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LE CONTENU DU CERCLE ET DE LA SPHERE

COMPARE A CELUI

D'AUTRES FORMES GEOMETRIQUES.

Introduction. — 1l est universellement connu, que parmi toutes
les formes géométriques limitées, ayant méme valeur du contour,
ce sont dans le plan le cercle et dans 'espace la sphere qui offrent
le contenu maximum. Toutefois, lorsque dernierementon vint me
demander une démonstration mathématique rigoureuse de ces
principes populaires, je m’apercus qu’il ne s'en trouve aucune
dans les traités modernes de géométrie qui soit a 'abri d’objec-
tions fondées.

Les recherches faites a ce sujet, ont permis de constater que
cette question, depuis longtemps déja et jusqu’a I'époque actuelle,
a été traitée comme exemple d’application du calcul des varia-
tions !. Cependant pour démontrer ces propriétés si simples du
cercle et de la sphere, il n’est nullement nécessaire d’avoir recours
a des procédés aussi recherchés; il suffit d’utiliser a cet effet les
principes de la géométrie courante. .

A cet égard il y a lieu de considérer deux mémoires importants
publiés en 1842 parle professeur Steixer de 'Académie de Berlin :
« Sur le maximum et le minimum des figures dans le plan, sur la
sphere et dans l'espace en général ». (Journal fiir die reine und
angewandte Mathematik, vol. 24, pp. 93 et 189).

Ces mémoires remarquables par le nombre des probléemes
proposés, des solutions données et des méthodes de démonstration

1 Pour Uaire du cercle : M. NAVIER : Résumé des lecons d’analyse données a l'école poly-

technique. Paris 1856. V. Dalmont, II vol. p. 208. — M, CournoT : Traité élémentaire de la
théorie des fonctions et du calcul infinitésimal. Paris 1857. L. Hachette, II vol. p. 132, —
Em. Czuser : Differential u. Integralrechnung. Leipzig 1906, II vol. p. 460. — Ces calculs

conduisent a I’équation du cercle. -

Pour le volume de la sphére : (. Bossut : Traité de calcul différentiel et de caleul intégral.
Paris an VI (1798). Impr. de Ja République, IT vol. p. 470, no 25. — L.-A. Sou~kr : Sammlung
von Aufgaben aus der Integralrechnung. Dr H. Amstein, H.-W, Schmidt, Halle 1877, p. 295.
— H.-A. ScHwaRrz : Beweis des Satzes, dass die Kugel Kleinere Oberfliche besitzt, als jeder
andere Korper gleichen Volumens. Gesammelte mathem. Abhandlungen. 1890. 11 vol. p. 327.
— Voir aussi : Nachr. der K. Ges. der Wissenschaften u. der Georg. Aug. Univ. su Gottingen,
1884, p. 1-13. Ces caleuls prouvent que la forme cherchée doit jouir de certaines propriétés,
dont jouit aussi la spheére.
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370 M. EDLER VON LEBER

diverses qu’ils contiennent, manquent cependant parfois de clarté ;
ils ne sont pas toujours complets et & I'abri de toute critique ainsi
qu’on le trouve mentionné dans des publications postérieures, a
savoir :

F. EpLer « Vervollstindigung der Striner’schen elementar-
geometrischen Beweise fir den Satz, dass der Kreis grosseren
Flicheninhalt besitzt als jede andere ebene Figur gleichgrossen
Umfanges ». Nachrichten der Konigl. Gesellschaft der Wissen-
schaften u. der Georg Aug. Universitit zu Gdttingen. Gottingen
1882 Dietrich. Seite 73 1.

R. Stury : Bemerkungen u. Zusiitze zu STrINER’s Aufsitzen iber
Maximum u. Minimum. « Journal fiir die reine u. angewandte
Mathematik », 1884, vol. 96, p. 36 2.

E. Roucui et Ch. e Comprroussk : Traité de Géométrie, 7¢ édit.,
Paris 1900, p. 365, t. [ et p. 234, t. I1 3.

R. Stury : Maxima u. Minima in der elementaren Geometrie.
Leipzig und Berlin 1910, p. 314,

Ces compléments, ainsi que les excellents mémoires de STEiNER
concernent une foule de problémes de maxima et minimaj; ici au
contraire c’est uniquement le probleme du cercle et de la spheére

qui nous occupe.

Sans vouloir critiquer en détail les publications remarquables
de mes devanciers, je dois cependant regretter qu’ils.n’aient pas
prouvé tout d’abord que les formes géométriques cherchées, tant
dans le plan que dans l'espace, doivent présenter partout des
contours arrondis convexes et étre dépourvues de points singuliers,
ces derniers pouvant entraver les déductions obtenues, soit par
la géométrie courante, soit par le calcul différentiel. J’ai reconnu
que cette démonstration préalable une fois établie, on en peut
déduire facilement la forme circulaire et la forme sphérique, en
n’invoquant que les principes connus de la courbure des lignes
et des surfaces. _

On a objecté aussi a toutes les publications antérieures, qu’elles
ne démontrent nullement I'existence d’un maximum maximorum
tant en grandeur qu’en forme précise; c¢’est la un point important
qu’il faut élucider et ma méthode nouvelle s’y préte tres bien.

1 J’auteur expose un procéd¢ spécial pour transformer par un nombre limité d’opérations,
un polygone irrégulier en un polygone régulier d’'un plus grand nombre de cotés, de facon
a diminuer le rapport du périmétre a l'aire qu’il contient.

2 On trouve ici une critique ¢tendue des mémoires de STEINER en tant qu'ils concernent
les problemes dans le plan. L’auteur tient compte aussi des publications antéricures de
StriNEr ; il ¥ ajoute des développements complémentaires.

-3 Cet excellent traité reproduit pour les figures planes la démonstration de STEINER
(triangle rectangle inscrit) ; il donne une démonstration élégante pour la sphére en prouvant
que toutes les normales a la surface cherchée doivent concourir en un méme point, tous ces
rayons ayant méme longueur.

4 LJauteur traite le probleme du cercle en prouvant que dans un quadulatele inscrit dans
le contour, un sommet mobile doit toujours rester sur le cercle passant par les trois autres.
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J'admets comme axiome que soit en plan, soit dans I'espace, par
toutes les modifications que 'on peut faire subir a un contour
fermé, de grandeur limitée donnée, afin d’en agrandir le contenu,
on ne peut élever celui-ci au dela de toutes limites, et par consé-
quent que ce contenu ne pourra varier qu’entre zéro (ligne repliée
sur elle-méme, surface repliée sur elle-méme) et une certaine
limite supérieure que J'appellerai le maximum absolu. Supposer
le contraire c’est admettre que le quotient (contenu): (contour)
peut devenir infiniment grand, ou en d’autres termes, inverse-
ment : gu’un contenu donné, quelque grand qu’il soit, peut étre
limité par un contour d’étendue nulle, ce qui est absurde.

[1 s’agit maintenant d’examiner si, et comment,. on pourra
atteindre ce maximum absolu, non seulement en grandeur mais
aussi en forme précise; c’est a ce dernier égard qu’il pourrait y
avoir doute.

On peut supposer ’existence, soit d’'un maximum unique, soit
de plusieurs maxima équivalents de formes différentes’, soit
encore d’'une infinité de maxima équivalents de formes diverses?® —
soit enfin d’un maximum absolu précisé en grandeur mais non
en forme. Il est indifférent qu'on arrive a un pareil maximum
par un nombre limité de transformations ou par un nombre infini
d’approximations successives?. .

Dans les démonstrations qui suivent, je ne poursuis pas de
pareilles distinctions; l'idée dominante est tout autre : nous
étudions les conditions que doivent remplir les formes cherchées
pour pouvoir constituer un maximum s’il existe; nous trouvons
que seuls le cercle dansle plan et la sphére dans ’espace remplis-
sent ces conditions. |

Considérons pour simplifier le cas d’un contour dans le plan
(on raisonnerait de méme pour les surfaces dans ’espace). Nous
trouvons que ce contour, tant qu’il n’est pas dépourvu de tout
point singulier, de toute irrégularité de courbure (pointe, creux,
bosse, etc.) tant qu’il n’est pas entierement circulaire en un mot,
— peut toujours étre déformé de facon que 1'on obtienne un
agrandissement du contenu. En supprimant ainsi toutes les irré-
gularités de courbure, par approximations successives, nous
arrivons au contour circulaire qui seul résiste a tous ces procédés *.

1 Par exemple : des figures symétriques dans le plan ou dans l'espace.

2 Par exemple : Tousles triangles a aire maxima inscrits dans une cllipse donnée ; ce sont
les projections d’un triangle équilatéral mobile restant inscrit dans le cercle dont Vellipse
est la projection ; ils sont de forme variable.

8 Par exemple : Un triangle irrégulier dans lequel, tout en conservaut la longueur du
périmétre, on remplace successivement deux cdtés inégaux par deux cdtés dégaux, puis l'un
d’cux et le troisiéme par deux cOtés égaux et ainsi de suite... jusqu’a la limite qui est le
triangle équilatéral a aire maxima.

4 Nos trausformations font subir a chaque fois au contour, non seulement un agrandisse-
ment du contenu mais aussi une diminution simultanée de la longueur du périmétre. Pour
maintenir celle-ci non altérée, il faudrait donc faire suivre chaque opération d’un agrandisse-
ment de toute la figure, par voie de similitude.
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Mais objectera-t-on peut-étre, il n’est pas démontré que par
d’autres procédés que ceux mentionnés, on ne puisse arriver a un
contour de contenu encore plus grand? Cela est impossible car,
ou ce nouveau contour serait circulaire ou il ne le serait pas. Dans
le premier cas il serait identique au cercle déja trouvé, car deux
cercles ayant méme périmetre sont identiques. Dans le deuxieme
cas on pourrait appliquer a ce nouveau contour nos procédés de
transformation jusqu’a le ramener a étre circulaire et alors, apres
tous les agrandissements de contenu ainsi obtenus, on serait
ramené de nouveau a un cercle de contenu supérieur a celui du
cercle déja trouvé, tout en ayant méme périmetre, ce qui est
impossible. Donc enfin puisqu’il est impossible d’imaginer un
contour isopérimétrique ayant un contenu supérieur a celui du
cercle, celui-ci constitue en grandeur et en forme le maximum
absolu et unique cherché, et ma méthode, consistant a supprimer
successivement toutes les irrégularités de courbure par des ampu-
tations de plus en plus restreintes, établit simultanément la limite
de grandeur et la limite de forme.

Pour la forme sphérique je ne donne que ma démonstration
spéciale car jestime qu’elle est tellement préférable aux exposés
antérieurs, que ces derniers ne seront plus guere utilisés a
I’avenir. Par contre, pour la forme circulaire dont on s’occupe bien
plus souvent, j’ajoute a mon procédé spécial, deux autres démons-
trations. La premiere (triangle r#ctangle), utilisée également par
SteiNEr, représentelasolutionlaplussimple;laseconde (polygones
réguliers; conduit directement a la solution cherchée, sans un
exposé préalable ; je 1'ai établie dans ce but spécial.

I. — Parmi toutes les courbes planes fermées de méme périmétre,
la courbe circulaire est celle qui limite la plus grande surface.

(1) Lorsqu’une droite AB (fig. 1) divise en deux parties égales
la longueur ACBD d’un contour fermé renfermant une aire maxi-
mum, elle doit aussi diviser I'aire limitée par ce contour en deux
parties égales. Supposons dans le cas contraire, que 'aire ACB,
par exemple, soit supérieure al’aire ADB et faisons tourner le con-
tour ACB autour de AB comme axe pour le rabattre en sa position
symétrique AC'B; alors D'aire totale ACBC’A dont le périmetre n’a
pas changé, sera supérieure a l'aire de la figure primitivement con-
sidérée; celle-ci ne pourrait donc pas représenter un maximum.

(2) Le contour cherché ne doit contenir aucune cavité ou pointe
rentrante. Considérons dans le contour ABCD (fig. 2} une cavité A
et une pointe B dirigées vers l'intérieur. Dans les deux cas il est
possible de mener une sécante découpant a 'intérieur une partie
du contour de facon a agrandir 'aire tout en diminuant simulta-
nément la longueur du contour. La figure considérée tout d’abord
ne satisferait donc pas aux conditions posées.

(3) Le contour cherché ne doit pas non plus présenter des bosses
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ou pointes dirigées vers I'extérieur. Considérons en effet (fig. 2)
Jes pointes saillantes D et C. Dans le cas de D ainsi que dans l(?
cas d'une bosse, il y a raccordement concave aux abords, ce qui

d’apres (2) doit étre exclu. Dans le cas de C il y a raccordement

convexe; menons par un point E voisin de C la droite EF bissec-
trice a la fois pour le contour et l'aire comprise et faisant en E
un certain angle avec le contour. (Si cet angle était en p'a.rtlcuher
un angle droit, on choisirait sur I'arc convexe ou .rectlhgne EC
un autre point E’). Remplacons maintenant la moité EDAF du
contour par le rabattement symétrique de ECBF autour de EF
comme axe, ce qui dans la nouvelle figure totale ne change ni la
longueur du contour ni la valeur de I'aire qu’il comprer'ld. Entre
le point C et son symétrique C’ par rapport a EF il existe alors
un contour concave et la figure, d’apreés (2), ne peut constituer un
maximum.

On pourrait, il est vrai, objecter que 'arc convexe EC étant tel
qu’en chaque point il reste normal a la bissectrice qu'on y fait
passer, la démonstration ci-dessus serait en défaut. Mais alors il
suffirait de faire passer le point E’ voisin du point C un peu au
dela de celui-ci. Comme en C il y a rupture brusque de courbure,
la conception de la bissectrice toujours normale au contour devient
inadmissible.

(4) Le contour cherché ne doitcontenir aucune partie rectiligne.
Cecirésulte de la démonstration (3) ci-dessus dans laquelle il suffit
de considérer (fig. 2) la partie EC du contour comme formée par
une ligne droite. De plus, dans ce cas l'objection mentionnée
ci-dessus disparait d’elle-méme, car si en E la bissectrice EF
était normale a EC elle ne pourrait plus I'étre en tout autre point
E” de EC, deux bissectrices ne pouvant jamais étre paralléles.

(5) II résulte de ce qui précede que le contour cherché doit
présenter partout une courbure continue, convexe et dépourvue
de points singuliers. Cette courbure ne peut croitre ou décroitre
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continuellement en intensité, autrement le contour ne pourrait
étre une courbe fermée ; elle sera donc alternativement croissante
ou décroissante a moins qu’elle ne reste constante. Considérons
(fig. 3) une bissectrice AB et supposons que le point A décrive la
totalité du contour. Dans toutes les positions de AB cette droite
devra toujours rester normale a la courbe au point A, car autre-
ment en appliquant la démonstration du n°(3) donnée (fig. 2) pour
le point C, on prouverait que la courbe ne convient pas pour le
maximum cherché. La bissectrice AB devra pour les mémes
raisons rester aussi normale a la courbe en sa seconde extrémité
B; ce sera donc une droite toujours doublement normale a la
courbe. La bissectrice AB, en exécutant son mouvement de rota-
tion, roule sur la développée du contour.

Cette développée doit étre une courbe fermée ; elle doit présenter
un point de rebroussement pour chaque maximum ou . minimum
de courbure du contour. Il résulte encore de la que AB doit
conserver une longueur constante, car ce qui se déroule d’un coté
s’enroule de Vautre. l.a possibilité d’une pareille conception se
démontre par un exemple :

an o e m e man -~

Cl

Fig. 4.

Concevons que la développée se compose de trois avcs de cercle
égaux 0O0’, 0’0", 0”0 (fig. 3) tangents deux a deux. Sur le milieu
J de I'arc O'O" posons le milieu de la droite AB, qui roulant
ensuite sur cette développée quasi triangulaire, engendre le
contour développant. A chaque maximum de courbure d’'un coté,
correspond un minimum de courbure de l'autre coté, comme le
fait voir la position A’B’ de la droite mobile. On peut concevoir
une infinité de pareilles figures, méme de courbure irréguliere,
dans lesquelles toutefois la développée devra toujours présenter
un nombre impair de points de rebroussement et entre ceux-ci
des arcs de méme longueur, a défaut de quoi ce qui précede ne
serait pas possible!.

1 On peut, pour s’en convaincre, essayer la construction (fig. 3) avec 4 ares de cercle
égaux pour la développée. On reconnait de suite que l'on obtient ainsi plusieurs dévelop~
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(6) Le contour doit forcément étre de forme circulaire. En effet,
si une forme du contour, telle qu’elle vient d’étre décrite, est
admissible géométriquement,- nous y rencontrons cependan’f,
dans le cas du probléme actuel, une impossibilité, qui ne di.sparal‘t
que si la développée considérée se réduit & un point unique, &
défaut de quoi la droite AB ne pourrait pas rester bissectrice
dans toutes ses positions. Lorsque de fait, le point J de contact
avoisine I'un des points de rebroussement, comme pour A'B’, 'un
des rayons vecteurs développants est plus grand que 'autre, done
laccroissement de 1'aire d’un coté ne peut étre égal a la diminu-
tion de l'autre coté. Donc enfin la développée OO'O” doit forcé-
ment se réduire & un point unique et nous arrivons ainsi immé-
diatement au développement du contour circulaire, c. q. . d.

(7) Au lieu d’établir, comme ci-dessus (5] et (6} la forme
circulaire du contour cherché, en considérant le mouvement de
rotation d’une bissectrice doublement normale, on peut arriver a
la méme conclusion a l'aide de la démonstration suivante déja
utilisée dans les mémoires de STrINER et qui est certainement la
plus simple!.

Considérons (fig. 4) une bissectrice AB et un point C pris a
volonté sur le contour; menons les droites CA et CB. Dans le
triangle ACB Vangle en C doit étre un angle droit, car s’il ne
I’était pas, on pourrait agrandir la demi-surface ABECD sans
changer la longueur du contour curviligne en remplacant cet
angle par un angle droit, tout en laissant sur les cotés AC et BC
les segments courbes qu’ils sous-tendent. En remplacant ensuite
la deuxieme moitié ABE'C'D’ du contour par la figure symétrique
de la premiere prise par rapport a AB, on aurait augmenté 'aire
de la figure totale, sans changer la valeur du contour.

Ces modifications de forme introduisant méme en A, C, B, C’
des points singuliers dans le contour on pourrait encore y
appliquer les procédés mentionnés au (2), etc. Le contour doit
donc forcément étre circulaire.

(8) Au lieu d’utiliser les deux démonstrations ci-dessus, qui
s’appuient sur notre exposé préliminaire, on peut arriver sans
celui-ci, directement a la conclusion voulue, & l'aide d’une
démonstration que nous avons établie, en considérant des poly-
gones réguliers d’'un nombre infini de cotés.

pantes au lieu d’une seule, tandis que dans le cas d’'un nombre impair de rebroussements,
comme ci-dessus, les deux extrémités de AB ddéerivent une seule et méme courbe. 11 suffit
pour cela que les arcs de développée aient méme longueur, maisil n'est pas nécessaire qu’ils
soient circulaires ni méme qu’ils soient tangents entre eux. Ce qu’il importe de remarquer,
c’est que dans ces conditions, aprés une révolution compléte de la droite AB, le point B se
trouve exactement a la place ou se trouvait précédemment le point A, tandis que dans le cas
d’un nombre pair de rebroussements, ce serait le point A qui serait revenu sur lui-méme.

! Notre premiére démonstration spéciale, offre toutefois Pavantage de pouvoir étre utilisée
de nouveau plus loin, pour notre démonstration concernant la forme sphérique.
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Si (fig. 5) deux cotés adjacents AC’ et BC' d'un polygone sont
inégaux on peut remplacer le contour AC'B par un autre ACB de
méme longueur, a cotés égaux et qui renferme une plus grande
surface?’, de facon que:

AC 4+ CB = AC’ 4 C’B et surf. ACB > surf. AC'B

Menons la droite CH parallele a AB et prolongeons AC de sa
propre longueur jusqu’au point D qui est alors le symétrique de
B par rapport a CH. Joignons ce point D au point C" ou ACS
coupe CH et joignons C’B en sorte que C'D = C”B. On voit sur la
figure que:

AC’ 4 C"B = AC" &~ C"D > AD = AC - CB .

Donc le contour AC'B étant plus grand que le contour ACB, le
point C’ ol il doit y avoir égalité, se trouve forcément au-dessous
de la droite CH et la surface ACB surpasse la surface AC'B de la
surface BC'C”.

D
{ - /
j N’ jVU
T P J

C A % P’

Ol

N 17 A

Fig. 5. Fig. 6.

Lorsque AC tend vers AC I'aire BC'C” tend vers zéro.

Si d’autre part (fig. 6) dans un polygone ayant tous ses cOtés
égaux a r, deux angles voisins AM'N’ et BN'M’ sont inégaux, on
peut déformer le contour AM'N'B en un autre AMNB a cotés de
méme longueur, a angles égaux et comprenant une surface plus
grande. Soit J le point d’intersection des droites MN et M'N’. 11
s’agit de prouver qu'en passant de AM'N'B a AMNB 'agrandis-
sement AMJM’A surpasse la diminution BNJN'B.

! Le lieu géométrique des points C’ est une ellipse ayant A et B comme foyers et C comme
sommet du petit axe. La hauteur du point C au-dessus de AB est donc maxima et ceci
suffirait pour démontrer la proposition.
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Remarquons d’abord que MM’ > NN’ car si 'on avait MM.’ =
NN’ il faudrait que M’N’ fut plus grand que MN ce qui se
démontre comme suit: les droites MM’ et NN’ se coupent en H;
I'angle NMH est plus grand que I'angle de MN avec la tangente
en M au cercle décrit avec A comme centre et , comme rayon.
L’angle MNH est plus petit que I'angle de MN avec la tangente
en N au cercle décrit de B comme centre et » comme rayon. MN
faisant avec les tangentes mentionnées des angles égaux, on a
donc NMH > MNH. Abaissons M'P et NP’ perpendiculaires sur
MN ; alors on aurait (méme dans le cas ou MM’ == NN’} forcément:
NP’ > MP dou résulte M'N’ > PP’ > MN contrairement a
M'N’ = MN. Donc il faut que MM’ > NN’ et surf. AMM' >
surf. BNN'.

Menons maintenant MK de telle fagon que l'on ait pour les
angles I'égalité JMK = JN'N. Le point K doit se trouver sur JM'
car 'angle JMH est plus grand que JNH et a plus forte raison plus
grand que JN’N. Par suite de la similitude des triangles MJK et
N’JN et des inégalités MK > MM’ > NN’ on aura pour les surfaces
MJM’ > MJK > N'JN et ceci compléte la démonstration qu’il
fallait donner pour AMJM’A > BNJN'B.

Lorsque M'N’ tend vers MN, cette inégalité tend vers une
égalité, pour laquelle les deux termes tendent vers zéro. Si l'on
pousse la déformation en sens inverse, on atteint la limite ou la
ligne brisée AM'N’ devient une ligne droite AN”. 11 n’y a pas lieu
d’aller an dela puisqu’alors la diminution de l'aire comprise
devient manifeste.

(9) Parmi tous les polygones ayant un périmetre de longueur
donné et un nombre de cdtés donné, le polygone régulier com-
prend la plus grande surface et entre deux polygones réguliers
ayant un périmetre de longueur donné, celui qui a le plus grand
nombre de cotés comprend aussi la plus grande surface.

Le premier énoncé résulte immédiatement de ce qui a été
démontré au n° 8, car il faut, d’aprés cela, dans le polygone
considéré, que tous les cOtés soient égaux et que tous les angles
soient égaux. Le second énoncé résulte de ce que le polygone
d’'un plus petit nombre de cdtés peut toujours étre considéré
comme un polygone irrégulier d’un plus grand nombre de cotés.

(10) Le contour cherché, renfermrant la plus grande surface &
égalité de périmetre, doit étre circulaire. On peut en effet
toujours inscrire dans le contour considéré un polygone ayant
m cOtés égaux a . On prendra a cet effet les m cotés r assez
petits pour qu’en les portant sur le contour, le polygone ne se
ferme pas; puis on fera croitre » d’'une maniére continue jusqu’a
ce que la ligne polygonale se ferme. Le polygone alors inscrit
devra étre un polygone régulier, autrement en le déformant de
maniére qu’il devienne régulier, tout en laissant les segments
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curvilignes attachés a ses coOtés, on agrandirait I'aire comprise
sans changer la longueur du contour. Si 'on suppose maintenant
que le nombre m des cOtés croisse jusqu’a I'infini, les polygones
réguliers s’assimilant alors de plus en plus au contour considéré,
qui doit les contenir tous, on en conclut que ce dernier doit étre
un cercle.

Cette troisieme démonstration, moins simple que les deux pré-
cédentes, offre cependant l'avantage de conduire directement &
la conclusion sans s’appuyer sur notre exposé préliminaire. Elle
nous fait indirectement connaitre aussi certaines propriétés des
polygones, auxquelles il convient d’ajouter encore la suivante:

Parmi tous les polygones de périmeétre donné, formés par une
suite de /m cOtés de longueurs quelconques, également données,
celui qui est mscmptlble dans un cercle contient la plus grande
surface. On peut en effet porter la suite de m coOtés sur une cir-
conférence d’un rayon suffisamment grand pour que la ligne poly-
gonale ne se ferme pas. On fera ensuite décroitre le rayon d’'une
maniére continue jusqu’a ce qu’il y ait fermeture; le polygone
sera alors inscrit.

Portant maintenant les m coOtés de ce polygone sur les cotés
respectifs du premier polygone, avec les segments circulaires
qu’ils sous-tendent, on obtiendra une figure a contour curviligne,
ayant une surface totale moins grande que celle du cercle.
Retranchant de part et d’autre les segments circulaires, il reste
les deux polygones a comparer, dont celui qui est inscriptible
contient la plus grande surface.

(11) Les propriétés du cercle entier se généralisent pour le
segment circulaire comme suit:

Lorsqu'une ouverture entre deux points d’un contour fermé
pour le reste, doit étre close par une ligne de longueur donnée,
c’est le segment circulaire dont I'arc possede cette longueur, qui
contient la plus grande surface, car 'aire du cercle entier auquel
ce segment appartient, ne pourrait qu’étre diminuée si on le
remplacait par tout autre contour de méme longueur.

II. — De toutes les formes géométriques d'un corps limité de
toute part dans l'espace, la forme sphérique est celle qui, a égalité
de grandeur de I'’enveloppe, renferme le plus grand volume.

(12) Toute section plane AB (fig. 7) pratiquée a travers un corps
solide, renferme une surface moins grande que la surface de
chacune des calottes détachées dans le corps. Considérons d’abord
la calotte supérieure dont la surface peut étre entiecrement projetée
sur la section AB. Menons a travers la calotte ACB un grand
nombre de plans paralléles entre eux, perpendiculaires a la section
AB, et divisant cette calotte en disques minces. Menons ensuite
un second systéeme de plans paralleéles, perpendiculaires aux
disques et a la section AB, lesquels divisent les disques en un
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grand nombre de prismes minces (ou plutot trones de prismes) a
base rectangulaire. Chacun de ces prismes projette une petite
parcelle de la surface de calotte sur la base rectangulaire dans la
section AB. Le nombre de prismes projetants devenant infiniment
grand, les parcelles de la calotte peuvent étre considérées comme
de petits parallelog -ammes toujours plus grands que leur projec-
tion sur la section AB, s’ils ne possédent pas, comme dans le cas
de parallélisme, une valeur au moins égale. Tout le long du contour
de la section AB les parcelles de calotte seront triangulaires en
général, mais la conclusion reste la méme.

Dans la seconde calotte détachée AA’C’B'B la surface surpasse
a plus forte raison celle de la section AB, puisque déja la portion
A’C’B’ qui se projette sur la section AB est plus grande que la
surface de celle-ci, d’apres ce qui précede.

C

(13) Considérons (fig. 8) dans un corps solide, la calotte ACB
détachée par une section plane AB et supposons quel’on prolonge
toutes les ordonnées de cette calotte, perpendiculaires a la section,
d’une quantité égale a leur propre longueur; il en résultera une
nouvelle surface AC'B symétrique de ACB par rapport a la section
AB. Nous allons démontrer que le corps AC'B possede exactement
la méme valeur de surface enveloppe et la méme valeur de volume
que son symétrique ACB.

Menons a travers le corps ACB un grand nombre de plans
paralléles entre eux, perpendiculaires a la section AB et divisant
ce corps en disques minces. Menons ensuite un second systeme
de plans paralleles perpendiculaires aux disques et a la section
AB, lesquels divisent les disques en un grand nombre de prismes
minces (ou plutdt tronecs de prismes) a base rectangulaire dans la
section AB. LLenombre des prismes projetants devenant infiniment
grand, les parcelles de la surface peuvent étre considérées comme
de petits parallélogrammes. Considérons (fig. 8) 'un de ces paral-
lélogrammes abed; celui-ci sera reproduit exactement dans la
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surface symétrique AC'B, ¢ar leslongueurs des quatre cotés et des
diagonales sont'les mémes de part et d’autre.

Sur I'extrémité du disque considéré bghe il y aura, au lieu d’un
parallélogramme, un triangle g/f qui sera également reproduit
dans la figure symétrique, car les longueurs des trois cotés restent
les mémes. Donc on conclut que les surfaces enveloppes des deux
corps symétriques ACB et AC'B ont la méme valeur.

D’autre part le volume de I'un des troncs de prisme, par exemple,
celui provenant de abced, s’obtient en multipliant 'ordonnée du
centre de abcd par la surface de la base rectangulaire. Ces deux
facteurs se trouvent reproduits dans le tronc de prisme symétrique;
il en est donc de méme pour le volume. Enfin vers I'extrémité du
disque il y a, au lieu d’un tronc de prisme, une petite pyramide
fegh dont le volume s’obtient en multipliant la base triangulaire
egh parle tiers de fe. Ces facteurs étant reproduits dans la pyramide
symétrique il en est encore de méme du volume. Donec en somme
les deux corps symétriques ACB et AC'B ont des volumes de valeur
égale.

(14) Toute section plane qui dans le corps de forme cherchée
divise la surface enveloppe en deux parties de valeur égale, doit
aussi diviser le volume du corps en deux parties de valeur égale.
Dans le cds contraire, en effet, on pourrait remplacer la moindre
partie par la figure construite symétriquement sur la section avec
I'autre partie d’apres (13) et on aurait ainsi obtenu un volume
encore plus grand sans changer la valeur totale de I’enveloppe, ce
qui doit étre exclu en principe.

(15) La forme du corps cherchéene doit présenter aucune cavité,
rigole, aréte vive ou pointe dirigées vers l'intérieur. Dans le cas
d’une cavité proprement dite, on trouvera toujours un point de
la surface, pour lequel celle-ci est
concave dans toutes les directions,
le plan tangent dans le voisinage res-
tant entierement compris al’intérieur.
Alors toute section plane parallele a
ce plan et tres voisine, détache une
calotte de surface tombant a l'inté-
rieur et de ce fait amoindrit la valeur
de l'enveloppe tout en augmentant
le volume compris {12). Dans le cas
d’une rigole, il y a concavité dans le

Fig. 9. sens transversal, tandis que dans le

sens longitudinal (fig. 9) il peut y

avoir convexité. On pourrait bien en pareil cas, considérer ’ex-
trémité de la rigole ou généralement il y aura concavité; mais
il se pourrait que la rigole n’ait pas d’extrémité, en revenant en
forme annulaire sur elle-méme ; il se pourrait encore que vers
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Pextrémité il y ait raccordement convexe avec la surface arron-
die. En pareil cas coupons la surface (fig. 9) par un plan bis-
‘secteur AEFB faisant avec la rigole un certain angle DFB et
remplacons la partie inférieure du corps par la figure symétrique
de la partie supérieure ACDB, ce qui (13) ne change ni la valeur
de I’enveloppe ni celle du volume compris. La rigole CEFD et la
rigole symétrique C'EFD’ se coupent suivant un profil concave
EF. Entre le point J ot les talwegs de rigoles se rencontrentet le
point E il y a stirement une aréte vive rentrante, concave, ou l'on
peut & I'aide d’une section plane, détacher une calotte tombant a
Vintérieur, ce qui amoindrit la valeur de l'enveloppe tout cn
augmentant celle du volume.

Fig. 10.

Considérons maintenant le cas (fig. 10) ou la rigole ne présen-
terait aucune concavité, ni dans un sens ni dans l'autre, étant
formée de talus convexes ou plans, qui se coupent suivant une
aréte vive 7] convexe et se raccordent en CE et DI avec le reste
de la surface. Menons comme ci-devant a travers le corps un plan
bissecteur AEFB coupant la rigole suivant un angle aigu DFB et
remplacons la partie inférieure du corps par la figure symétrique
a la partie supérieure (13). La rigole CEFD et larigole symétrique
C’EFD’ se coupent suivant I'aréte vive EF et les arétes vives 7J et
'] se rencontrent en J ou il s’est formé une pointe rentrante, que
I’on peut couper par une section plane trés voisine, de facon a
détacher une calotte tombant a l'intérieur, ce qui amoindrit la
valeur de I'enveloppe tout en agrandissant celle du volume.

La démonstration que nous venons de donner serait applicable
a toute aréte vive ou pointe rentrant dans la surface de 'enveloppe.

(16) La forme de corps cherchée ne doit présenter ni bosses, ni
bourrelets, ni arétes vives ou pointes dirigées vers I'extérieur. En
tant qu’il s’agit de bosses, bourrelets ou autres parties saillantes,
dépo.urvues ‘d’arétes vives ou pointes, on remarquera qu'une
.pareille excroissance, si elle ne forme partie de la surface méme,
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sera toujours raccordée avec elle par des parties concaves et doit
de ce fait (15) rester exclue.

Considérons maintenant (fig. 11) le cas d’une aréte vive J reliée.
en CE par un raccordement convexe avec la surface. Menons
parallelement a la tangente en un point 7 de Paréte /] et dans le
voisinage, un plan bissecteur AB qui coupe la surface du corps
iJBD en biais. (Si ce plan sécant était par hasard normal a la
surface dans le voisinage du point B, on prendrait entre BD et 7
un autre plan sécant bissecteur B’D’ qui ne le serait pas). Rem-
placons ensuite la partie inférieure du corps par la figure symé-
trique de la partie supérieure (13) ce qui ne modifie en rien la
valeur de I’enveloppe et du volume compris. Il s’est formé alors
entre 'aréte 7] et l'aréte symétrique /) une rigole rentrante, ce
qui (15) doit rester exclu.

On pourrait, il est vrai, objecter que la surface du corps entre
BD et iJ étant telle que les plans bissecteurs B'D’ menés dans
cet intervalle parallelement a la tangente en 7, rencontrent cette
surface toujours normalement, la démonstration ci-dessus serait
en défaut. Mais en pareil cas il suffirait de faire passer le plan
sécant B'D’ un peu au dela de la tangente en /. Puisqu’en ce
point il y.a rupture brusque de courbure, la conception du plan
bissecteur toujours normal a la surface est alors inadmissible.

La démonstration donnée ci-dessus pour le cas d’'une aréte
vive a raccordements convexes, serait également applicable au
cas d’une pointe raccordée de la méme facon.

(17) La forme de corps cherchée ne doit contenir aucune ligne
droite ni aucune surface plane. Ceci résulte de la démonstration
(16) pourvu que dans la figure (11) on considere Bi comme une
ligne droite ou B¢J comme une surface plane. En outre, si dans
cette figure le plan bissecteur BD était normal a la droite ou au
plan en B, tout auttre plan bissecteur B'D’ entre B et 7 ne le serait
plus, puisqu’il ne peut y avoir deux plans bissecteurs paralleles.

IT résulte de tout ce qui précede que la forme de corps cherchée
doit étre partout continue, arrondie, convexe et dépourvue de
points singuliers. | ,

(18) Tout plan bissecteur, doit en chaque point de la courbe de
section, étre normal au plan tangent a la surface en ce point. En
effet si cela n’était pas, on pourrait, en procédant d’apres (15) et
(16), remplacer 'une des moitiés du corps par la figure symé-
trique de 'autre et établir ainsi une rigole, permettant de diminuer
Penveloppe tout en augmentant le volume compris.
© (19) La forme de corps cherchée doit étre la forme sphérique.
En effet, menons a travers le corps (fig. 12) le plan bissecteur
XX’ pris a volonté puis perpendiculairement a celui-ci le plan
bissecteur ZZ’ qui coupe le premier suivant YY’, enfin per-
pendiculairement a cette droite le plan bissecteur XZX'Z’, qui
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coupe cette ligne en O et le premier plan bissecteur mentionné
XX’, suivant la droite XOX’. Nous avons établi ainsi les trois
axes rectangulaires usuels et nous allons prouver que la premicre
section XYX’Y’ menée tout d’abord, avolonté, doit étre circulaire.

Supposons (fig. 12) que le plan bissecteur NZX'Z" se meuve de
facon a rester toujours perpendiculaire au plan XYX'Y' et de
facon que le point X fasse un tour complet surla périphérie de
cette section. En une position quelconque X" de c¢e point, la
droite X”’X”, suivant laquelle se coupentles deux plans, doit
d’aprés (18) étre toujours normale & la courbe NNX"N et il en est

de méme pour le second point d'intersection N”. Nous sommes
ainsi ramenés absolument a ce quia été dit aun® 5 fig. 3, quant
au mouvement de rotation de la droite doublement normale,
roulant surla développée de la courbe de section ; toutefois ici
on ne peut aflirmer pour le moment, que cette droite mobile soit
bissectrice de la section XX"X'X". Pour tout le reste rien n'est
changé: la droite X"X" conserve une longueur constante; eclle
roule sur une développée a nombre impair de rebroussements...
etc. Pour simplifier nous admettrons comme dans la fig. 3 qu'il
n’y en ait que trois; ce qui suit s’appliquerait tout aussi bien a
un nombre supérieur.

La droite X"X" roule done dans le-plan XX"X'N" sur une déve-
loppée quasi triangulaire. L.e plan bissecteur mobile roule sur
une surface cylindrique normale au plan XN"X'X"” et avant cette
développée quasi triangulaire comme base. Ce cylindre coupe la
surface du corps (fig. 13) suivant deux contours quasi triangulaires
00,0, et 0'0’,0’,. Chaque point d'un pareil contour 00,0,
correspond a une position du plan bissecteur mobile et a une
ligne de contact du cylindre, normale au plan NYX'Y’. Il faut
done, d’aprés (18), qu’en chacun de ces points (fig. 13) du contour
00,0,, le plan tangent a la surface du corps, soit paralléle au
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plan XYX"Y'. Ceci ne serait possible que si le contour 00,0,
était dans un plan, ou si a l'intérieur la surface était concave.
[’un et l'autre cas doivent, d’apres (15) (16] (17), étre exclus et
cette impossibilité ne disparait que si la développée quasi trian-
gulaire (fig. 12) dans le plan XYX'Y' se réduit a un point unique
le cylindre de roulement se réduisant alors a un axe de rotation.
L.e mouvement de la droite X"X"” engendre donc un cercle.

Le plan bissecteur XYX'Y’, ayant été pris a volonté, on en
conclut que tout plan bissecteur coupe le corps suivant un cercle.
Ceci s’applique en particulier au plan bissecteur mobile qui, tour-
nant autour d’un diametre, engendre alors une sphere, c. q. f. d.

(20) Spécialement, quant a la forme a adopter pour calottes de
chaudieres, tétes de bouées, corps d’aérostats... etc., on peut
généraliser facilement pour la calotte sphérique ce qui vient
d’étre démontré pour la sphere entiére; a savoir:

Parmi toutes les formes de surface d’'une étendue donnée,
pouvant constituer la cloture d’une ouverture circulaire, la calotte
sphérique possédant cette étendue offre le contenu maximum,
car le volume de la sphére entiere a laquelle appartient cette
calotte, ne pourrait étre que diminué, si on la remplacait par
tout autre surface de cloture ayant méme étendue.

Max Edler v. Leser (Vienne, Autriche).

SUR L'ENSEIGNEMENT
DE LA THEORIE DES INTEGRALES ABELIENNES

La théorie des intégrales abéliennes, a laquelle se rattachaient,
au siecle passé, tant de grands noms depuis ABeL & WEIERSTRASS,
maintenant que 'on est arrivé a trouver sa vraie forme, simple,
élégante et toute naturelle, n’attire gueére 'attention que d’un tres
petit nombre de mathématiciens. A quoi cela tient-il ?

En laissant de coté les causes subjectives, comme les préjugeés,
par exemple, et en passant directement aux causes objectives, on
les trouve dans la marche historique du développement de cette
théorie, Le génie d’Abel a brillamment commencé la théorie des
intégrales qui portent maintenant son nom immortel, en analysant
les divers cas particuliers de son célebre théoréme, directement,
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