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PRI LA FUNKCIA EKVACIO
f(x + r) fix) + fix)

1. — Jam de longe, Cauchy pruvis ke kontinua funkcio f\x) kiu
verigas la funkcian ekvacion

f{x -j- r) f[x) -f f[r)

kiuj ajn estu la nornbroj /r, ?/, necese estas homogena, unuagrada
funkcio f[x) A.r.

Poste, oni pruvis la saman t core mon, farinte hipotezojn pli
largajn ol la kontinueco de f{x) l. Ekzemple, Sro Darboux nur
supozis ke f[x) havas superrandon sur finita segmento.

2. — Nun mi intencas pruvi la saman teoremon, nur supozante
ke f(x) estas analitike esprimebla sur in finita segmento. Tio signifias,

lau SroLebesgue, ke gi povas esti konstruata per finita nombro
aü komputebla aro da adicioj, multiplikoj, allimiradoj faritaj sin-
sekve lau difinita lego, komence per la variante kaj konstantoj.
Tiu nocio estas generalega2.

Mi utilos la econ, montratan de Sro Lebesgue3, ke ciu analitike
esprimebla funkcio f[xj estas « mezurebla », t.e. ke la punktoj kie
a ^ f{x) <T b, formas aron mezureblan kiuj ajn estu la nornbroj
a, b. Aliparte, aro E da punktoj sur [a, b) estas mezurebla, kiam
b — a estas la sumo de la malsuperrando (nomata mezuro de E)
de la tuta longeco de aro de segmentoj entenantaj E, kaj de la
simila nombro kiu koncernas la aron de la punktoj de (a, b) kiuj
ne apartenas al E.

3. — Do, ni nur supozas nun ke f[x) estas mezurebla funkcio
sur (a, b), kiu cie verigas la funkcian ekvacion

(1) f(x) — f(x) + fix)

1 Vidu ekzemple S. PincmkkLE, Calcul fonctionnel, Encyclopédie des Sciences mathématiques,

éd. franç.
8 Ekzemple, la funkcio kiu estas nula kiam la varianto estas racionala, kaj égalas unu alie,

estas analitike esprimebla, égalante

lim J~ lim (cos m
m=x> L/i=x J

8 H. Lkbesgue. Sur les fonctions représentables analytiquement. Journal de Mathématiques,
1908.
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Oni tuj vidas, ke f[0) 0, kaj, per klasika metodo ke

(2) f(rx) rf(x)

kiam ;• estas racionala nombro (> 0, «< 0, 0). Nun se f(x) ne
estas la evidenta solvo f[.v) 0 de (1), ekzistas certe nombro c 0,
tia ke f(c) 0. Oni do havas

M ~c f(°)

kiam - estas racionala. Se ni skribas X — A ^ la funkcio
c c ' c

F (X) f(cX) - Xf(c) f(x) - Ax

estas evidente funkcio mezurebla, kiu verigas la funkcian ekvacion

F(X + Y)=F(X)+F(Y)
kiel f[:v), sed kiu estas nula kiam X estas racionala.

La teoremo estos pruvita kiam mi estos montrinta ke F (X) estas
cie nula.

4. — En kontraiia okazo, kiam ekzistus nombro X0 y£ 0, por kiu
F(X0) ^£0, ni rimarkigos unue, ke en tre mallonga segmento, F (X)
alproksimigas al iu ajn nombro. Pli precize, estu k iu nombro,
kaj estu e, rj du nombroj pozitivaj : ekzistas certe nombro X tia
ke, ekzemple

(3) 0 < X < rj k — s < F (X) < k

Fakte, ni povas elekti racionalan nombron r tiel ke

k — £ < r F (X0) < k

Poste; ni povas elekti racionalan nombron /•', por kiu

(5) - rX0 < / ' < - rX0 + r)

Nun
F (F -f rx0) F (F) + F (rX0) rF (X0)

Kaj suficas preni X — rr -f- / X0 por ricevi (3) L
5. — Ni nun uzu la hipotezon ke F (X) estas mezurebla en [a, b).

La aro Ea ß kie, en (a, Z>), a^F(X)-</? havas do mezuron, ni
nomu gin /^Ea ß. Ni estas tuj montronte ke

<6' E»,.+1=EP.P+X-

kinj ajn estu n, p.

1 Samtempe la malegalecoj (3) pruvas ke, se, lau la hipotezo de Sr° Dar houx, f(x) — mezurebla
au ne— havas randojn finitajn, F(X) 0, do f{x) ~ Ax.
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Tip suficos por pruvi la teoremon, car, ciu punkto de (a, b) apar-
tenas al unu el la aroj KÄ,/i+i kie n estas entjero, kaj sekve

h — a — (mE01 + E_l 0) + (mE1j2 -f mE^^) +

+ ("iEM,„+i + + ••• •

Sed, car ciuj parentezoj estas egalaj, laii (6), la dekstra membro
do, ne povus konvergi al (b — a).

6. — Por ricevi (6), ni rimarku, ke lau (3), kiu ajn estu la entjero
q 7> 0, oni povas trovi Xq tiel ke

0<X<7<-^, p — n —• i < F (X^| < p — 71

Kiam Xq ne sangas, kaj, aliparte, X trakuras E«, la-punktoj
Y X + trakuras aron mezureblan G sur kiu

a < Y < b + p — i < F (X) < /> + 1

Ni no mu H, K, la aroj de la punktoj de G sur kiuj

a<Y < b ; ^ Y ^ 6 + A

La unua estas parto de la mezurebla aro E l la dua

estas parto de la segmento b -\~ ~^j -

1
,,_i 1 wiG — mE i -j

aii

mEn,n+1 ~ mEp,p+1 - »«E ï + I
q

La nombroj /i, p ne dependas de q. Kiam q kreskas senfine, la
dua membro de (7) konvergas ankaii al nulo1. Do,

"iE«,«+1 - i •

1 Ni skribis ke E ^ konvergas al nulo kun — ; car E ^
%

estas sumo de

p--,p
'

& \ i t & i 1,-^1 1

P-

do la rajo

2 ""3 ""ïP~q'P~~j+\

/?z-E ^ j -j- /nE | | -f- -f- niEt j j
P-Î'P-Ï P-Ï

A A 1

konvergas kaj la resto E | de la rajo devas konvergi al nulo kun —

p--,P i
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Same
m%,P+i - '"E«,»+t

fine
">Ep,p+lmE«,«+i-

7. — Mi jam alie pruvis1, ke la kontinuaj funkcioj kiuj verigas
la funkcian ekvacion

(8) f(xx+ x% + '+ xu+i)— + + ••• + xi,J +
1

2/K-, + % +- - + *<„_,) + - + (- if+7(o) =0

estas /z-gradaj polinomoj, — kaj reciproke2. La pruvo starigis sur
la teoremo de Cauchy pri la funkcia ekvacio (1). Oni nun vidas ke la
teoremo, supre citita, koncerne (8), estos ankoraü vera kiam oni
ne plu supozas ke f[x) estas kontinua, sed ke gi estas mezurebla
— aü analitike esprimebla — en iu segmento ec tre malgranda,
au ankaü, ke gi estas randebla en tiu-ci segmento.

M. Fréchet (Poitiers).

1 Une définition fonctionnelle des Polynômes {Nouvelles Annales de Mathématiques, 1909,
# série, t. IX).

2 La skribsigno 2 signifas la sumon de ciuj f (x^ -f- x^ -f- -f- xi kie i1, i2, ip estas
p 12 p "

ia kombinajo el la nombroj 1, 2, ...,& + 1.

«
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