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CIIR ONI Q VE

M. ib. Skole.m : Sur la constitution des groupes du calcul identique.
Aktuar Palmström : Calcul des rentes d'invalidité dans l'assurance sociale.
Prot. Johansson : Sur la représentation des potentiels automorphes.
Aktuar Holtsmakk : Sur le calcul des rentes viagères sur deux tètes.

Société italienne pour l'avancement des sciences.

La « Societa italiana *per il progresse delle scienze * a tenu
son VIIe Congrès à Sienne du 22 au 27 septembre dentier. Parmi
les conferences générales se rapportant directement ou indirectement

aux sciences mathématiques il y a lieu de signaler les
suivantes :

A. Ga r b a s > o, Les principes de la mécanique.
S. Lussana. Sur la thermodynamique des gaz et des liquides.
E. Milcoskvich. Astronomie et chronologie historique.
C. Pakvopassc. Progrès récents dans la seience et dans la technique des

constructions.
A. Pochf.ttino. Phosphorescence et fluorescence : phénomènes et théories.
G. Foix. L actuaire et la science des actuaires.

Parmi les trgieairv des sections, nous mentionnons les
communications de MM. :

L. Conti. Sur le régime uniforme dans les tuyaux de conduite.
F. Enriques. Sur les conditions suffisantes dans le calcul des variations.
G. Gianeranceschi. La déviation vers l'Est et vers le Sud dans la chute

libre des corps pesants.
E. Laura. Sur les distorsions de Yolterra dans les solides de révolution.
F. Levi-Civita, Sur le théorème de Torricelli.

Société mathématique suisse.

Réunion de Frauenfeld. 9 septembre 1913.

La Société mathématique suisse a tenu sa 4e réunion ordinaire
à Frauenfeld, le 0 septembre 1913. sous la présidence de M. le
Prof. H. Fehh Genèveg comme section de la 90'' reunion de la
Société helvétique des Sciences naturelles. La séance d'ouverture
de la Section a été présidée par M. le I)r K. Matter Frauenfeld

La partie scientifique comprenait onze communications dont
deux, celles de MM. Einstein et Grossmann, ont été présentées
dans une séance commune avec la Société suisse de Physique.

1. — M. le Prof. L. Crelier Berne-Bienne Sur les correspondances

en géométrie synthétique. — Dans diverses notes parues
dans Y Enseignement mathématique en 1906. 1907 et 1908. l'auteur
a essayé d'étendre quelque peu la théorie géométrique des Corres-
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pon dan ces [m n) En considérant principalement les correspondances

(l./z), il a pn simplifier et généraliser les résultats de

AYeyr et indiquer quelques constructions originales pour les cubiques

à point double.
En continuant ses recherches, il a-observé que l'emploi des

correspondances (1.2) peut conduire à la construction des points
d'inflexion et des tangentes d'inflexion dans les cubiques a point
de rebroussement, ainsi qu'à la construction des tangentes et des

points de rebroussement dans les courbes de 3me classe à tangente
d'in flexion.

Dans ce cas, toutes les constructions sont réalisables avec la

règle et le compas.
Le développement des constructions nécessaires peut être

résumé dans la remarque dualistique suivante :

Une cubique G3 à point de ne- Une courbe de 3mc dusse K3

broussement S2 étant donnée par
les points nécessaires, la ligne
de jonction cle S2 avec, chaque
point Sj est univoq ticment
conjuguée avec la ligne cle jonction
de S2 avec le point de tangence
de la tangente de C3 menée par
s<-

Ces droites forment deux
faisceaux homograpliiques concentriques

en S2 dont les rayons
doubles sont la tangente de
rebroussement et la droite passant
par le point d"inflexion.

Les mêmes méthodes de recherche peuvent être appliquées aux
cubiques crunodales et acnodales, ainsi qu'aux courbes de 3me

classe à tangente double, avec points de tangence distincts ou
imaginaires. Les constructions conservent la même valeur
théorique, mais elles ne sont plus comme les précédentes, exclusivement

réalisables par la règle et le compas. Elles nécessitent
l'intersection d'une conique et d'un cercle dont un point commun est
connu.

La remarque dualistique résumant les constructions prend la
forme suivante :

à tangentes d'inflexion \\ étant
donnée par les éléments
nécessaires, le point de coupe de P2

avec chaque tangente simple P1

est univoquement conjugué au
point de coupe de P2 avec la
tangente de K3 menée par le point
cVintersection de P1 avec K3.

Ces points forment deux
ponctuelles homograpliiques sur la
même base P2 ; les points doubles
sont le point d'inflexion et le
point cle coupe cle P2 avec la
tangente de rebroussement.

Une cubique C3 à point double
S2 est donnée par les éléments
nécessaires ; la ligne de jonction
de S2 avec chaque point Si de la
courbe est conjuguée aux deux-

lignes de jonction de S2 avec les

Une courbe de 3""' classe K3 ci

tangente double P2 est donnée

par les éléments nécessaires ; le
point de coupe de P2 avec chaque
tangente simple P1 est conjugué
aux deux points de coupe de P2
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points de tangence des deux tan- avec les tangentes de 7v3 menées

gen tes de la courbe menées par par les points cVintersection de
Sj et rencontrant C3 en dehors Pj avec Iv\
de S j.

Les droites considérées foi'- Les points considérés forment
ment une correspondance 1.2 unecorrespondance (1.2 debase
de rayons concentriques admet- P2 ; les points doubles conjugués
tant un ou trois rayons doubles sont sur les tangentes par les

conjugues réels. Ceux-ci pas- points de rebroussement. Il y a
sent ensuite par les points d'in- un ou trois points doubles réels,
flexion de la courbe.

Le développement des détails de construction permet d'établir
qu'un des éléments doubles conjugués seul est réel dans le cas
des cubiques erunodales et dans celui des courbes de 3me classe
dualistiques des cubiques erunodales.

Si le point double est isolé, ou si la tangente double est isolée,
les éléments doubles conjugués des correspondances 1. 2 sont
tous les trois réels.

Le cas d'un seul élément double conjugué réel conduit h un
intéressant groupement de triangles dans lesquels :

Les paires de côtés homologues Les paires de sommets homolo-
sont les éléments conjugués de gues sont les éléments conjugués
trois involutions de rayons dont de trois involutions de points dont
les sommets sont des points fixes. les bases sont des droites fixes.

Les triangles sont liés involutivement dans chacune des constructions

dualistiques.
Les sommets des triangles sont Les côtés des triangles enve-

sur trois coniques passant par loppent trois coniques n admet-
un seul point commun. tant qu'une seule tangente com¬

mune.
Lue étude plus approfondie de ces triangles conduit à un très

grand nombre de propriétés fort intéressantes.
Les involutions supérieures ou peuvent être établies

au moyen des courbes engendrées par les correspondances 1 nC

ou in m — n -f- J J.

j;w+1 s'obtient en coupant la courbe d'une correspondance 1 m)

par un faisceau de droites issues d'un point extérieur et en
joignant les points de coupe avec le point multiple d'ordre m.
Chaque rayon ainsi obtenu n'appartient qu'à un seul groupe de
[m -f- 1) rayons conjugués.

s'obtient en coupant la courbe d'une correspondance 1. m

comme précédemment et en joignant les points de coupe avec un
point multiple d'ordre m — 2. Chaque rayon appartient à deux
groupes de m -f- 1 rayons conjugués.
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j"'+l s'obtient également avec la courbe d'une correspondance
(2 m — 1) coupée comme avant et en joignant chaque point de

coupe avec le point multiple d'ordre m — 1, dont l'existence est
certaine. Chaque rayon appartient aussi à deux groupes cle m -f- 1

rayons conjugués.
On voit de suite par cet aperçu que l'étude des involutions

supérieures est liée à celle des correspondances analogues.
Pour les cas faciles (1.1), (1.2), (1.3), (2.3), l'étude géométrique

est relativement simple et conduit aisément aux propriétés
des involutions j' i[ J* j' et J*

2. — M. le Prof. I)1' R. bue tek (Carlsruhe], {Jeher algebraische
Gleichungen mit vorgeschriebener Gruppe (Sur les é(/nations
algébriques de groupe donné). — Du grand problème de la détermination

des équations algébriques ayant un groupe donné, le
conférencier ne considère que le cas particulier où le groupe est donné
par deux substitutions indépendantes

^Sy (0 ^ .r < 2 0 ^ y < f)

où .v appartient à l'exposant 2 et S à l'exposant l'\ l étant un
nombre premier quelconque.

Du fait que les substitutions sx$y forment un groupe, résulte
que

S5==sÄS^,

ou, à cause de s-1 ~ s

S — sx Sy s

Si l'on avait x 0, il viendrait s S77-1, contrairement à
l'hypothèse que .s et S sont indépendants. On a donc x 1, par suite

S sSv s s[sSys jCs*

Mais à cause de s2 1 on déduit

J sSys I"2 sSy* sSys sS'ys { sSys Jy sSy*s

Par conséquent,
S=zs. 6-S^.s 6- — S?y2

d'où
y2 ^ 1 (mod. I'

Lorsque lestimpair, on a y Hh 1 (mod. Au cas -f- 1

(mod. I')correspondent des corps de la division du cercle, au cas
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y — 1 (mod. lr) des corps de la multiplication complexe. Lorsque
par contre l 2, en plus des solutions y + 1 (mod. 2r), il y a

encore les solutions

y EÉ i 1 "L 2?
1

(mod. 2? (> g> 2)

Nous savons que les premières solutions conduisent encore aux
corps cle la division du cercle et aux corps des modules singuliers;
nous pouvons nous demander s'il existe des corps relatifs aux
solutions du second cas. La réponse est affirmative. Le
conférencier le montre dans le cas r — 3. Si l'on prend en effet

x — i y—i, y \i 2 x appartient à un groupe s tel que
s2 i. Formant ensuite le corps K(/, V 2), on peut, puisque

3- est une racine huitième de l'unité, exprimer de la manière

suivante les conjugués de y.

V 2 v on lorsque S ^rr). y± i

1 + 1

Y2 — —tl
[f! G

» •>2 Sv

.r.= i II 1 » *r8 Sqv

d4
•

1 + i L-— ^—7^=- G 2 - z

|/2
1 -f- i

: »

G
24 S:V

y, ~ —y .» S4v

•L
1 -f- i

v3
» •G — S5)

j7 — KY y* — S6)-

y —
A + i

1 5 y, S7v

y
S8 t

Par suite est le groupe de Galois du corps K et à cause de

1 -J- i 1 — i
sbr s —— — y b^y

y r '4

on a .sS S3s, où 3 — i -f- 22(mod. 8).

3. — M. le Prof. Gustave Dumas (Lausanne), Sur les singularités
des surfaces. — M. G. Dumas donne, en grands traits, un aperçu
général de sa méthode de résolution des singularités des surfaces
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analytiques dans le voisinage d'un point donné. L ai sa 111 un parallèle

entre la théorie des courbes et celle des surfaces, il en signale
les analogies et les différences et montre comment se posent les

problèmes dans le dernier de ces deux cas.

4. — M. le Dr A. Speiser (Strasbourg). Ueber die Zerlegung der
algebraischen Formen (Sur la décomposition des formes algébriques).

— La notion de composition des formes quadratiques binaires

occupe une place centrale dans la théorie que donne Gauss de ces
formes. Cette notion est susceptible d'une généralisation encore
plus grande que celle que lui donne la théorie des nombres
algébriques.

Nous dirons que la forme f[<vx -Tm) est compensable avec

elle-même, lorsque l'équation

/"•V bJ > xnéfd\

se transforme en identité au moyen de la substitution bilinéaire
à coefficients rationnels

ï"22"iwfi.rt (S|
i k

Si la forme / est indécomposable dans le domaine des nombres
rationnels, on obtient des nombres généralisés (hypercomplexes
en définissant des nombres ei, em ayant la propriété de rendre
identiques les deux membres de l'équation

VN + ••• + emZm ~ KG + + CnGCKG + + GC'J

lorsque les zL sont exprimés au moyen de la substitution (S). Il
faut pour cela que les nombres em vérifient les équations

ei ek 2 ei
1

Lorsque cette multiplication est associative et commutative?
le domaine des nombres eri\ -f- e x > dans lequel ,r13

.v/n sont des valeurs rationnelles quelconques, se réduit à des
domaines holoédrique-isomorphes à certains corps algébriques et
à leurs conjugués.

Lorsque la multiplication n'est qu'associative, on obtient des
nombres hypercomplexes. Certaines formes quaternaires donnent
naissance de cette manière à de nouvelles classes de nombres,
telles que les quaternions dont l'arithmétique a été donnée par
M. Hurwitz. C'est une image de l'arithmétique des formes quaternaires

correspondantes.
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Remarquons encore qu'une forme qui admet une composition,
se décompose en deux facteurs dont l'un est evi\ -|- e/nx/n.

De même, le déterminant du groupe admet une composition.
Elle est à la base des profondes recherches de M. Frobenius; en
particulier, la décomposition du système correspondant de nombres

hypercomplexes en systèmes partiels, tels que le produit de
deux nombres quelconques pris dans deux systèmes partiels différents

soit nul, conduit aux caractères du groupe.
Dans tous les cas, on peut attacher à tout nombre hypercom-

plexe une norme telle que le produit des normes de deux nombres
soit égal à la norme du produit.

5. — Prof. D1 L. Bieberbach t Bàle). Eine neue Methode der
konformen Abbildung (Une nouvelle méthode cle représentation
conforme). — Soit fix) une fonction holomorphe dans un cercle de

rayon R de centre à l'origine ; soit, de plus /(O) 0, f (0) 1.

Donc
f[x) X + ayr'2 + azx3 + \m\ < R

Une telle fonction effectue la représentation conforme du cercle
dans un domaine dont Faire (intérieure) est donnée par
l'expression ffff'f'dxdx. L'intégrale double est étendue au cercle

\x\ ^R, x et x, f et f' étant imaginaires conjugués. Si l'on

pose x — re1^, cette expression devient, après un calcul facile

4a2<7aR4 S-rtgCoR6
fdrfrfTJ? +^ + 6

n1 ci a R""
+ -UL- + ->^2-

Par conséquent : La représentation conforme d'un cercle par
une fonction f(x), holomorphe à Vintérieur de ce cercle, telle que
f(0) 0, f' (0) 1, donne un domaine d'aire plus grande. Par
suite, si l'on considère la représentation conforme d'un domaine
donné sur un cercle qui laisse fixe un point de ce domaine et dont
le module d'agrandissement en ce point fixe est égal à 1, la fonction

qui effectue cette représentation est caractérisée comme solution

du problème: rendre minimum l'expression ff f' f dx dx.
L'application de ce principe permet de démontrer très élémen-

tairement la possibilité de la représentation conforme d'un
domaine simplement connexe quelconque sur un cercle. Après avoir
donné une démonstration très courte d'un théorème de Carathéo-
dory sur la continuité de la variation de la fonction caractéristique
de la représentation conforme lorsque le domaine se déforme
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d'une manière continue (cette démonstration repose sur une

remarque relative à la convergence des fonctions inverses d une
suite convergente de fonctions analytiques le conférencier expose
un procédé de calcul très simple pour la détermination effective
de la fonction effectuant la représentation conforme. Ce procédé,,
par exemple, est applicable aux domaines dont l'ensemble
complémentaire forme lui-même un domaine, ayant même frontière.
Il consiste cà approcher la fonction cherchée par le polynôme de

degré n qui, parmi tous les polynômes du même degré, donne au
domaine la plus petite aire f\0) 0, f'\0) 1 Le calcul de ces

polynômes déterminés univoquement conduit chaque fois à la
résolution d'un système d'équations linéaires, à déterminant 0..

6. — Dr E. Marchand (Zurich). Sur la regle de Newton,
dans la théorie des équations algébriques. — Newton a publié,
dans son « Arithmetica universalis» 1707), une règle pour la
détermination du nombre des racines positives, négatives et
imaginaires d'une équation algébrique à coefficients réels, qui permet
de préciser les résultats obtenus par l'application de la règle des
signes de Descartes. Newton n'a pas jugé à propos d'en donner
la démonstration. C'est à Sylvester [1865) que revient l'honneur
d'avoir trouvé le principe d'une démonstration, en même temps
qu'une généralisation L

Les travaux de Newton et de Sylvester, ainsi que leur exposé
dans les traités d'algèbre supérieure de Petersen"2 et de H.Weber:î,
renferment bien des lacunes que j'ai essayé de combler, sur le
conseil de M. le Prof. Dr Hurwitz. Il s'agissait avant tout de
trouver une démonstration complète de la règle de Newton,
démonstration qui embrasse tous les cas possibles.

Voici l'énoncé que je propose pour la règle de Newton :

Soit f{x) a0.rn -j- arrtl—1 -f- an—\x -f- an 0, une équation
à coefficients réels du nme degré \a0 yE 0, an 0).

Formons la différence

et considérons, au point de vue des signes, la double suite (I :

a 6 — a 2

1 (i -F 1) [n — i -f- 1) ^ ai—\ ai+\
i[n — i)

i — 1,2,..., (n — 11

"<>' ai> a2> > aa-2> ' %

+ A, A2 An_, A(1_1 +
Iii

1 J.-J. Sylviîstkr. Transactions of the Royal Irish Academy, vol. 2 V 1871.
J.-J. Sylvbsti-r, Philosophical Magazine, 4me sér., vol. 31, p. 214.
2 Jul. Petersen, Theorie der algebraischen Gleichungen, 1878, p. 203.
2 Heinrich Weber, Lehrbuch der Algebra, 1895, t. 1, p. 304.
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Désignons par

eP le nombre total des variations-permanences1 de (1), par
pP » » » permanences-permanences1 de (I), et par
Y » » » variations que présente la série

4" A2 A;i_2 A/;__j +

avec les conventions suivantes au sujet des zéros qui peuvent se

présenter dans (1) :

1° Si a. •/'- 0 a a — a.. 0 a..,-, W1 0
L 1 7 L i-{-L l~Tl 1

i étant Pun des nombres 1,2, (n — 1), et l'un des
nombres 1, 2, [n — i)y on donnera aux zéros représentant
at * ai+i ••• (ti+v— i ' mème signe que celui de a._x •

2° Si A7._, 0 A^. Aa.+1 — Aa.+^_, — 0 Ak^k, 2 0

k étant l'un des nombres i, 2, (n — 1) et /A, l'un des nombres
i, 2, i n — A*), on donnera, en général,

au zéro représentant \/c, le signe contraire de celui de Aa._1

» » AA__|_^ le même signe que » » Aè__1

etc., en variant ioujours les signes; sauf toutefois dans le cas où
les ak correspondants sont tels que

Clk—\ ^ ^ Cl k — CLk-\-1 — • • ' — ak-Ck'—1 — ^ (lk+k' ^ ^ et ak—l * t(k+k' ^ 0 •

Il faut alors que le zéro représentant A i ait le même signe
que Aa-+a-'

11 y a encore un cas d'exception, celui où f{x) (;r — a)11 0;
dans ce cas A1 A2 — A«_l 0; ces zéros-là doivent tous
être considérés comme des quantités positives.

La règle de Newton s'exprime alors par les formules :

N+ rP — 2Y N__ ~ pY — 2XS I z= Y + 2a3

N+, N— et I désignant les nombres de racines positives, négatives

et imaginaires de fiai) — 0, chaque racine étant comptée
autant de fois qu'il y a d'unités dans son ordre de multiplicité.
Xi Y et /3 sont des nombres entiers, non négatifs2.

7. — M. le Prof. F. Runio (Zurich). Der Stand der Werke
Leonard Euler. (Etat de la publication des Qkuvres d Euler). —
M. Rudio présente les neuf volumes parus; il saisit cette occasion

1 Voir H. WiïBiiR, loc. cit.
2 La démonstration complète de la î^ègle de Newton paraîtra dans le Bulletin cle la Société

neuchâteloise des Sciences naturelles, t. 40; 1912-1913.
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pour signaler à l'attention cle ses collègues la Société Léonhard
Euler destinée à fournir un appui financier au Comité de
publication. La Commission Euler espère obtenir le concours des

principales sociétés mathématiques.

8. — M. le Dr D. Mirimanoff (Genève), Sur quelques points de

la théorie des ensembles. (En l'absence de l'auteur, le mémoire est
déposé sur le bureau de la présidence.) — M. Mirimanoff donne,
en se bornant aux ensembles linéaires, une démonstration nouvelle

du théorème de Cantor-Bendixson : tout ensemble fermé F
se compose d'un ensemble dénombrable D et d'un ensemble parfait

P. Cette démonstration peut être rapprochée de celles de
W. II. Young, F. Bernstein, L. E. J. Brouwer dans lesquelles la
partie dénombrable de F est détachée à l'aide d'un ensemble
d'intervalles auxiliaires convenablement choisis. Les intervalles
auxiliaires de M. Mirimanoff, qu'il appelle crochets, ont pour
extrémités les milieux (ou des points intérieurs quelconques) des
intervalles contigus à F et deux points arbitraires pris sur les
demi-droites extérieures à F. (Ce mémoire sera inséré dans YEn-
seign. ma (hém. clu 15 janvier 1914. — Réel.)

9. — M. le Prof. Dr YV. H. Young, F. R. S. (Liverpool et Genève).
Uintégrale de Stieltjes et sa généralisation. — En l'absence de
l'auteur, son mémoire est déposé sur le bureau de la présidence.

L'intégrale cle Stieltjes est une limite formée de la même manière
que l'intégrale d'une fonction continue. C'est la limite d'une somme
de termes de la forme f{x\) Jgigr) \Jg'x'i g(xi+l) g xfi-
g(x) étant une fonction non décroissante.

Lebesgue a montré que l'intégrale de Stieltjes se ramène à

l'intégrale de Lebesgue d'une fonction bornée et il a indiqué la
possibilité de prolonger l'opération de l'intégrale cle Stieltjes à

tout le champ des fonctions continues. 11 se sert pour cela d'un
changement de variable élégant, mais d'application difficile. Il
remarque encore que procéder d'une autre manière à cette extension

ne lui paraît guère possible.
Cette dernière remarque ne paraît pas fondée pour celui qui

examine la théorie de l'intégration par rapport à une fonction à
variation bornée, telle que la développe M. Young. Cette théorie
n'exige pas la connaissance des théories modernes de l'intégration,

mais procède uniquement par la considération cle suites
monotones de fonctions. Le principe est le suivant :

On dira qu'une fonction f(x) possède une intégrale par rapport
à une fonction positive non décroissante g (x), si elle peut s'exprimer
comme limite d'une suite monotone de fonctions f1, f2, dont les
intégrales par rapport à g (x) sont déjà définies, pourvu que la limite

L'Enseignement mathém., 15e année ; 1913. 34
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des intégrales de tonte suite ayant ces propriétés soit la même et ait
une valeur finie. Cette limite s'appelle l'intégrale de f(x) par
rapport à g (x).

En partant de fonctions constantes à l'intérieur (au sens étroit)
d'un nombre fini d'intervalles, on obtient an moyen de suites
monotones de fonctions des fonctions de classe /, u, lu, ul, lui,
ulu,... etc,... et des fonctions qui n'appartiennent à aucune de
ces classes. Après avoir démontré l'unicité du problème
d'intégration pour les fonctions de classes l, u, lu et ul, on se sert
ensuite du théorème suivant :

Etant donnée une fonction f (x), bornée et représentable analyti-
quement, on peut trouver une fonction lu qui ne dépasse pas f(x)
et une fonction ul qui n'est pas moindre que f(x), ces deux fonctions
auxiliaires ayant la même intégrale par rapport à une fonction
positive non décroissante g (x).

Par conséquent, toute fonction bornée représentable analyti-
quement a une intégrale par rapport à une fonction positive non
décroissante. L'extension aux fonctions non bornées se fait sans
nouvelles difficultés et le passage à l'intégration par rapport à une
fonction à variation bornée est immédiat.

Un exemple cle l'utilité cle l'intégration par rapport à une fonction

à variation bornée nous est donné dans la théorie des séries
trigonométriques. De même que l'intégrale de Lebesgue a élargi
le champ des séries trigonométriques maniables en étendant la
signification de l'expression série de Fourier, l'intégration par
rapport à une fonction à variation bornée a permis à M. Young
d'agrandir encore plus ce champ en remplaçant la classe des séries
de Fourier par la classe plus étendue des séries obtenues par
dérivation terme à terme des séries cle Fourier des fonctions à

variation bornée. Parmi les propriétés des séries de Fourier qui
restent vraies pour cette classe plus étendue, M. Young en cite
deux : 1° les coefficients cl'une série impaire (paire) cle cette classe,
introduits comme multiplicateurs dans une série de Fourier (dans
sa série alliée), engendrent la série cle Fourier d'une fonction de
même sommabilité que celle de la fonction associée à la première
série de Fourier ; 2° une telle série converge (Cl) ou (Cd) (0<fô<fl)
presque partout vers la dérivée de la fonction à variation bornée
attachée à cette série.

Le mémoire se termine par une démonstration en quelques
lignes n'employant que des théorèmes bien connus d'un résultat,

établi jadis par M. Young au moyen d'un raisonnement long-
et difficile faisant usage du changement de variable indiqué par
Lebesgue.

10. —-M. le Prof. Dr A. Einstein (Zurich). Physikalische Grundlagen

und leitende Gedanken für eine Gravitationtsheorie (Base
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physique et idées directrices d'une Théorie de la Gravitation). —
Une des lois naturelles les pins remarquables et le plus exactement

vérifiée est celle de l'identité cle la masse inerte et pesante
des corps, elle exprime que l'accélération de chute clans un champ
de pesanteur est indépendante clu matériel constituant le corps
qui tombe. La conception que dans un système de référence accéléré,

les phénomènes se produisent comme dans un champ de

gravitation, est voisine de cette loi.
Cette conception (Hypothèse de l'Equivalence) fournit un moyen

de déduire théoriquement les propriétés du champ de la pesanteur.

Le principal résultat ainsi obtenu est la courbure des rayons
lumineux dans un champ de gravitation; pour un rayon passant à

côté du soleil, la déviation est de 0",84, elle est clone susceptible
d'observation.

Ce résultat ne concorde pas avec l'état actuel de la théorie de
la Relativité, parce qu'il établit que la vitesse de la lumière dans
le vicie dépend clu potentiel cle gravitation.

J'ai montré, avec M. Grossmann, qu'on peut généraliser la théorie

de la relativité au point cle rester en concordance avec cette
hypothèse d'équivalence 1.

D'après cette théorie, le champ cle gravitation est défini par un
« tenseur» symétrique lß^v] avec 10 composantes.

Au lieu de l'élément cle ligne

dx~ —j— dy —j— dz~ — c~dt~

c'est l'expression plus générale

2 doc^ d'xy
pr

qui intervient comme invariant fondamental.
Les relations du calcul vectoriel à 4 dimensions se transforment

en celles du calcul différentiel absolu.
D'après cette généralisation, tout système d'équations physiques

contient l'influence que le champ de gravitation exerce sur les
phénomènes correspondants à ce système d'équations.

Ces équations généralisées sont généralement covariantes. En
revanche, il paraît logiquement impossible de poser, pour déterminer

le champ de gravitation (c'est-à-dire les g^v)9 des équations
qui soient covariantes par rapport à des substitutions quelconques.

En partant des théorèmes de la conservation cle l'impulsion et
de l'énergie, nous parvenons à choisir le système de référence
(auxquelles les coordonnées d'espace et de temps s9 y, z et t se

1 A. Einst ni n u. M. Grossmann. Entwurf einer verallgemeinerten Relativitätstheorie und
einer Theorie der Gravitation. — 1 broch. in-8®, 38 p. ; B. G. Teubner, Leipzig. — N. de la Rèd.
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rapportent) de telle sorte que les équations ne sont plus cova-
riantes que pour des substitutions linéaires, mais, au contraire de
la théorie habituelle de la relativité, pour des substitutions
linéaires quelconques h

En soumettant le système de référence à cette restriction, nous
obtenons des équations de gravitation entièrement déterminées
et qui satisfont à toutes les conditions qu'on peut imposer à des

équations de gravitation.
11 résulte, en particulier, de ces équations que l'inertie des corps

n'est pas une propriété de chaque corps accéléré seulement, mais
une action réciproque, c'est-à-dire une résistance à une accélération

relative des corps par rapport aux autres corps. Cette
conception a déjà été exposée par Alach et d'autres qui y arrivaient
en se basant seulement sur la théorie de la connaissance.

11. — M. le Prof. Dr Marcel Grossmanx Zurich « Mathematische
Begriffsbilclangen, Methoden und Probleme zur Gravitationstheorie.
(Définitions, Méthodes et Problèmes mathématiques relatifs ci la
théorie de la Gravitation.) — La formation des notions de l'analyse
vectorielle générale constitue la seule difficulté mathématique à

pénétrer dans la théorie d'Einstein sur la gravitation.
Si l'analyse vectorielle, auxiliaire indispensable de la physique

théorique, ne se généralise que lentement, je pense que c'est
parce que les physiciens n'établissent les théorèmes de l'analyse
vectorielle que dans la mesure de leur application aux problèmes
de physique qui en ont provoqué la découverte ou auxquels ils
seront applicables.

Cette méthode, justifiée dans chaque cas particulier, ne saurait
satisfaire les mathématiciens, ni susciter de notions générales.

Les mathématiciens, d'autre part, en introduisant les théories
des quaternions et de Grassmann ont inutilement compliqué la
compréhension de l'analyse vectorielle aux physiciens par des

représentations abstraites qui n'étaient pas indispensables.
A ces difficultés s'ajoute la confusion babylonienne des termes

et des signes qu'une commission internationale n'a pas réussi à

corriger.
L'idée fondamentale de la théorie de la gravitation d'Einstein,

qui est de caractériser un champ de gravitation par une forme
différentielle quadratique à coefficients variables, nécessite une
généralisation des définitions et des méthodes de l'analyse vectorielle,

afin d'obtenir un aperçu plus distinct.
Le célèbre traité de Christoffel, Sur la transformation des

1 Le texte allemand de l'auteur dit : derart zu wählen, dass nui• mehr lineare, aber im
Gegensatz zur gewöhnlichen Relativitätstheorie beliebige lineare Substitutionen die Gleichungen
kovariant lassen. — (Note du traducteur E. Chatki.aixj
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expressions différentielles homogènes du deuxième degré, 18Ç9

(Journal f. Math. 70) et le travail trop peu remarqué cle Ricci et
cie Levi-Civita, 1901 (Math. Ann. 54) où les auteurs exposent une
méthode pour donner aux équations différentielles de la physique
une forme indépendante des coordonnées, sont, pour le sujet qui
nous préoccupe, d'une importance fondamentale.

Le développement ultérieur de l'analyse vectorielle a mis en
lumière les avantages qu'il y a à traiter cette branche au point de

vue général de la théorie des invariants, puisque cette dernière
intervient dans tout le système des notions de l'analyse vectorielle
et du même coup marque la place naturelle des nouvelles conceptions

introduites par Minkowski, Sommerfeld, Laue, etc., dans le
monde à quatre dimensions de la théorie de la relativité.

11 ne saurait être question ici de développer l'application des
méthodes de la théorie des invariants à l'analyse vectorielle, je
me bornerai k montrer la différence des méthodes sur les notions
et les théorèmes les plus simples de l'analyse vectorielle.

La définition même de vecteur manque souvent de précision et
de généralité, elle n'est pas susceptible d'extension. En définissant

le vecteur comme une grandeur dirigée, déterminée par ses

composantes suivant trois directions rectangulaires, on se
restreint sans nécessité à l'espace euclidien, le seul où « direction »

ait un sens immédiat.
On obtient une meilleure définition en se représentant un vecteur

variable en grandeur et en direction de point en point, c'est-
à-dire un champ vectoriel.

Ses trois composantes

Aj(.ri, x2> Xsl {i 1,2,3)

sont des fonctions du lieu, les transformations qu'elles subissent
lors d'une rotation du système de coordonnées sont essentielles.
Cette rotation est exprimée par une substitution orthogonale

*i ='2iPikxt(L* 1, 2, 3)
k

dont la solution est :

xi—'2lPkix'k-
k

Nous dirons qu'un vecteur est déterminé par trois fonctions
Ai[xif x2, x3) si elles se transforment comme les coordonnées
elles-mêmes, donc si

Aî =2 PkiKk
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De sorte que les coordonnées rectangulaires sont elles-mêmes

aussi composantes de vecteur, ainsi que leurs différentielles.
L'élément de ligne :

ds — dx -}- dx -f- dxî 1

a
1

3

est un invariant absolu, pour chaque vecteur

Aî + K + A3

est aussi un « scalaire », c'est-à-dire un invariant absolu, savoir :

le carré cle la grandeur clu secteur.
Les opérations différentielles sont particulièrement importantes,

la plus simple est la divergence du vecteur A

r öAi ()A2 ÖA3
div A — f- — -j

bxi ö,r2 ö;r8

qui est un scalaire, ce qu'on peut prouver en effectuant la substitution

orthogonale. On le montre habituellement en imaginant
que le vecteur représente la vitesse dans le champ du courant d'un
liquide incompressible. Dans un espace fini S, limité par une
surface er se trouvent des points on le liquide entre et d'autres où il
sort. Si l'on calcule la-quantité de liquide qui traverse la surface
dans l'unité de temps on trouve

j*Nfcda — y div AdS

et l'on a ainsi montré en appliquant le théorème de l'intégrale de
Gauss que la divergence est indépendante du système de
coordonnées : que c'est un scalaire.

En concentrant le domaine S en un point, on peut obtenir la
divergence comme limite.

On peut déduire ces notions et d'autres encore d'une façon plus
satisfaisante en abandonnant les coordonnées cartésiennes pour
introduire des coordonnées curvilignes quelconques.

L'élément de ligne s'exprime alors par

ds2 —^gikdxidxk
ik

Le caractère de généralité de cette forme différentielle quadratique

permet de ne pas se préoccuper de ce que l'espace soit
euclidien, non euclidien ou même à courbure variable.
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Par une transformation de coordonnées :

Xi— Xl[xi, Xt, x[) i 1, 2, 3

ou une transformation des différentielles »

^xi =^—dxk- 2Pa dxk
k k

ou résolue

dx.2 — dxk —S dxk
k ÏX/ck

les coefficients de l'élément de ligne se transforment suivant les

formules :

§rs 2! P IrPks Sik '

ik

si l'on suppose que l'élément de ligne est un scalaire.
Nous déterminons de nouveau un vecteur par trois fonctions

Ai(xi x2, x3) qui se transforment suivant les formules

Aï — ^Pki^kf
k

et nous constatons que les coordonnées ne constituent plus de

vecteur, que leurs différentielles se transforment différemment,
parce que les quotients différentiels partiels nki sont différents
des pki. C'est pourquoi nous appellerons A: vecteur covariant.
Les différentielles des coordonnées constituent, au contraire, un
vecteur contravariant, nous constatons immédiatement l'utilité de
ce dualisme.

Soient
Ai A2 As et Bi B2 Bs

deux vecteurs variables, formons les grandeurs

T« A;B,

qui se transforment de la manière suivante :

^/\? PirPks ^ ik •

ik

Un tel système de neuf grandeurs définit ce que nous appelons
tenseur covariant de deuxième rang, puisque ses composantes sont
caractérisées par deux indices. On voit que les coefficients de



508 CHR ONIQUE
l'élément de ligne constituent aussi un tenseur covariant de
deuxième rang: le tenseur fondamental.

Soit
* <y — 'I <y. _

I

o — I oik 1

le discriminant de la forme différentielle, c'est-à-dire le déterminant

des neuf coefficients, les déterminants mineurs de deuxième
ordre divisés par le déterminant lui-même, sont les composantes
d'un tenseur contravariant de deuxième rang, leurs formules de
transformation étant :

i rs ir '"ks "tik
ik

On peut définir, plus généralement, le tenseur covariant de

rang X parun système de fonctions T,^ qui se transforment
d'après les formules

rp' rp
V2 ••• H ^¥'1 2

' * V> l±l^"'l\
q«2 •••/

De tels systèmes covariants, que nous appelons maintenant
tenseurs, jouent un grand rôle dans la théorie de la transformation

de Christoffel qui a montré comment on peut passer d'un
tenseur cle rang X à un autre de rang X 1 par une seule opération

de differentiation.
Interrompons ces considérations générales pour montrer comment

on obtient la divergence du vecteur.
Soient A4, A2, A3 les composantes d'un vecteur covariant, le

problème consiste à déduire du vecteur, par une differentiation,
un scalaire, c'est-à-dire un invariant absolu. Dans ce but, formons
d'abord, d'après Christoffel, 1' « extension » (Erweiterung) du
vecteur, c'est-à-dire le tenseur covariant de deuxième rang

A - A _ %? i. A + A _ AA A - A _ -v S

A
rs ÖJ" 2 l ÖXÖX Ö.T. / ^S ik \ S ' lJ S k X '

puis le scalaire

divA=2ï«A -

rs

auquel on peut donner la forme

divA -2
rs V 0 s
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Il en résulte, comme extension du vecteur, lorsque l'élément de

ligne est euclidien

A -'ifn bxe

et comme divergence

A
öA2 ÖA3

div A — -4

d# üx ö.r12 3

Je prends encore, comme exemple, les notions cle l'analyse
vectorielle relatives au champ d'un scalaire.

Soit cp {xi, :i\2, x3) un scalaire, alors

09 7 ,0© 09 7

Ö9 — -— dx -f- —— dx -j- dx
d# 1 bx2

2
ö,xg

3

en est aussi un. Comme les dxt constituent un vecteur contrava-
öö

riant, il faut que les forment un vecteur covariant que nous

appellerons le Gradiant de cp

Comme carré de sa valeur nous avons le scalaire

^ 09 0©

' ^rs Ar Ar '

c'est-à-dire le premier paramètre différentiel de Beltrami, qui,
dans le cas de l'analyse vectorielle habituelle, devient le paramètre
différentiel de Lamé

/öcpy /09
\ï>xj [hx2

D'après la formule générale citée plus haut, la divergence du
gradiant est

^ 1 ô //- öc?N
grad 9 > — t\/g y

rs y § ÙX,

c'est-à-dire le deuxième paramètre différentiel de Beltrami, qui,
dans le cas de l'analyse vectorielle habituelle devient

ö2© ö20 Ö20
A? —i~ij + —I

i)xt Ö.r2 öa-s

c'est le deuxième paramètre différentiel de Lamé.
Nous voyons, d'après ces simples exemples la fécondité des

méthodes employées, qui sont en outre complètement indépen-
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dantes du nombre des variables. Je suis persuadé que les questions

de notation de l'analyse vectorielle pourraient être résolues
facilement sur le terrain de ces considérations générales.

12. — Partie administrative. M. H. Fehr, président, rappelle
d'abord le souvenir du professeur H. Weber (Strasbourg), membre
honoraire, décédé au mois de juin dernier ; puis il présente le

rapport annuel. Sur la proposition des vérificateurs des comptes,
la Société approuve le rapport du caissier. Le nombre des membres

s'élève à 132.
Sur la proposition de son Comité, l'Assemblée décide d'adhérer

à la Société Léonhard Eitler/ « elle engage ses membres et le
public scientifique à s'associer aux efforts faits dans le monde
entier pour élever un monument impérissable à l'un des plus
illustres savants suisses. »

Société Léonhard Euler.

La commission Euler de la Société helvétique des Sciences
naturelles vient de créer, sous le nom de Société Léonhard Euler,
une association destinée à fournir un appui financier à la publication

des œuvres complètes d'Euler. Après une étude plus approfondie

du plan et du prix de revient de cette vaste publication, la
Commission a reconnu que les devis primitifs seront dépassés.

« Suivant un premier devis, dit la circulaire, l'édition complète
des œuvres d'Euler devait comprendre 40 à 45 volumes, chiffre
qui a servi de base pour le calcul des frais de publication. Ceux-ci,
évalués à un demi-million de francs, semblaient couverts par des
abonnements et des subventions volontaires.

« Neuf volumes ont. paru jusqu'à ce jour. Ces volumes ont été
accueillis avec une faveur marquée, grâce à la revision très soignée
du texte et à leur belle impression. Par malheur, on a dû reconnaître

que les frais de publication sont plus élevés qu'on ne l'avait
prévu. Ainsi, malgré les 400 abonnements assurés (prix d'abonnement

par volume 25 fr.) les 6 premiers volumes ont engendré
un déficit de 45,000 fr- qui a du être couvert par le fonds Euler.
Ce fonds, constitué par les subventions de diverses autorités
civiles, de sociétés scientifiques et par des dons de particuliers
est déjà réduit à 84,000 fr. On a reconnu en outre qu'à moins de
donner des dimensions inacceptables aux volumes, le nombre de
ceux-ci, d'abord prévu, est insuffisant pour contenir les œuvres
complètes de l'inépuisable savant. L'Académie de Sl-Pétersbourg
a mis à la disposition de la Commission Euler un grand nombre
de manuscrits inédits ; de tous côtés on retrouve des lettres
d'Euler. A toutes ces causes d'amplification s'ajoute encore le fait
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