Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 15 (1913)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE GÉOMÉTRIQUE DES POINTS D'INFLEXION DES COURBES

DU 3e DEGRÉ ET DES TANGENTES DE REBROUSSEMENT DES

COURBES DE LA 3e CLASSE

Autor: Crelier, L.

Kapitel: I. — Introduction.

DOI: https://doi.org/10.5169/seals-14872

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ÉTUDE GÉOMÉTRIQUE DES POINTS D'INFLEXION DES COURBES DU 3° DEGRÉ ET DES TANGENTES DE REBROUSSEMENT DES COURBES DE LA 3° CLASSE

I. — Introduction.

Dans divers travaux parus précédemment¹, nous avons établi les propriétés dualistiques suivantes des courbes du 3º degré et des courbes de la 3º classe, et la plupart des constructions originales que nous indiquons sont réalisables avec la règle et le compas:

- 1. Soient deux faisceaux F_4 et F_2 tels qu'à chaque rayon de F_4 correspondent deux rayons de F_2 et à chaque rayon de F_2 , un seul de F_4 , ces faisceaux forment un groupe ou une correspondance du $(2 + 1)^{\circ}$ degré.
- 3. Le faisceau F_4 est un faisceau simple et le faisceau F_2 une involution. La correspondance du $(2+1)^c$ degré se présente comme un faisceau simple homographique avec une involution de rayons.
- 5. Deux faisceaux concentriques formant une correspondance du $(2+1)^e$ dégré peuvent avoir 0 ou 2 rayons doubles simples $(b_1$ et b_2), puis 1 ou 3

- 2. Soient deux ponctuelles P_4 et P_2 telles qu'à chaque point de P_4 correspondent deux points de P_2 et à chaque point de P_2 un seul de P_4 , ces ponctuelles forment un groupe ou une correspondance de la $(2+1)^e$ classe.
- 4. P_4 est une ponctuelle simple et P_2 une involution de points. La correspondance de la $(2+4)^{\rm e}$ classe se présente comme une ponctuelle simple homographique avec une involution de points.
- 6. Deux ponctuelles de même base formant une correspondance de la $(2 + 1)^e$ classe peuvent avoir 0 ou 2 points doubles simples, $(B_1 \text{ et } B_2)$ puis 1 ou 3

¹ Enseignement Mathématique, tome 8, 1906, n° 6, p. 455-462; tome 9, 1907, n° 2, p. 107 à 119; tome 10, 1908, n° 2, p. 111 à 140.

L'Enseignement mathém.. 15e année 1913.

rayons doubles conjugués (b et b_1) et éventuellement 1 rayon triple (b_1 b_2 et b).

Ils admettent en outre une paire de rayons rectangulaires simples: les axes de l'involution, puis 1 ou 3 paires de rayons rectangulaires conjugués.

7. Les faisceaux F₁ et F₂ d'une correspondance du (2 + 1)^e degré engendrent une courbe du 3^e degré à point double. Le sommet S₂ du faisceau F₂ est le point double, tandis que le sommet S₄ de l'autre faisceau F₄ est un point simple de la courbe.

9. Quand les faisceaux considérés ont un rayon homologue commun, ils n'engendrent plus qu'une conique passant par S_2 .

11. La courbe du 3e degré est construite au moyen d'une conique auxiliaire liée aux divisions des points prises sur deux rayons conjugués coupant les faisceaux.

Les tangentes de la courbe du 3^e degré au point double sont les deux tangentes de la conique auxiliaire menée par ce point; la tangente de la cubique dans l'autre sommet S₁ est aussi la deuxième tangente possible de la conique auxiliaire par S₁.

13. Suivant la position du sommet S₂ par rapport à la conique auxiliaire, ce point double est un nœud, un rebroussement ou un point isolé.

15. Par tout point S_4 de la courbe du 3°, on peut mener, d'une manière générale, une tangente en S_4 et deux autres.

points doubles conjugués (B et B₁) et éventuellement 1 point triple (B₁ B₂ et B).

Comme points, limites, ces ponctuelles admettent M_1 lié M_2 à l' ∞ et conjugué de M, puis L_1 et L_2 conjugués de L à l' ∞ .

Le point M est le centre de l'involution de points.

8. Les ponctuelles P_1 et P_2 d'une correspondance de la $(2+1)^{\rm e}$ classe engendrent une courbe de la $3^{\rm e}$ classe avec une tangente double. La base P_2 est tangente double, tandis que l'autre est tangente simple.

10. Quand les ponctuelles considérées ont un point homologue commun, elles n'engendrent plus qu'une conique tangente à P,.

12. La courbe de la 3^e classe est construite au moyen d'une conique auxiliaire liée aux faisceaux de rayons formés en deux points conjugués réunis avec l'ensemble des points des divisions.

Les points de tangence de la courbe avec la tangente double sont les points de coupe de la conique auxiliaire avec la base P₂; le deuxième point de coupe de cette conique avec l'autre base est le point de tangence de cette base avec la courbe K.

14. Suivant la position de la base P₂ par rapport à la conique, cette base est bi-tangente ordinaire, tangente de rebroussement ou tangente isolée.

16. Toute tangente simple P₄ de la courbe considérée rencontre celle-ci dans son point de tangence et, d'une manière gé-

tangentes par S_4 avec des points de tangence différents de S_4 .

Si le point double est sur la conique auxiliaire on ne peut plus mener par S_1 que la tangente en S_1 et une autre tangente avec le point de tangence différent de S_1 .

Dans le premier cas la courbe du 3^e degré est de la 4^e classe et dans le second cas, elle est de la 3^e classe. (Voir *fig. 1.*)

17. En coupant les faisceaux F_1 et F_2 par une circonférence passant par les sommets, on peut former deux divisions circulaires du $(2+1)^e$ degré, et au moyen de deux points conjugués on détermine deux faisceaux du $(2+1)^e$ degré avec deux rayons homologues communs. La courbe résultante est une conique qui peut également servir de courbe auxiliaire pour la construction de la courbe du 3^e degré.

Les tangentes en S_4 et S_2 sont les diverses droites conjuguées de la ligne $\overline{S_1S_2}$.

19. Un faisceau de rayons simple, homographique avec un faisceau de tangentes d'une conique déterminent également une courbe du 3^e degré à point double. Le point double est le sommet du faisceau simple.

Toute sécante des deux faisceaux contient une correspondance du $(2+1)^e$ degré sur la même base. Les trois points doubles conjugués de cette correspondance sont les points de coupe de la sécante avec la courbe du 3^e degré.

nérale, dans deux autres points de coupe distincts.

Quand la tangente double est une tangente de la conique auxiliaire la tangente simple P₄ n'a plus qu'un point de coupe avec la courbe.

Dans le premier cas, la courbe de la 3° classe est du 4° degré et dans l'autre cas, c'est une courbe du 3° degré. (Voir fig. 2.)

18. Au moyen d'une circonférence tangente aux deux bases et de toutes les tangentes de celle-ci par les points des divisions, on peut former deux faisceaux de tangentes de la (2 + 1)^e classe sur la circonférence, puis avec deux tangentes conjuguées on déterminera deux nouvelles divisions de la $(2+1)^e$ classe ayant deux points homologues communs. La courbe résultante sera une conique qui peut servir de conique auxiliaire dans la construction de la courbe de 3^e classe. Les points de tangence de P₁ et P₂ seront les points conjugués du point de coupe des bases.

20. Une division de points simple, homographique avec une division de points sur une conique déterminent également une courbe de la 3° classe avec tangente double. La tangente double est la base de la division simple.

Tout faisceau formé en joignant les points des deux divisions à un point quelconque du plan donne une correspondance de la $(2 + 1)^e$ classe. Les trois rayons doubles conjugués de la correspondance sont les trois

21. La courbe du $3^{\rm e}$ degré peut être également établie en utilisant les propriétés involutives du faisceau F_2 . On construit un nouveau faisceau simple F_3 , déduit de l'involution et on utilise la conique auxiliaire des faisceaux simples homographiques F_4 et F_3 .

On construit les tangentes dans les sommets S_2 et S_4 avec les rayons conjugués de leur

ligne de jonction.

23. Dans la construction qui précède on avait coupé le faisceau involutif par un cercle; la conique auxiliaire a quatre points de coupe avec ce cercle et ceux-ci sont également des points de la cubique à point double.

Si tout en conservant la même cubique nous laissons le sommet S, se déplacer sur cette courbe, le sommet P du faisceau auxiliaire sera variable, mais les 4 points communs au cercle, à la cubique et à la conique précédente seront des points de chaque nouvelle conique auxiliaire. En outre la ligne de jonction des 5e et 6e points de coupe de chaque conique avec la cubique continuera de passer par le point de coupe de la tangente du cercle en S₂ avec la cubique.

Ce point est le corésiduel des 4 premiers points communs aux diverses courbes.

Le faisceau des coniques auxiliaires est homographique avec le faisceau des rayons passant par le point corésiduel V. Le

tangentes de la courbe de 3° classe par le point quelconque.

22. La courbe de 3° classe peut encore être obtenue en utilisant les propriétés involutives de la base P_2 . On établit une nouvelle ponctuelle p découlant de l'involution et on utilise la conique des ponctuelles homographiques P_4 et p comme conique auxiliaire.

On construit les points de tangence des bases comme points conjugués de leur point

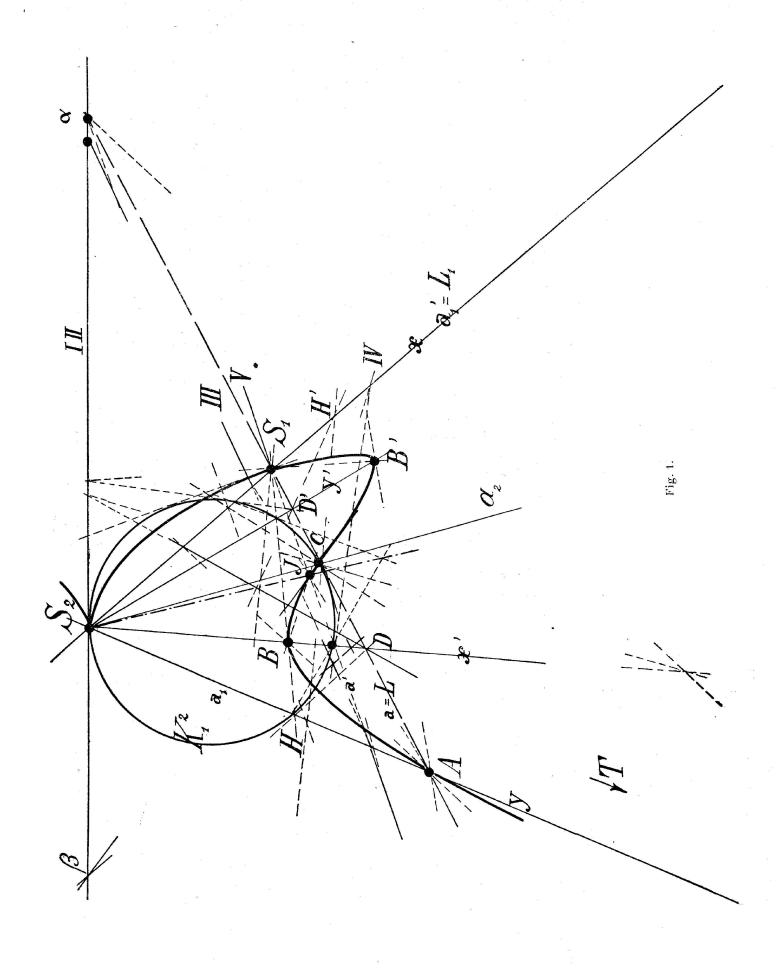
de coupe.

24. Dans cette construction basée sur l'involution on avait considéré un cercle tangent de la base P₂; la conique auxiliaire a quatre tangentes communes avec ce cercle et cellesci sont également des tangentes de la courbe de 3° classe à tangente double.

Si, tout en conservant cette même courbe, nous laissons la tangente P, se déplacer sur celle-ci, la base p de la ponctuelle auxiliaire sera variable, mais les 4 tangentes communes au cercle, à la courbe principale et à la conique précédente seront des tangentes communes de chaque nouvelle conique auxiliaire. D'autre part le point de coupe des 5e et 6e tangentes communes de chaque conique auxiliaire avec la courbe de 3^e classe sera toujours sur la tangente de la courbe principale menée par le point de tangence m_2 de P_2 avec le cercle.

Cette droite $\overline{mm_2}$ est la corésiduelle des 4 tangentes communes primitives.

Les coniques auxiliaires for-



cercle est une des coniques; il est conjugué avec sa tangente en S₂.

Le lieu des points P est la droite qui passe par les points de coupe des tangentes de la cubique en S₂ avec le cercle.

Si S_4 et π sont les 5° et 6° points de coupe de la 1^{re} conique auxiliaire avec la cubique, on peut permuter ces points; le point P sera alors le point de coupe de la même conique avec la droite $\overline{S_4S_2}$. (Voir fig. 3.)

25. La recherche des asymptotes est liée à celle des rayons doubles dans un nouveau faisceau parallèle aux deux premiers. Les asymptotes sont les tangentes par les points de coupe à l'∞ des rayons conjugués parallèles.

ment un faisceau homographique avec la division de points sur $\overline{mm_2}$. Le cercle est une de ces coniques; le point homologue est m_2 , son point de tangence avec P_2 .

L'enveloppe des droites auxiliaires p est le point de coupe des tangentes du cercle par les points de tangence de la courbe

principale avec P₂.

En permutant les 5^{e} et 6^{e} tangentes mm_{1} et P_{2} , la droite p sera la jonction du point fixe avec le point de coupe de P_{1} et P_{2} . (Voir fig. 4.)

26. La recherche des tangentes parallèles à une direction donnée est dualistique de celle des asymptotes dans les courbes du 3^e degré.

11. — Points d'inflexion et tangentes de rebroussement.

Premier cas: Les courbes sont du 3e degré et de la 3e classe.

1. Méthode des rayons conjugués. (Voir fig. 1.)

Les sommets des faisceaux de la correspondance du $(2+1)^e$ degré sont S_1 et S_2 . La courbe engendrée est C^3 . Comme le point S_2 doit être un point de rebroussement, la conique auxiliaire doit passer par S_2 et sa tangente en ce point est la tangente de rebroussement de C^3 .

La conique auxiliaire est déterminée par les ponctuelles homographiques sur les rayons conjugués a et a₁ passant par A sur C³. La conique s'appelle

2. Méthode des points conjugués. (Voir fig. 2.)

Les ponctuelles de la correspondance de $(2+1)^c$ classe sont P_1 et P_2 . La courbe engendrée est K^3 . La base P_2 devant être une tangente d'inflexion, ses deux points de tangence E_1 et E_2 seront confondus en un seul et la conique auxiliaire C_1^2 sera tangente de P_2 en ce point.

Ce point est le point d'inflexion.

La conique C₁² est déterminée par les faisceaux homographiques issus des points conjugués