes (Cj et (S). Peut-il y avoir réciprocité entre
ces deux courbes en d'autres termes, la courbe (Cj peut-elle
correspondre à la courbe (S) comme celle-ci correspond à (C)

Pour qu'il y ait réciprocité entre les deux courbes, les points M
et S étant homologues, il faut et il suffit que m soit le milieu du
rayon de courbure de la courbe (S). Il est donc nécessaire que les-

rayons de courbure en M et S de (C) et de (S) soient égaux.
Donnons-nous la courbe {or lieu du point w; soient x, y les-

coordonnées du point m, s l'abscisse curviligne de ce point;
soient X, Y les coordonnées du point de contact M du cercle de
centre m et de rayon q avec son enveloppe; je poserai

cp étant l'angle qui repère la tangente de (w) et J celui qui repère
le point M sur la circonférence et par rapport cà la tangente à or.
Les coordonnées de (S) seront de la même forme à la seule différence

que t sera changé en — £. Ces angles £ et —« £ sont donnés-

par l'équation

X ,x + p cos iç -j-

Y — y -f- g sin (© + £)

cos "Ç

<7p

ds

La droite o)M touche son enveloppe en C1 tel que

roCi — L —
sin £

?r + r ;

la droite o)S touche son enveloppe en C2 tel que
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on doit écrire que et sont égaux, d'où 9/ —= 0 : la courbe lieu
de o) doit donc être une droite : les courbes (C) et (S) sont alors
symétriques par rapport à cette droite et il est évident qu'il y a

réciprocité entre elles. Quant à la nature de ces courbes, il suffît
de remarquer que leur propriété caractéristique est que le rayon
de courbure se trouve divisé en deux parties égales par une droite
fixe; d'après les propriétés des courbes de Ribaucour, les courbes
(C) et (S) sont donc deux cycloïdes ordinaires.

Le résultat précédent peut être établi directement au moyen de
considérations géométriques de la plus grande simplicité.

7. — La cycloïde intervient aussi dans la question suivante :

Déterminer la courbe (C) par la condition que la courbe (S) soit
une ligne droite.

Soit 0.r la droite imposée; elle est simultanément le lieu des
points (S) et l'enveloppe des cercles [Sè) : on a donc

y + ji — R ;

on pourra soit former l'équation différentielle du second ordre

2yy" r1 + y'2) (Q1 + y2 — L

qui s'intègre sans difficulté, soit former la relation

y — R sin2-^

qui conduit à l'équation naturelle

R — (1 — cos ©) constante.

Quelle que soit la méthode suivie, les coordonnées :v et y
s'obtiennent sous les formes paramétriques suivantes :

/i fi t\ \ c\ * t sin 20
J x — h -f- a — 6 + 2 s in 0 —

y m ci (1 — cos Q)2 ;

cette courbe transcendante est une développante de la cycloïde
ordinaire d'équations

j 2x± — sin 26 — 20

l 2yt — 1 — cos 20 ;

on peut d'ailleurs démontrer directement, sans aucun calcul et
par de simples considérations d'angles, que le segment CjCj a son
milieu sur O xetque, par conséquent, la courbe (C1 j est la cycloïde
ordinaire.

E. Tuiiriùbe (Poitiers).
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