Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 15 (1913)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: ÉTUDE GÉOMÉTRIQUE DES POINTS D'INFLEXION DES COURBES

DU 3e DEGRÉ ET DES TANGENTES DE REBROUSSEMENT DES

COURBES DE LA 3e CLASSE

Autor: Crelier, L.

DOI: https://doi.org/10.5169/seals-14872

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

ÉTUDE GÉOMÉTRIQUE DES POINTS D'INFLEXION DES COURBES DU 3° DEGRÉ ET DES TANGENTES DE REBROUSSEMENT DES COURBES DE LA 3° CLASSE

I. — Introduction.

Dans divers travaux parus précédemment¹, nous avons établi les propriétés dualistiques suivantes des courbes du 3º degré et des courbes de la 3º classe, et la plupart des constructions originales que nous indiquons sont réalisables avec la règle et le compas:

- 1. Soient deux faisceaux F_4 et F_2 tels qu'à chaque rayon de F_4 correspondent deux rayons de F_2 et à chaque rayon de F_2 , un seul de F_4 , ces faisceaux forment un groupe ou une correspondance du $(2 + 1)^{\circ}$ degré.
- 3. Le faisceau F_4 est un faisceau simple et le faisceau F_2 une involution. La correspondance du $(2+1)^c$ degré se présente comme un faisceau simple homographique avec une involution de rayons.
- 5. Deux faisceaux concentriques formant une correspondance du $(2+1)^e$ dégré peuvent avoir 0 ou 2 rayons doubles simples $(b_1$ et b_2), puis 1 ou 3

- 2. Soient deux ponctuelles P_4 et P_2 telles qu'à chaque point de P_4 correspondent deux points de P_2 et à chaque point de P_2 un seul de P_4 , ces ponctuelles forment un groupe ou une correspondance de la $(2+1)^e$ classe.
- 4. P_4 est une ponctuelle simple et P_2 une involution de points. La correspondance de la $(2+4)^{\rm e}$ classe se présente comme une ponctuelle simple homographique avec une involution de points.
- 6. Deux ponctuelles de même base formant une correspondance de la $(2 + 1)^e$ classe peuvent avoir 0 ou 2 points doubles simples, $(B_1 \text{ et } B_2)$ puis 1 ou 3

¹ Enseignement Mathématique, tome 8, 1906, n° 6, p. 455-462; tome 9, 1907, n° 2, p. 107 à 119; tome 10, 1908, n° 2, p. 111 à 140.

L'Enseignement mathém.. 15e année 1913.

rayons doubles conjugués (b et b_1) et éventuellement 1 rayon triple (b_1 b_2 et b).

Ils admettent en outre une paire de rayons rectangulaires simples: les axes de l'involution, puis 1 ou 3 paires de rayons rectangulaires conjugués.

7. Les faisceaux F₁ et F₂ d'une correspondance du (2 + 1)^e degré engendrent une courbe du 3^e degré à point double. Le sommet S₂ du faisceau F₂ est le point double, tandis que le sommet S₄ de l'autre faisceau F₄ est un point simple de la courbe.

9. Quand les faisceaux considérés ont un rayon homologue commun, ils n'engendrent plus qu'une conique passant par S_2 .

11. La courbe du 3e degré est construite au moyen d'une conique auxiliaire liée aux divisions des points prises sur deux rayons conjugués coupant les faisceaux.

Les tangentes de la courbe du 3^e degré au point double sont les deux tangentes de la conique auxiliaire menée par ce point; la tangente de la cubique dans l'autre sommet S₁ est aussi la deuxième tangente possible de la conique auxiliaire par S₁.

13. Suivant la position du sommet S₂ par rapport à la conique auxiliaire, ce point double est un nœud, un rebroussement ou un point isolé.

15. Par tout point S₄ de la courbe du 3^e, on peut mener, d'une manière générale, une tangente en S₄ et deux autres.

points doubles conjugués (B et B_1) et éventuellement 1 point triple (B_1 B_2 et B).

Comme points, limites, ces ponctuelles admettent M_1 lié M_2 à l' ∞ et conjugué de M, puis L_1 et L_2 conjugués de L à l' ∞ .

Le point M est le centre de l'involution de points.

8. Les ponctuelles P_1 et P_2 d'une correspondance de la $(2+1)^{\rm e}$ classe engendrent une courbe de la $3^{\rm e}$ classe avec une tangente double. La base P_2 est tangente double, tandis que l'autre est tangente simple.

10. Quand les ponctuelles considérées ont un point homologue commun, elles n'engendrent plus qu'une conique tangente à P₂.

12. La courbe de la 3^e classe est construite au moyen d'une conique auxiliaire liée aux faisceaux de rayons formés en deux points conjugués réunis avec l'ensemble des points des divisions.

Les points de tangence de la courbe avec la tangente double sont les points de coupe de la conique auxiliaire avec la base P₂; le deuxième point de coupe de cette conique avec l'autre base est le point de tangence de cette base avec la courbe K.

14. Suivant la position de la base P₂ par rapport à la conique, cette base est bi-tangente ordinaire, tangente de rebroussement ou tangente isolée.

16. Toute tangente simple P₄ de la courbe considérée rencontre celle-ci dans son point de tangence et, d'une manière gé-

tangentes par S_4 avec des points de tangence différents de S_4 .

Si le point double est sur la conique auxiliaire on ne peut plus mener par S_1 que la tangente en S_1 et une autre tangente avec le point de tangence différent de S_1 .

Dans le premier cas la courbe du 3^e degré est de la 4^e classe et dans le second cas, elle est de la 3^e classe. (Voir *fig.* 1.)

17. En coupant les faisceaux F_1 et F_2 par une circonférence passant par les sommets, on peut former deux divisions circulaires du $(2+1)^e$ degré, et au moyen de deux points conjugués on détermine deux faisceaux du $(2+1)^e$ degré avec deux rayons homologues communs. La courbe résultante est une conique qui peut également servir de courbe auxiliaire pour la construction de la courbe du 3^e degré.

Les tangentes en S_4 et S_2 sont les diverses droites conjuguées de la ligne $\overline{S_1S_2}$.

19. Un faisceau de rayons simple, homographique avec un faisceau de tangentes d'une conique déterminent également une courbe du 3^e degré à point double. Le point double est le sommet du faisceau simple.

Toute sécante des deux faisceaux contient une correspondance du $(2+1)^e$ degré sur la même base. Les trois points doubles conjugués de cette correspondance sont les points de coupe de la sécante avec la courbe du 3^e degré.

nérale, dans deux autres points de coupe distincts.

Quand la tangente double est une tangente de la conique auxiliaire la tangente simple P₄ n'a plus qu'un point de coupe avec la courbe.

Dans le premier cas, la courbe de la 3° classe est du 4° degré et dans l'autre cas, c'est une courbe du 3° degré. (Voir fig. 2.)

18. Au moyen d'une circonférence tangente aux deux bases et de toutes les tangentes de celle-ci par les points des divisions, on peut former deux faisceaux de tangentes de la (2 + 1)^e classe sur la circonférence, puis avec deux tangentes conjuguées on déterminera deux nouvelles divisions de la $(2+1)^e$ classe ayant deux points homologues communs. La courbe résultante sera une conique qui peut servir de conique auxiliaire dans la construction de la courbe de 3^e classe. Les points de tangence de P₁ et P₂ seront les points conjugués du point de coupe des bases.

20. Une division de points simple, homographique avec une division de points sur une conique déterminent également une courbe de la 3° classe avec tangente double. La tangente double est la base de la division simple.

Tout faisceau formé en joignant les points des deux divisions à un point quelconque du plan donne une correspondance de la $(2 + 1)^e$ classe. Les trois rayons doubles conjugués de la correspondance sont les trois

21. La courbe du 3° degré peut être également établie en utilisant les propriétés involutives du faisceau F_2 . On construit un nouveau faisceau simple F_3 , déduit de l'involution et on utilise la conique auxiliaire des faisceaux simples homographiques F_4 et F_3 .

On construit les tangentes dans les sommets S_2 et S_4 avec les rayons conjugués de leur

ligne de jonction.

23. Dans la construction qui précède on avait coupé le faisceau involutif par un cercle; la conique auxiliaire a quatre points de coupe avec ce cercle et ceux-ci sont également des points de la cubique à point double.

Si tout en conservant la même cubique nous laissons le sommet S, se déplacer sur cette courbe, le sommet P du faisceau auxiliaire sera variable, mais les 4 points communs au cercle, à la cubique et à la conique précédente seront des points de chaque nouvelle conique auxiliaire. En outre la ligne de jonction des 5e et 6e points de coupe de chaque conique avec la cubique continuera de passer par le point de coupe de la tangente du cercle en S₂ avec la cubique.

Ce point est le corésiduel des 4 premiers points communs aux diverses courbes.

Le faisceau des coniques auxiliaires est homographique avec le faisceau des rayons passant par le point corésiduel V. Le

tangentes de la courbe de 3° classe par le point quelconque.

22. La courbe de 3° classe peut encore être obtenue en utilisant les propriétés involutives de la base P_2 . On établit une nouvelle ponctuelle p découlant de l'involution et on utilise la conique des ponctuelles homographiques P_4 et p comme conique auxiliaire.

On construit les points de tangence des bases comme points conjugués de leur point

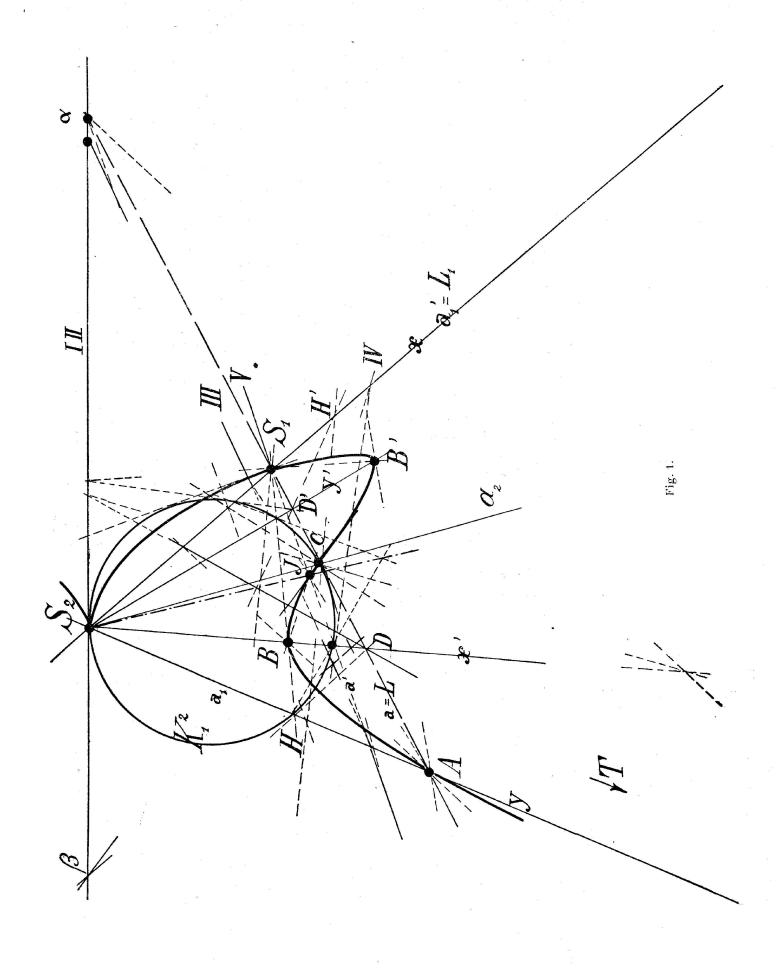
de coupe.

24. Dans cette construction basée sur l'involution on avait considéré un cercle tangent de la base P₂; la conique auxiliaire a quatre tangentes communes avec ce cercle et cellesci sont également des tangentes de la courbe de 3^e classe à tangente double.

Si, tout en conservant cette même courbe, nous laissons la tangente P, se déplacer sur celle-ci, la base p de la ponctuelle auxiliaire sera variable, mais les 4 tangentes communes au cercle, à la courbe principale et à la conique précédente seront des tangentes communes de chaque nouvelle conique auxiliaire. D'autre part le point de coupe des 5e et 6e tangentes communes de chaque conique auxiliaire avec la courbe de 3^e classe sera toujours sur la tangente de la courbe principale menée par le point de tangence m_2 de P_2 avec le cercle.

Cette droite $\overline{mm_2}$ est la corésiduelle des 4 tangentes communes primitives.

Les coniques auxiliaires for-



cercle est une des coniques; il est conjugué avec sa tangente en S₂.

Le lieu des points P est la droite qui passe par les points de coupe des tangentes de la cubique en S₂ avec le cercle.

Si S_4 et π sont les 5^e et 6^e points de coupe de la 4^{re} conique auxiliaire avec la cubique, on peut permuter ces points; le point P sera alors le point de coupe de la même conique avec la droite $\overline{S_4S_2}$. (Voir fig. 3.)

25. La recherche des asymptotes est liée à celle des rayons doubles dans un nouveau faisceau parallèle aux deux premiers. Les asymptotes sont les tangentes par les points de coupe à l'∞ des rayons conjugués parallèles.

ment un faisceau homographique avec la division de points sur $\overline{mm_2}$. Le cercle est une de ces coniques; le point homologue est m_2 , son point de tangence avec P_2 .

L'enveloppe des droites auxiliaires p est le point de coupe des tangentes du cercle par les points de tangence de la courbe

principale avec P₂.

En permutant les 5^{e} et 6^{e} tangentes mm_{1} et P_{2} , la droite p sera la jonction du point fixe avec le point de coupe de P_{1} et P_{2} . (Voir fig. 4.)

26. La recherche des tangentes parallèles à une direction donnée est dualistique de celle des asymptotes dans les courbes du 3^e degré.

11. — Points d'inflexion et tangentes de rebroussement.

Premier cas: Les courbes sont du 3e degré et de la 3e classe.

1. Méthode des rayons conjugués. (Voir fig. 1.)

Les sommets des faisceaux de la correspondance du $(2+1)^e$ degré sont S_4 et S_2 . La courbe engendrée est C^3 . Comme le point S_2 doit être un point de rebroussement, la conique auxiliaire doit passer par S_2 et sa tangente en ce point est la tangente de rebroussement de C^3 .

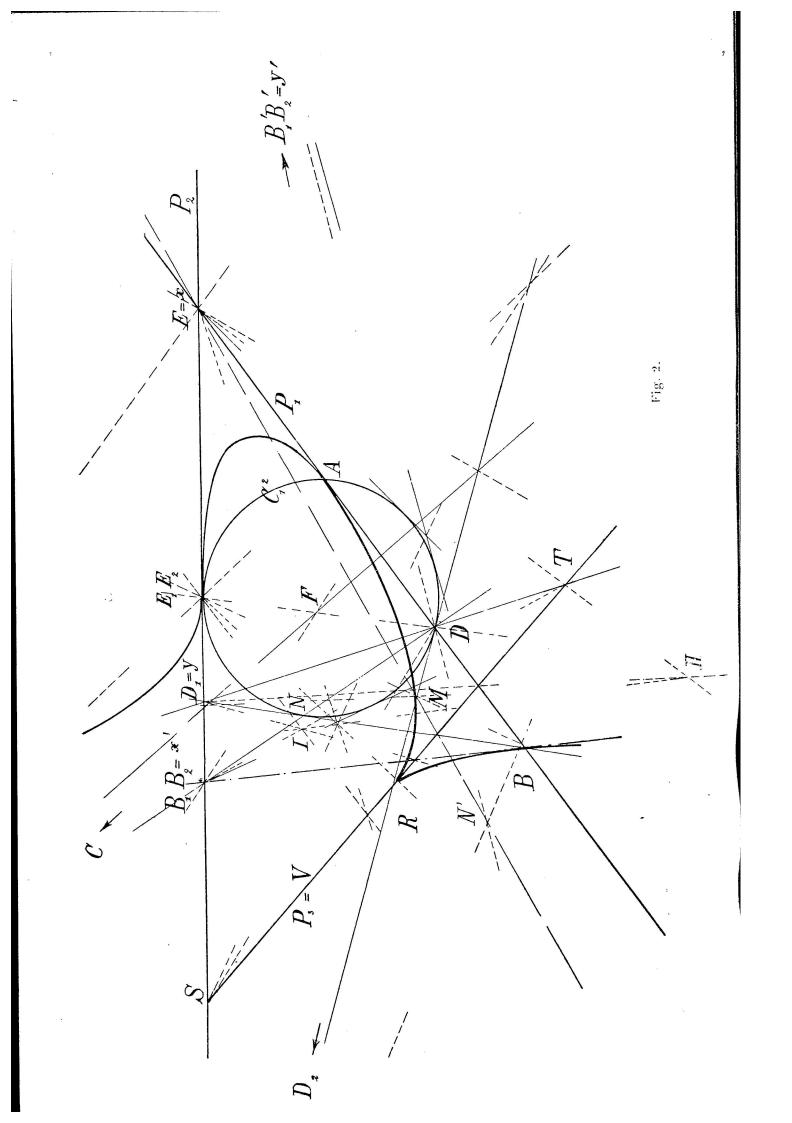
La conique auxiliaire est déterminée par les ponctuelles homographiques sur les rayons conjugués a et a₁ passant par A sur C³. La conique s'appelle

2. Méthode des points conjugués. (Voir fig. 2.)

Les ponctuelles de la correspondance de $(2+1)^e$ classe sont P_4 et P_2 . La courbe engendrée est K^3 . La base P_2 devant être une tangente d'inflexion, ses deux points de tangence E_4 et E_2 seront confondus en un seul et la conique auxiliaire C_1^2 sera tangente de P_2 en ce point.

Ce point est le point d'inflexion.

La conique C₁² est déterminée par les faisceaux homographiques issus des points conjugués



 K_1^2 ; $\overline{S_4A} = a$ est une tangente de K_1^2 en C et C est le point de coupe des rayons conjugués a et a_2 .

Par S_1 , nous avons une tangente de C^3 en S_4 et une autre tangente de C^3 en B. La première est également une tangente de K_1^2 par S_1 . La seconde est une droite $\overline{S_1H}$ passant par le point de coupe H de a_1 avec K_1^2 .

Dans le cas considéré, nous aurons toujours un point H, mais un seul, donc la seconde tangente par S_1 est déterminée d'une manière absolument univoque. Son point de tangence B sur C^3 s'obtient avec $\overline{S_2D}$, D étant le point de coupe de a_4 avec la tangente de K_1^2 en H.

En joignant S_1 et $B \ a \ S_2$ nous obtenons 2 rayons $\overline{S_2S_1}$ et $\overline{S_2B}$ conjugués mais non réciproques.

A chaque position de S₄ sur C³ correspondront deux rayons de ce genre en S₂. Ces rayons formeront ainsi deux divisions homographiques concentriques en S₂. La tangente de rebroussement sera un rayon double.

Le 2° rayon double correspondra à un point J pour lequel les deux tangentes de C³ menées par J seront confondues et auront le même point de tangence J. Deux tangentes confondues avec un même point simple de la courbe comme point de tangence forment une tangente d'inflexion et le point considéré est un point d'inflexion.

Pour déterminer ce deuxième rayon double nous devons d'aD₁ et D. Elle passe par D et A sur P₁. A est également le point de tangence de K³ avec P₁.

Labase P₄ rencontre la courbe K³ en son point de tangence et un autre point B situé sur P, et sur la tangente D₄B de C₁ par D₄. Cette tangente représente 2 rayons confondus du faisceau D₄; le rayon homologue ND par D donne un point double sur P₂ soit B₄B₂. La droite B₄B ou B₂B forme deux tangentes confondues de la courbe K³; elles se coupent en B qui est un point de K³; la tangente de K³ en B est donc $\overline{BB_1}$ ou $\overline{BB_2}$. Puisque D₁ est déjà sur une tangente P2 de C1 nous ne pouvons plus mener que la tangente D₄B par ce point. La base P₄ coupe P2 en E, et ce point est conjugué des points de tangence confondus E₁ et E₂. La tangence de K³ par B coupe P2 en B₄. Les points E et B₄ sont donc conjugués d'une manière absolument univoque sur P₂. A chaque position de la base P, sur la courbe K³ correspondent ainsi deux points conjugués sur P₂. Ces points forment 2 divisions homographiques de même base avec le point d'inflexion E, E, comme point double.

Le 2° point double correspondra à une tangente V de K³ pour laquelle son point de tangence avec K³ et son autre point de coupe avec K³ sont confondus. Les tangentes en ces deux points confondus sont ellesmêmes confondues avec V, donc le point est un point de rebroussement et la tangente

bord chercher une autre paire de rayons conjugués par S₂.

Nous prendrons A comme nouveau point de C^3 . Les rayons $\overline{AS_4} = a = L$ et $S_2S_4 = L_4$ sont conjugués. Ils peuvent déterminer une nouvelle conique auxiliaire K_2^2 . Pour celle-ci on a:

une tangente par S_2 en S_2 une tangente par A en C, et la tangente \overline{DE} relative aux

rayons par le point B.

En procédant comme précédemment nous devons chercher le point de coupe de L₁ avec la conique K₂². Soit H' ce point; il faudra mener ensuite la tangente de K₂² par H' jusqu'en D' sur L.

Pour y arriver nous cherchons le point de tangence T de DE au moyen des triangles inscrits et circonscrits relatifs aux points S_2 , C et T. Nous utilisons le point de Brianchon.

Cela étant, nous considérons les faisceaux S₂ et C pour la conique K₂² et leur centre d'homographie α; nous en déduisons aisément le point de coupe H' de S₂S₁ avec K₂². La tangente en H' s'obtient avec le triangle circonscrit mené par les points S₂C et H'. On emploie la droite de Pascal.

La tangente trouvée coupe L en D'. Les rayons $\overline{S_2A}$ et $\overline{S_2D'}$ sont deux nouveaux rayons conjugués des faisceaux en S_2 .

Il reste à déterminer le rayon double. On utilise la construction bien connue par laquelle on coupe les faisceaux en S₂ par une conique. On emploie la première conique K₁².

V une tangente de rebroussement.

Pour obtenir ce point, nous devons avoir une 2^e paire de points conjugués sur P₂.

Soit DD₁ une nouvelle tangente de K³. Les points conjugués D et E sont pris comme sommets des faisceaux déterminant la nouvelle conique auxiliaire C₂. Pour celle-ci on a:

le point E₁E₂ et la tangente en ce point,

le point D et la tangente DD_2 , puis le point de coupe C des rayons relatifs à la tangente $\overline{BB_4}$.

On doit avoir ensuite la tangente par E à C_2^2 et son point de tangence N' sur C_2^2 afin de déterminer le rayon DN' donnant le point $B'_1B'_2$ et la tangente $\overline{B'B'_1}$ ou $\overline{B'B'_2}$.

On cherche d'abord la tangente de C_2^2 par C avec les triangles inscrits et circonscrits des points E_1DC . On se sert de la droite de Pascal et on trouve la tangente CF.

Les ponctuelles sur ED₄ et DD₂ déterminent aussi la conique C₂²; l'axe d'homographie est E₄D. On en déduit sans peine la tangente de C₂² par E soit EM. Le point de tangence N' est établi avec le triangle circonscrit D₂EM.

On a utilisé le point de Brianchon.

Le rayon DN' coupe P₂ en B'₁B'₂. Les points D₁ et B'₁ sont deux nouveaux points conjugués des ponctuelles sur P₂. Il faut encore trouver le 2^e rayon double. Au moyen de la construc-

On obtient alors le rayon $\overline{S_2J}$. Le point de coupe de ce rayon avec la cubique C^3 est J; on le trouve aussi avec la conique K_1^2 .

D'après ce qui précède, le point J est le point d'inflexion cherché.

Soit J le point d'inflexion et K_3^2 la conique relative aux faisceaux S_2 et J.

Les rayons conjugués déterminant cette conique sont $S_2S_4 = a'_4$ et $JS_4 = a'$. Désignons par H'' le point de coupe de a'_4 avec K_3^2 .

Nous aurons JH" et la tangente de K²₃ par J qui doivent être confondues. Donc la ligne de jonction de J avec H" est une tangente de la conique auxiliaire K²₃.

Basé sur cette observation, nous pouvons déterminer la tangente d'inflexion par J. Ce sera la deuxième tangente de la conique auxiliaire de J par J.

Pour cette conique K_3^2 nous aurons la tangente en S_2 , le rayon $\overline{JS_4}$ qui est aussi une tangente et les tangentes III et IV provenant des points A et B.

Nous obtiendrons la tangente en J avec le théorème de Brianchon.

Le point de tangence H'' de celle-ci avec K_3^2 est également sur le premier rayon $\overline{S_2S_4}$.

3. Méthode involutive. (Fig. 3.)

Les faisceaux de la correspondance sont également S₂ et tion connue avec la première conique C_1^2 on arrive au point S.

On construit la tangente en S de K^3 également avec la courbe C_1^2 .

D'après ce qui précède, cette tangente de la courbe K³ par S est la tangente de rebroussement cherchée.

Soit $P_3 = V$ par S, la tangente de rebroussement, et C_3^2 la conique auxiliaire relative aux droites P_2 et P_3 .

Les points conjugués qui déterminent cette conique sont T et D₄ sur P₄ Le deuxième point de coupe R ou A'' de P₃ avec C₃² doit être confondu avec B'' sur K³, et il en sera de même des tangentes de K³ par ces points. En conséquence, le point de coupe de R de P₃ avec C₃² est situé sur la tangente de C₃² passant par D₄.

Basé sur cette observation, nous pouvons déterminer le point de rebroussement R, sur la tangente de rebroussement ST.

La conique C_3^2 est déterminée par les bases P_2 et $P_3 = ST$. T est sur P_4 , il est alors le conjugué de D_4 .

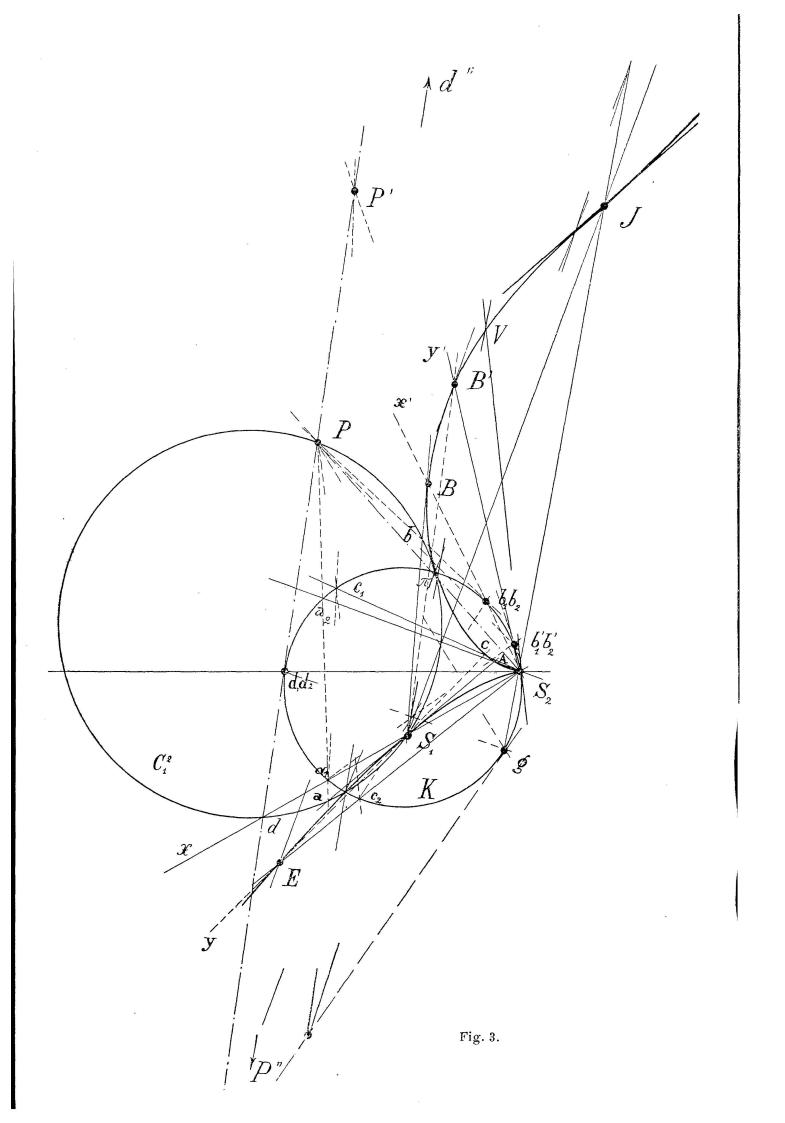
Nous avons pour C_3^2 : la tangente P_2 en E_4 , le point T, les points I et II provenant des tangentes BB_4 et BE de K^3 .

Le point de rebroussement est le 2^e point de coupe de P₃ avec C₃². On l'obtient par l'hexagone de Pascal. C'est R.

La tangente de C₃ en R doit passer par D₄.

4. Méthode involutive. Fig. 4.)

Les bases de la correspondance étant également P₁ et P₂,



S₁ et ils engendrent une courbe du 3° degré C³. Les rayons de S₂ forment une involution que l'on coupe par un cercle K. Le centre correspondant est P. Les faisceaux homographiques simples en P et en S₄ engendrent la conique auxiliaire C².

Comme nous considérons le cas ou S_2 est un point de rebroussement, la droite \overline{Pd} relative au rayon S_2S_4 doit être une tangente de K en d_4d_2 . Sd_4 est donc la tangente de rebroussement en S_2 .

La tangente en S_4 dépend du rayon $\overline{Pa_1a_2}$. Elle coupe encore la courbe C^3 en A. La seconde tangente par S_4 est donnée par la tangente $\overline{Pb_1b_2}$ de K: c'est $\overline{S_1bB}$ avec le point de tangence $\overline{S_2b_4B}$.

Dès maintenant nous pouvons considérer un point quelconque E de C³ comme sommet du faisceau simple engendrant la courbe avec S_2 . Le rayon $\overline{ES_4}$ coupe C³ en C. $\overline{S_2S_4}$ et $\overline{S_2C}$ sont conjugués à ES_4C . L'involution en S_2 admettra un nouveau centre en P' sur la tangente $\overline{Pd_2}$. Il se trouvera également sur la transversale a_4c_4 .

La tangente $P'b'_1$ de K détermine le rayon $\overline{S_2b'_1B'}$ et la tangente $\overline{EB'}$ de C³ par E. On a trouvé B' au moyen des faisceaux primitifs S_2 et S_1 .

Les rayons $\overline{S_2S_1} = x$ et $\overline{S_2B} = x'$ puis $\overline{S_2E} = y$ $\overline{S_2B'} = y'$ forment comme précédemment deux paires de rayons univoquement conjugués, mais non réciproques. Ils appartiennent à deux

elles engendrent une courbe de 3° classe K^{3} . Les points sur P_{2} forment une involution; en menant un cercle C tangent de P_{2} , les tangentes issues des points conjugués donnent un axe d'involution \overline{ab} . Les divisions homographiques sur \overline{ab} et sur P_{1} engendrent une conique auxiliaire K_{1}^{2} .

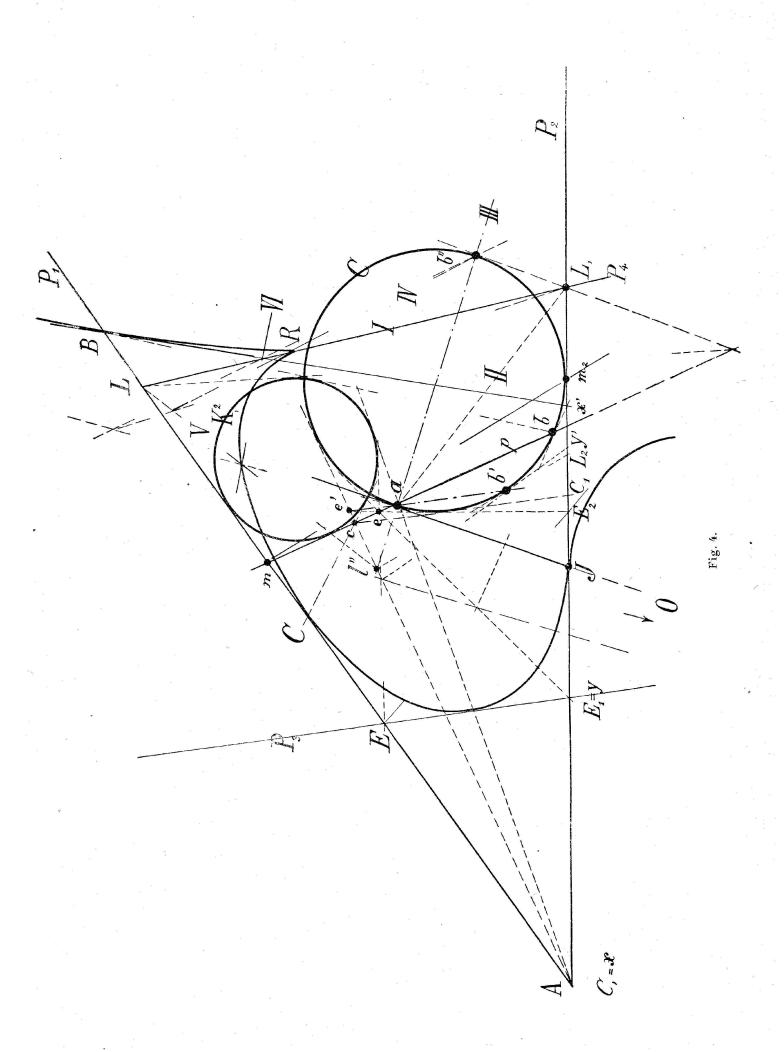
Nous considérons le cas où P_2 est une tangente d'inflexion. Il faut qu'une des droites \overline{Aa} ou \overline{Ab} soit une tangente de K_1^2 . A est le point de coupe des bases et a ou b sont les intersections de l'axe \overline{ab} avec C. La tangente de C par a donne le point d'inflexion sur P_2 , \overline{Aa} étant la tangente de K_1^2 . Le point de tangence de P_4 dépend de la tangente de C par $A = C_4$. La tangente est $\overline{C_4c}$ et le point de tangence cherché est C sur P_4 .

Le 2^e point de coupe de P₄ avec K³ est déterminé par la tangente de K₁² par b; c'est B.

En désignant C par x et B_1B_2 conjugués de B par x', nous aurons deux points univoquement conjugués et non réciproques sur P_2 .

Prenons maintenant une autre tangente de K^3 soit $EE_4 = P_3$ comme nouvelle base simple. On a $E_4 = y$. Les points C_4 et E_2 sont conjugués sur P_2 et les tangentes correspondantes à C_4 se coupent en e': le nouvel axe d'involution est $\overline{ae'}$, car a est l'enveloppe de tous ces axes. Cet axe coupe C en b'. La tangente de C par b' donne le point conjugué de E_4 , soit y'.

Les points conjugués .v.v' et



faisceaux homographiques concentriques en S. $\overline{S_2d_4}$ ou la tangente de rebroussement est un rayon double.

Le second rayon double passera par un point simple de C³ tel que les deux tangentes de C³ par ce point seront confondues. Le second rayon double passera donc par le point d'inflexion.

Comme d'après ce qui précède il n'y a qu'un tel rayon, il n'y aura qu'un seul point d'inflexion sur la courbe C³.

On obtient ce deuxième rayon double au moyen du cercle primitif K. L'axe d'homographie correspondant est $\overline{d_4g}$ avec g sur K. Le rayon double passe par S_2 et par g.

Nous déterminerons le point d'inflexion J en cherchant l'intersection de S₂g avec C³ au moyen des faisceaux primitifs.

Si la cubique est déterminée par les faisceaux S_2 et J, S_2 étant un point de rebroussement et J un point d'inflexion, nous désignerons la conique auxiliaire par C_2 . Le point de coupe de S_2J avec C_2 soit d'' sera sur la tangente de K par d_1 , d_1 étant sur K et sur la tangente de rebroussement. P'' sera sur dd'' et sur C_2 . D'un autre côté, la tangente de K par P'' donnera un point de tangence g sur S_2J .

Pour trouver la tangente d'inflexion par J nous établirons la conique précédente C_2^2 et nous procéderons ensuite comme pour la tangente en S_4 . Nous prendrons le 2^e point de coupe de P''g avec C_2^2 soit α' , et la droite $J\alpha'$ sera la tangente désirée.

yy' sur P₂ appartiennent à deux divisions homographiques simples sur P₂; le point d'inflexion J est un point double de ces divisions.

Elles ont encore un second point double L₁ et la tangente de K⁸ par L₁ donnera une tangente de rebroussement, puisque son second point de coupe avec K⁸ est confondu avec son point de tangence et que les tangentes en ces points sont également confondues.

Commeil n'y a qu'un deuxième point double possible, il n'y a donc qu'une seule tangente de rebroussement de la courbe K³.

Nous trouverons le point double L₄ avec le cercle C et les tangentes par xx' et yy'. Nous obtenons un centre d'homographie O et la tangente de C par ce point donne b'' sur C, puis L₄ le point cherché sur P₂.

Nous aurons la tangente de rebroussement par L_4 en utilisant les bases primitives P_4 et P_2 . Nous trouverons ainsi la tangente $\overline{LL_4}$.

Si la courbe K^3 est déterminée par les divisions P_2 et $P_4 = LL_1$, nous aurons une nouvelle conique auxiliaire K_2^2 . Soit L_4 le point de coupe des bases, la 2^e tangente de K^3 par L_4 sera $\overline{L_4B}$, la 2^e tangente de C par L_4 sera $\overline{L_4b''}$, les points a et b'' sont sur C et sur l'axe d'involution.

La tangente de C par a donne le point d'inflexion et la tangente de K₂ par b" passe par le point de rebroussement R.

Pour trouver le point de rebroussement lui-même, nous construirons la conique précéLa conique auxiliaire C_2^2 relative à J est donnée par les conditions suivantes : elle passe par J, par d'' sur S_2J et la tangente de K par d_1 , puis par P'' sur $d''d_1$ et la tangente de K par son second point de coupe g avec S_2J .

Nous pouvons en outre prendre les points IV et V. Le premier est déterminé au moyen des rayons homologues SE et IE; S₂E coupe K en c_2 ; $\overline{P''}c_2$ coupe ensuite IE en IV sur C_2^2 .

On a de même V au moyen du point de B.

Nous cherchons ensuite le 6° point de C_2^2 sur $\overline{P''g}$, par l'hexagone de Pascal.

La ligne de jonction de ce point avec J est la tangente d'inflexion.

Comme 4° et 5° points nous pouvons aussi utiliser le conjugué de J par rapport au corésiduel V, et enfin nous pourrions nous servir des points de coupe de K avec la première conique auxiliaire C₁°.

Ce dernier procédé est le moins avantageux, car seuls ces points ne peuvent pas être établis avec la règle et le compas.

Dans les autres considérations tous les points peuvent être établis avec la règle et le compas. dente K_2^2 et nous chercherons sa 2^e tangente par b''.

La conique auxiliaire K_2^2 relative à LL_4 est donnée par les tangentes $P_4 = I$, $L_4a = II$ et l'axe d'involution correspondant $\overline{ab''} = III$.

Nous prenons en outre les tangentes V et Vl. Pour trouver V nous menons par L_2 la tangente de C jusqu'à l'' sur l'axe ab'' puis on a $l''L_2 = V$. On a de même VI au moyen de la tangente $BB_1 = Bx'$ de K^3 .

Nous cherchons la tangente de K_2^2 par b'' au moyen de l'hexagone de Brianchon.

Le point de coupe de cette dernière tangente avec $\overline{LL_1}$, soit R est le point de rebroussement.

Les 4° et 5° tangentes nécessaires peuvent être des tangentes communes de K et C_1^2 ou encore la tangente conjuguée de LL_4 par rapport à la droite corrésiduelle $\overline{mm_2}$.

De ces diverses méthodes, celle des tangentes communes à toutes les coniques du faisceau homographique possible de la division sur la droite corrésiduelle est la moins avantageuse au point de vue constructif.

Toutes les autres méthodes conduisent à des constructions réalisables par la règle et le compas, ce qui n'est pas le cas pour la méthode des tangentes communes.

Les observations qui précèdent nous montrent que la construction des points d'inflexion dans les courbes du 3° degré et de la 3° classe, ainsi que celle des tangentes de rebroussement dans les courbes de la 3° classe et de 3° degré peuvent être entièrement exécutées avec la règle et le compas,

et cela de plusieurs manières différentes. Ces observations nous conduisent en outre aux règles dualistiques suivantes résumant les constructions:

Une cubique C³ à point de rebroussement S₂ étant donnée par les points nécessaires, la ligne de jonction de S₂ avec chaque point S₁ est univoquement conjuguée à la ligne de jonction de S₂ avec le point de tangence B de la tangente de C³ menée par S₁.

Cette relation n'est pas réci-

proque.

Ces droites forment deux faisceaux homographiques concentriques en S₂ dont les rayons doubles sont d'une part la tangente de rebroussement et d'autre part une droite passant par le point d'inflexion. Une courbe de 3° classe K³ à tangente d'inflexion P₂ étant donnée par les éléments nécessaires, le point de coupe de P₂ avec chaque tangente simple P₄ est univoquement conjugué au point de coupe de P₂ avec la tangente de K³ menée par le point d'intersection de P₄ avec K³.

Cette relation n'est pas réci-

proque.

Ces points forment deux ponctuelles homographiques sur la même base P_2 ; les points doubles sont d'une part le point d'inflexion et d'autre part, un point situé sur la tangente de rebroussement.

L. Crelier (Berne-Bienne).

SUR LES COURBES DE RIBAUCOUR

Dans une récente thèse Ueber einige Verallgemeinerungen des Begriffes der Mannheimschen Kurve (Heidelberg, 1911), M. Léopold Braude a appelé l'attention sur certaines courbes qu'il a nommées Zwischenevolute et que je désignerai par la dénomination de développées intermédiaires. Soit une courbe plane (C); soit P le point qui divise en une raison donnée λ le rayon de courbure $M\mu$ de la courbe (C) en M, c'est-à-dire soit P le point tel que l'on ait:

$$\frac{M\mu}{MP} = \lambda ;$$

λ étant un nombre algébrique fixé, lorsque le point M décrit la