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M. Braude, dans son article déjà cité Ueber die Kurven unter
deren Zwischenevoluten sich Kreise befinden. Ce n'est qn après
l'impression de mon travail, que j'ai eu connaissance de celui de

M. Braude. Nos méthodes sont d'ailleurs essentiellement distinctes,

puisque M. Braude utilisait l'expression du rayon de courbure
de la développée intermédiaire et formait l'équation de la courbe
en coordonnées intrinsèques. En ce qui me concerne, an
contraire, poursuivant les calculs d'un récent article Sur les roulettes
à base rectiligne (Enseignement mathématique, XVe année, n° 4,

p. 319-325, 1913), j'ai utilisé les coordonnées tangentiales, et,
désirant généraliser un théorème d'Ossian Bonnet, j'ai établi un
mode de génération cinématique des courbes obtenues.

E. Turriere (Montpellier).

SUR LES AXES ROTATIFS

Dans une intéressante étude Sur les axes principaux d'inertie,
publiée dans YEnseignement mathématique du 15 juillet 1913,
M. Bouny établit deux propositions concernant les axes susceptibles

d'être axes instantanés de rotation sons l'action d'une
percussion 1.

Ces axes, que nous avons proposé d'appeler axes rotatifs 2, par
opposition aux axes hélicoïdaux (axes de rotation et de glissement)

satisfont, comme l'indiquent la plupart des traités de
mécanique3, à la condition nécessaire et suffisante d'être axes principaux

d'inertie par rapport à l'un de leurs points.
M. Bouny démontre l°que dans les ellipsoïdes d'inertie contruits

sur les différents points d'un de ces axes, les plans diamétraux
conjugués à l'axe sont normaux au plan déterminé par l'axe et
par le centre de gravité ; 2° que ces plans diamétraux conjugués
forment un faisceau de plans, ayant pour axe la ligne d'action de
la percussion correspondante.

1 Pour éviter toute confusion, faisons observer que nos raisonnements s'appliquent à une
percussion sollicitant un solide libre dans l'espace et primitivement immobile. Un axe
instantané de rotation, réalisé en ce cas, coïncide évidemment avec un axe fixe, dont les réactions
sont nulles à l'instant de la percussion.

2 Centres de percussion et axes de rotation (Revue de Mécanique, avril 1911 ; Bulletin
technique de l'Association des ingénieurs sortis de l'Ecole polytechnique de Bruxelles, avril 1911).

8 Cf. Appell, t. II, 3« éd., 1911, n° 512, p. 498 ; Sturm, t. Il, 3e éd.. 1875, p. 154; Graindorge,
1889, t. II, p. 341, etc., etc.
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La première des deux propositions de M. Bonny formule, pour
les différents points d'un axe rotatif une propriété que nous avions
énoncée pour le centre de gravité1. On pourrait fondre les deux
énoncés en une proposition unique, d'un caractère plus général,
et s'étendant à tous les points du plan central de l'axe rotatif.
(Pour simplifier les énoncés, nous désignons par plan central
d'un alignement un plan déterminé par cet alignement et par le
centre de gravité).

Cette proposition généralisée est la suivante : Dans Vellipsoïde
d'inertie construit sur un point quelconque du plan central d'un
axe rotatif\ le plan diamétral conjugué à la direction de cet axe
est normal au plan central.

L'auteur de l'article sur les axes principaux d'inertie a recours
à « un système de référence dont l'axe des g coïncide avec la droite
choisie ». Tel est, comme il le rappelle, le procédé suivi dans
beaucoup d'ouvrages d'enseignement pour étudier les propriétés
des axes rotatifs.

Mais cette question peut se traiter facilement au moyen d'un
système de référence dont l'origine coïncide avec le centre de

gravité, et dont les axes ne coïncident pas avec les axes de l'ellipsoïde

central d'inertie. C'est ce que nous nous proposons de faire
voir, tout en faisant ressortir quelques autres propriétés des axes
rotatifs.

Remarquons d'abord que les deux lois de perpendicularité et
de réciprocité, qui lient entre eux l'axe rotatif et la ligne d'action
de la percussion, peuvent s'établir préalablement à toute recherche
analytique, et sans faire choix d'aucun système de coordonnées.

En effet, pour constater que la ligne d'action est forcément
normale au plan central de l'axe rotatif, il suffit d'invoquer d'une
part les principes élémentaires de la dynamique des systèmes,
en vertu desquels le centre de gravité d'un solide libre et
primitivement immobile se met en mouvement dans la direction de la
percussion ; et d'autre part l'axiome de cinématique en vertu
duquel tout point commençant à tourner autour d'un axe, se

déplace normalement au plan fixe qui le reliait à l'axe.
Quant à la réciprocité des distances de la ligne d'action et de

l'axe rotatif à Yaxe central (axe parallèle à l'axe rotatif, mené par
le centre de gravité), elle s'établit en écrivant l'équation du
moment des quantités de mouvement autour de l'axe rotatif :

Mojp(p -j- /') — M (k2 -{- pa) co

dans laquelle est la quantité de mouvement équivalente à

1 Bulletin technique, avril 1911, p. 19G.
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l'impulsion de la percussion, et égale au produit de la masse

totale M par la vitesse linéaire coq du centre de gravité, w étant
la vitesse angulaire, q et les distances Respectives de 1 axe

rotatif et de la ligne d'action à Taxe central, k le rayon de gira-
tion de l'axe central.

Cette formule, en se simplifiant, donne la condition de

réciprocité :

or m /.2. IiI

Ces recherches préliminaires étant faites, on pourra choisir un
système d'axes coordonnés ayant le centre de gravité pour origine,
l'axe central pour axe des g, et une parallèle à la ligne d action

pour axe des y. Si l'on désigne par xQ et xi respectivement
l'abscisse des différents points de l'axe rotatif, et celle des différents

points de la ligne d'action, la formule (1) devient :

x0xt — fa (2)

Ce point acquis, on résoudra le problème par l"évaluation des

moments des quantités de mouvement autour des axes des y et
des x.

Le moment autour des y étant nul en vertu du choix des axes,
entraîne l'annulation du produit d'inertie par rapport aux x. On
écrira donc, en désignant par m chacune des masses élémentaires :

S myz — 0 3

Cette formule exprime la condition nécessaire et suffisante pour
que le plan diamétral conjugué à l'axe des z dans l'ellipsoïde
central d'inertie soit normal au plan central de cet axe.

En conséquence, la condition nécessaire et suffisante pour qu'un
alignement soit axe rotatif\ c'est qu'il se trouve dans un plan central

perpendiculaire au plan diamétral conjugué ci sa direction
dans Vellipsoïde central d'inertie.

Or, comme cette condition est commune à toutes les droites de
même direction contenues dans un même plan central, il en
résulte que si une droite est axe rotatif, toutes ses parallèles,
appartenant à son plan central, le sont aussi.

Si l'on désigne par Iy, J-, px, py, pz, respectivement les
moments d'inertie et les produits d'inertie par rapport aux trois
axes coordonnés, et si l'on tient compte cle ce que le produit
d'inertie px, égal à *2myz, est nul, l'équation de l'ellipsoïde central

est la suivante :

lxX' + lyf + lzZ? ~~ 2PyZX — 2Pzxy — G
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Or on sait que dans un ellipsoïde d'inertie construit sur un

point quelconque x(), 0, du plan des xz (le centre de gravité
étant origine) les produits d'inertie par rapport aux x et par
rapport aux i conservent les mêmes valeurs que dans l'ellipsoïde
central.

Dans un tel ellipsoïde, le terme en y (z-z0) s'annule, condition
nécessaire et suffisante pour que le plan diamétral conjugué à la
direction des s soit normal au plan des xz.

En conséquence, le plan diamétral conjugué à la direction de
l'axe rotatif dans tout ellipsoïde d'inertie ayant pour centre un
point du plan central est normal à ce plan central.

Or, dans chacun des ellipsoïdes considérés, le diamètre parallèle

aux z étant conjugué à un plan diamétral normal au plan
central des xz, est à la fois diamètre de l'ellipse d'intersection
avec le plan central, et de l'ellipse de contour apparent sur le plan
central1.

En conséquence, les axes rotatifs compris dans un plan central
donné, coïncident avec les alignements qui joignent les deux points
communs à l'ellipse d'intersection et à l'ellipse de contour
apparent dans tout ellipsoïde construit sur un des points de ce plan
central.

(On en conçlut que si pour un des points du plan central, — et
par conséquent pour chacun d'entre eux, — les deux ellipses
d'intersection et de contour apparent se confondent, si en d'autres
termes le plan central est plan diamétral principal de tous les
ellipsoïdes construits sur ses différents points, tous les alignements

de ce plan, quelle que soit leur inclinaison, sont axes
rotatifs).

D'autre part, toute section plane de l'ellipsoïde, faite normalement

au plan central et passant par les points communs à l'ellipse
d'intersection et à l'ellipse de contour apparent, a évidemment
pour tangentes en ces points des normales au plan central. L'axe
rotatif passant par le centre de l'ellipsoïde est donc l'un des axes
de cette section elliptique.

En conséquence, un axe rotatif constitue l'un des axes de la
section elliptique faite suivant son alignement, et normalement à

son plan central, dans tout ellipsoïde d'inertie construit en un de
ses points2.

On trouve, par la différentiation de la formule (4), l'équation

1 Cette proposition, qui intéresse tous les ellipsoïdes construits sur des points du plan
central, n'avait été formulée dans notre article précédent (Bulletin technique, avril 1911, p. 207)

que pour l'axe central et l'ellipsoïde central d'inertie.
2 Dans l'article cité (Bulletin technique, avril 1911, p. 208), nous nous étions borné à établir

que « tout axe rotatif est parallèle à l'un des deux axes de la section diamétrale (de l'ellipsoïde

central) qui lui fait face », ou qui, en d'autres termes, est normale à la perpendiculaire
abaissée du centre sur cet axe.
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du plan diamétral conjugué à l'axe central:

481

i _ Py

x L

Or, pour tout ellipsoïde construit'en un point quelconque,
x0z0, du plan central, le produit d'inertie par rapport aux y et le

moment d'inertie par rapport aux z ont respectivement pour
pression :

Py + M,r0c0 el M(/t2 + vq)

Pour un tel ellipsoïde, l'équation (5) du plan diamétral conjugué
se transforme en la suivante :

* - -r0 M {k + .rQ)

Pour trouver l'intersection de deux plans diamétraux conjugués
à un même axe rotatif, menés par deux points x0z0, x0z'0 de cet
axe, on égalera les expressions de z tirées de l'équation (6) appliquée

successivement à chacun des deux points, ce qui donnera à

x et à z des valeurs indépendantes de r.0 et de zf0 :

hl — — h. — Pjifl
— 'Tl ' : — M.r' — MF

La formule (6) permet donc de vérifier la seconde proposition
de M. Bouny, en montrant que tous les plans diamétraux conjugués

à un même axe rotatif* dans les ellipsoïdes construits sur ses

différents points, se coupent suivant un alignement satisfaisant à la
condition de réciprocité et appartenant au plan diamétral conjugué
à l'axe central dans Vellipsoïde central.

D'autre part, on peut, en se fondant sur la formule (6), déterminer

le lieu des points où des plans parallèles entre eux et
normaux au plan central sont conjugués ; en d'autres termes le lieu
des points où ils sont percés par les axes rotatifs auxquels ils sont
conjugués.

Si Ton désigne par </> et a les inclinaisons respectives du plan
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diamétral conjugué au centre, et d'un plan diamétral conjugue
quelconque, sur le plan des .*//, la formule (6) devient :

Pto-3 -f
tsr a — —!s r +,

Si l'on donne à a une valeur constante, on forme le lieu :

tg a(/i2 -j- x2) — /i2 tg © -f- xz (7)

de tous les points du plan central pour lesquels le plan diamétral

conjugué fait un angle bien déterminé — — a avec l'axe rotatif
correspondant.

Ce lieu est une hyperbole ayant pour asymptotes d'une part
l'axe central, d'autre part une parallèle, menée par le centre de
gravité, aux traces des plans diamétraux considérés.

On voit que selon l'inclinaison choisie, ces hyperboles, ayant
toutes une asymptote commune, forment une famille qui couvre
tous les points du plan central. Chacun des plans normaux au
plan central est conjugué en un seul point: celui où il est percé
par l'hyperbole correspondant à son inclinaison. Les plans qui
passent par le centre de gravité ne sont conjugués qu'à l'infini
(exception faite pour le plan d'inclinaison cp).

On peut se représenter facilement la disposition de cette famille
d'hyperboles en construisant, le lieu de leurs sommets: il suffît
pour cela d'éliminer a entre l'équation d'une hyperbole et celle
de l'ensemble de ses deux axes :

t
~2

-9 — 2 - tg a — 1 zr 0
x x b

Ce lieu est le suivant :

2!c2xz tg o -f a8s2 k2[z2 — x2) - |8|

Il est formé de deux branches qui se coupent à angle droit au

centre, et ont l'une et l'autre pour asymptotes les deux parallèles
à l'axe central, distantes de celui-ci du rayon de giration k. La
branche qui passe dans l'angle aigu formé par l'axe central et la
trace du plan diamétral conjugué au centre se développe entre les

asymptotes. L'autre branche coupe les asymptotes et se développe
ensuite à l'extérieur de celles-ci.

L'équation (8) peut être mise sous la forme :

S £2 tg © ib \/lâ sec2 cp — ad

L ~ k2 — a2
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Si dans cette formule on fait x2 — /r2, et si 1 on adopte devant
le radical le signe opposé à celui de tg<jp signe qui se rapporte à

la branche située dans l'angle obtus; on trouve :

-.
__

1

I — tgç

ce qui détermine les deux points où la courbe coupe les asymptotes.
Si l'on fait x- II1 sec 9, expression dans laquelle on considérera

toujours la sécante comme positive 1 angle cp variant entre

— ~ et + V on trouve :

; tg 5 sec ç -f- 1

x sec o — i t g 9

ce qui fait voir que le rapport croit dans une proportion
supérieure à 2 lorsqu'on passe du point d'intersection au point le plus
éloigné de l'axe central.

Si dans la formule 7 on choisit, parmi toutes les valeurs
possibles de a la valeur particulière « =: 0, on obtient l'hyperbole
équilatère :

.rz=—k* tgç

p
ou. en substituant à tgcp sa valeur 2L :

MA-2

- M,r: — py
,9,

En tous les points de cette hyperbole équilatère les axes sont
principaux par construction, puisqu'on a choisi les points pour
lesquels les plans diamétraux conjugués sont normaux aux axes
rotatifs. Cette propriété se vérifie d'ailleurs par la formule 9 qui
exprime que le produit d'inertie par rapport aux // s'annule en
chacun des points de l'hyperbole équilatère 1.

Après avoir tiré de l'équation des moments des quantités de
mouvement autour de l'axe des y les diverses conclusions ci-
dessus, qui concernent exclusivement les axes rotatifs et les plans
conjugués à ces axes, on pourra, par l'évaluation du moment des
quantités de mouvement autour de l'axe des .r, déterminer la
position de la ligne d'action et constater que celle-ci est contenue
dans le plan diamétral conjugué à l'axe central, et coïncide avec
l'axe du faisceau de plans déterminé par ùl. Bouny.

1 Dans not re précédent article Bulletin technique. avril 1911. p. SlOj:, nous avons étudié
cette hyperbole équilatère. à l'exclusion de toutes les autres hyperboles correspondant à des
plans diamétraux conjugués qui ne sont pas normaux aux axes rotatifs.
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On peut conclure de ce qui précède qu'un système d'axes
coordonnés ayant pour origine le centre de gravité se prête avec la
plus grande facilité à la recherche des propriétés des axes rotatifs.

D'autre part, nous croyons avoir montré que la propriété cpi'a
l'axe rotatif d'être principal par rapport à l'un de ses points, n'a
pas l'importance qu'on lui attribue généralement : elle peut
figurer au nombre — et même à la suite, — d'une série cle

propriétés dont chacune constitue une condition nécessaire et
suffisante cle la qualité d'axe rotatif.

En effet, pour qu'un alignement soit axe rotatif, il faut et il
suffît :

Que le plan diamétral conjugué à sa direction clans l'ellipsoïde
central d'inertie (plan qui contient la ligne d'action correspondante)

soit normal à son plan central.
Que le plan diamétral conjugué à sa direction clans un ellipsoïde

d'inertie construit sur un point quelconque de son plan
central soit normal à ce plan central.

Que le diamètre parallèle à sa direction, clans l'ellipsoïde central,
011 clans tout autre ellipsoïde d'inertie construit sur un des points
de son plan central, — soit un des axes cle la section faite suivant
ce diamètre par un plan normal au plan central.

Que le diamètre parallèle à sa direction clans l'ellipsoïde central,
ou clans tout autre ellipsoïde d'inertie construit sur un des points
de son plan central, soit diamètre commun à l'intersection cle

l'ellipsoïde parle plan central, et au contour apparent cle l'ellipsoïde

sur le plan central.
Que le faisceau des plans diamétraux conjugés à cet alignement

clans les ellipsoïdes construits sur ses différents points ait pour
axe une normale à son point central.

Que l'alignement soit axe principal par rapport à l'un de ses

points.
Chacune de ces conditions peut évidemment être considérée

comme la condition qui définit un axe central. De chacune d'entre

elles peuvent être déduites toutes les autres. Mais nous pensons
que la condition classique, celle que nous avons énoncée la
dernière, n'est pas de nature à rendre de grands services. C'est en
considérant l'ellipsoïde central, et en utilisant la première condition,

que l'on résoudra le plus facilement, nous semble-t-il, le
problèmes relatifs aux axes rotatifs1.

Mais il est à remarquer qu'aucune des conditions énoncées ci-
dessus n'est nécessaire pour les recherches concernant les solides

destinés à subir une percussion dans un plan de symétrie.
Dans ce cas, qui se présente presque exclusivement dans la prati"
que, les deux conditions de perpendicularité et de réciprocité,

1 Cf. Centres de Percussion et Axes de Rotation. Bulletin technique d'avril, 1911, p. 198, ss
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établies préalablement à tonte recherche analytique, sont pleinement

suffisantes pour déterminer toutes les inconnues. En effet,
on peut considérer comme évident, par raison de symétrie, que
Taxe rotatif correspondant à une percussion développée dans un
plan de symétrie, est normal à ce plan, et comme tout aussi
évident que si l'axe est normal au plan de symétrie, ce plan contient
la ligne d'action de la percussion.

En ce qui concerne la cinquième condition, celle qui se rapporte
au faisceau de plans conjugués à un même axe en différents points
de son alignement, condition déduite de la proposition de M.
Bouny, nous l'avons énoncée sous une forme qui suppose que les
axes rotatifs ne sont pas seuls à posséder des plans diamétraux
conjugués formant un faisceau. En effet, cette propriété est
commune à tous les alignements de Vespaee. En outre, l'axe du faisceau

de plans diamétraux conjugués passe toujours par le centre
de percussion correspondant, point commun au plan central
de l'alignement, et à la ligne d'action de la percussion pour laquelle
cet alignement est axe hélicoïdal, c'est-à-dire axe instantané de
rotation et de glissement. L'axe du faisceau possède une direction

intermédiaire entre celles de la ligne d'action et de la normale
au plan central. 11 se con fond respectivement avec celle-ci et celle-
là. à l'origine et à l'infini.

Ces propriétés s'établissent facilement en choisissant pour plan
des nr. le plan central de l'alignement considéré, pour axe des :
l'axe central (parallèle à l'alignement, menée par le centre de
gravité) et pour origine le centre de gravité.

Ici l'équation de l'ellipsoïde central contient tous les termes du
second degré, y compris le terme en jjz, et le plan diamétral
conjugué à l'axe central a pour équation :

Le plan diamétral conjugué à l'alignement donné en un de ses
points e'0zu est le suivant :

M (/A + .C) \z — s0\ — pxy — (py + Mz0JC0) [x — ,r0) zz: 0

En faisant .v constant, on voit que l'intersection de ce plan et
d'un plan parallèle àuXT/r a une inclinaison indépendante de z0.

En cherchant, — comme précédemment pour l'axe rotatif, —
1 intersection de deux plans diamétraux conjugués au même
alignement, on trouve :

M*«; - pxy - pyx 0

L'Enseignement niathém., 15e année; 11)13 33
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L'élimination de .r0 entre ces deux formules donne la surface

gauche du troisième degré :

M/2.- /; .1

constituant le lieu des axes des faisceaux de plans diamétraux
conjugués et ayant pour plan asymptotique le plan diamétral
conjugué à l'axe central. (On sait que ce plan diamétral conjugué
est le lieu des lignes d'action des percussions correspondant aux
diverses valeurs de œ0.)

Nous remarquerons pour terminer que les deux propositions
établies par M. Bouny eussent pu être déduites du théorème que
Poinsot avait formulé dans le cas particulier d'un solide tournant
autour d'un point fixe, mais qui est encore vrai si le point, sans
être fixe, passe par l'état de repos : le plan du moment des quantités

de mouvement d'un solide par rapport à l'un de ses points,
actuellement en repos, est conjugué à l'axe de rotation dans
l'ellipsoïde d'inertie construit sur ce point.

Or, si l'on considère d'une part la percussion correspondant à

un axe rotatif, d'autre part un des points de cet axe rotatif, on
constatera que la ligne d'action de la percussion détermine avec
le point considéré le plan du moment des quantités de mouvement
par rapport à ce point. Mais il en est cle même pourtous les autres
points de l'axe rotatif, d'où il résulte que la ligne d'action,
appartenant à tous les plans diamétraux conjugués à l'axe rotatif, est
l'axe du faisceau formé par ces plans; d'où il résulte encore que
cette ligne d'action étant normale au plan central de l'axe rotatif,
tous les plans diamétraux conjugués sont normaux à ce plan
central.

Une démonstration analogue pourrait être faite pour le faisceau
de plans diamétraux conjugués à un alignement quelconque,
considéré comme axe hélicoïdal. 11 faudrait en ce cas supposer deux
percussions appliquées simultanément, — l'une dans l'alignement
de l'axe hélicoïdal, l'autre au centre de percussion correspondant
à cet axe, — de façon à réaliser autour de l'axe une rotation sans
glissement. La seconde de ces percussions occuperait l'axe du
faisceau de plans diamétraux conjugués.

Mais une telle démonstration ne présenterait pas l'extrême
simplicité que l'on constate dans le cas des axes rotatifs.

Bruxelles, août 1913. Lucien Anspach.
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