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LE CONTENU DU CERCLE ET DE LA SPHÈRE
COMPARÉ A CELUI

D'AUTRES FORMES GÉOMÉTRIQUES.

Introduction. — 11 est universellement connu, que parmi toutes
les formes géométriques limitées, ayant même valeur du contour,
ce sont dans le plan le cercle et dans l'espace la sphère qui offrent
le contenu maximum. Toutefois, lorsque dernièrement on vint me
demander une démonstration mathématique rigoureuse de ces
principes populaires, je m'aperçus qu'il ne s'en trouve aucune
dans les traités modernes de géométrie qui soit a l'abri d'objections

fondées.
Les recherches faites à ce sujet, ont permis de constater que

cette question, depuis longtemps déjà et jusqu'à l'époque actuelle,
a été traitée comme exemple d'application du calcul des variations

L Cependant pour démontrer ces propriétés si simples du
cercle et de la sphère, il n'est nullement nécessaire d'avoir recours
à des procédés aussi recherchés; il suffît d'utiliser à cet effet les
principes de la géométrie courante.

A cet égard il y a lieu de considérer deux mémoires importants
publiés en 1842 parle professeur Steiner de l'Académie de Berlin :

« Sur le maximum et le minimum des figures dans le plan, sur la
sphère et dans l'espace en général ». (Journal fur die reine und
angewandte Mathematik, vol. 24, pp. 93 et 189).

Ces mémoires remarquables par le nombre des problèmes
proposés, des solutions données et des méthodes de démonstration

1 Pour l'aire du cercle : M. Nayier : Résumé desleçons d'analyse données à l'école
polytechnique. Paris 1856. V. Dalmont, II vol. p. 208. — M. Cournot : Traité élémentaire de la
théorie des fonctions et du calcul infinitésimal. Paris 1857. L. Hachette, II vol. p. 132. —
Em. Czuber : Differential u. Integralrechnung. Leipzig 1906, II vol. p. 460. — Ces calculs
conduisent à l'équation du cercle.

Pour le volume de la sphère : C. Bossut : Traité de calcul différentiel et de calcul intégral.
Paris an VI (1798). Impr. de la République, II vol. p. 470, n° 2ô.— L.-A. Sohnku : Sammlung
von Aufgaben aus der Integralrechnung. Dr H. Amstein, H.-W. Schmidt, Halle 1877, p. 295.
— H.-A. Schwarz : Beweis des Satzes, dass die Kugel Kleinere Oberfläche besitzt, als jeder
andere Körper gleichen Volumens. Gesammelte mathem. Abhandlungen. 1890. II vol. p. 327.
— Voir aussi : Nachr. der K. Ges. der Wissenschaften u. der Georg. Aug. Univ. zu Göttingen,
1884, p. 1-13. Ces calculs prouvent que la forme cherchée doit jouir de certaines propriétés,
dont jouit aussi la sphère.
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370 M. EDLER VON LEBER

diverses qu'ils contiennent, manquent cependant parfois de clarté ;
ils ne sont pas toujours complets et à l'abri de toute critique ainsi
qu'on le trouve mentionné dans des publications postérieures, à
savoir :

F. Edler « Vervollständigung der Steiner'sehen
elementargeometrischen Beweise für den Satz, dass der Kreis grösseren
Flächeninhalt besitzt als jede andere ebene Figur gleichgrossen
Umfanges ». ISachrichten der Königl. Gesellschaft der
Wissenschaften u. der Georg Aug. Universität zu Göttingen. Göttingen
1882 Dietrich. Seite 73 h

R. Sturm : Bemerkungen u. Zusätze zu Steiner's Aufsätzen über
Maximum u. Minimum. « Journal für die reine u. angewandte
Mathematik », 1884, vol. 96, p. 36 2.

E. Bouché et Ch. de Comberousse : Traité cle Géométrie, 7e édit.?
Paris 1900, p. 365, t. I et p. 234, t. II3.

R. Sturm : Maxima u. Minima in der elementaren Geometrie,
Leipzig und Berlin 1910, p. 314.

Ces compléments, ainsi que les excellents mémoires de Steiner
concernent une foule de problèmes de maxima et minima; ici au
contraire c'est uniquement le problème clu cercle et de la sphère
qui nous occupe.

Sans vouloir critiquer en détail les publications remarquables
de mes devanciers, je dois cependant regretter qu'ils, n'aient pas
prouvé tout d'abord que les formes géométriques cherchées, tant
dans le plan que dans l'espace, doivent présenter partout des
contours arrondis convexes et être dépourvues de points singuliers,
ces derniers pouvant entraver les déductions obtenues, soit par
la géométrie courante, soit par le calcul différentiel. J'ai reconnu
que cette démonstration préalable une fois établie, on en peut
déduire facilement la forme circulaire et la forme sphérique, en
n'invoquant que les principes connus de la courbure des lignes
et des surfaces.

On a objecté aussi à toutes les publications antérieures, qu'elles
ne démontrent nullement l'existence d'un maximum maximorum
tant en grandeur qu'en forme précise; c'est là un point important
qu'il faut élucider et ma méthode nouvelle s'y prête très bien*

1 L'auteur expose un procédé spécial pour transformer par un nombre limité d'opérations,
un polygone irrégulier en un polygone régulier d'un plus grand nombre de côtés, de façon
à diminuer le rapport du périmètre à l'aire qu'il contient.

2 On trouve ici une critique étendue des mémoires de Steiner en tant qu'ils concernent
les problèmes dans le plan. L'auteur tient compte aussi des publications antérieures de
Steiner ; il y ajoute des développements complémentaires.

3 Cet excellent traité reproduit pour les figures planes la démonstration de Steiner
(triangle rectangle inscrit) ; il donne une démonstration élégante pour la sphère en prouvant
que toutes les normales à la surface cherchée doivent concourir en un même point, tous ces

rayons ayant même longueur.
4 L'auteur traite le problème du cercle en prouvant que dans un quadrilatère inscrit dans

le contour, un sommet mobile doit toujours rester sur le cercle passant par les trois autres.



LE CERCLE ET LA SPHÈRE 371

J'admets comme axiome que soit en plan, soit dans l'espace, par
toutes les modifications que l'on peut faire subir à un contour
fermé, de grandeur limitée donnée, afin d'en agrandir le contenu,
on ne peut élever celui-ci au delà de toutes limites, et par conséquent

que ce contenu ne pourra varier qu'entre zéro (ligne repliée
sur elle-même, surface repliée sur elle-même) et une certaine
limite supérieure que j'appellerai le maximum absolu. Supposer
le contraire c'est admettre que le quotient (contenu) : (contour)
peut devenir infiniment grand, ou en d'autres termes, inversement

: qu'un contenu donné, quelque grand qu'il soit, peut être
limité par un contour d'étendue mille, ce qui est absurde.

11 s'agit maintenant d'examiner si, et comment, on pourra
atteindre ce maximum absolu, non seulement en grandeur mais
aussi en forme précise; c'est à ce dernier égard qu'il pourrait y
avoir doute.

On peut supposer l'existence, soit d'un maximum unique, soit
de plusieurs maxima équivalents de formes différentes soit
encore d'une infinité de maxima équivalents de formes diverses2 —
soit enfin d'un maximum absolu précisé en grandeur mais non
en forme. Il est indifférent qu'on arrive à un pareil maximum
par un nombre limité de transformations ou par un nombre infini
d'approximations successives3.

Dans les démonstrations qui suivent, je ne poursuis pas de

pareilles distinctions; l'idée (dominante est tout autre : nous
étudions les conditions que doivent remplir les formes cherchées
pour pouvoir constituer un maximum s'il existe; nous trouvons
que seuls le cercle dans le plan et la sphère dans l'espace remplissent

ces conditions.
Considérons pour simplifier le cas d'un contour dans le plan

(on raisonnerait de même pour les surfaces dans l'espace). Nous
trouvons que ce contour, tant qu'il n'est pas dépourvu de tout
point singulier, de toute irrégularité de courbure (pointe, creux,
bosse, etc.) tant qu'il n'est pas entièrement circulaire en un mot,
— peut toujours être déformé de façon que l'on obtienne un
agrandissement du contenu. En supprimant ainsi toutes les
irrégularités de courbure, par approximations successives, nous
arrivons au contour circulaire qui seul résiste à tous ces procédés 4.

1 Par exemple : des figures symétriques dans le plan ou dans l'espace.
2 Par exemple : Tousles triangles à aire maxima inscrits dans une ellipse donnée ; ce sont

les projections d'un triangle equilateral mobile restant inscrit dans le cercle dont l'ellipse
est la projection ; ils sont de forme variable.

3 Par exemple : Un triangle irrégulier dans lequel, tout en conservaut la longueur du
périmètre, on remplace successivement deux côtés inégaux par deux côtés égaux, puis l'un
d'eux et le troisième par deux côtés égaux et ainsi de suite... jusqu'cà la limite qui est le
triangle équilatéral à aire maxima.

4 Nos transformations font subir à chaque fois au contour, non seulement un agrandissement
du contenu mais aussi une diminution simultanée de la longueur du périmètre. Pour

maintenir celle-ci non altérée, il faudrait donc faire suivre chaque opération d'un agrandissement
de toute la figure, par voie de similitude.
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Mais objectera-t-on peut-être, il n'est pas démontré que par
d'autres procédés que ceux mentionnés, on ne puisse arriver à un
contour de contenu encore plus grand Cela est impossible car,
ou ce nouveau contour serait circulaire ou il ne le serait pas. Dans
le premier cas il serait identique au cercle déjà trouvé, car deux
cercles ayant même périmètre sont identiques. Dans le deuxième
cas on pourrait appliquer à ce nouveau contour nos procédés de
transformation jusqu'à le ramener à être circulaire et alors, après
tous les agrandissements de contenu ainsi obtenus, on serait
ramené de nouveau à un cercle de contenu supérieur à celui du
cercle déjà trouvé, tout en ayant même périmètre, ce qui est
impossible. Donc enfin puisqu'il est impossible d'imaginer un
contour isopérimétrique ayant un contenu supérieur à celui du
cercle, celui-ci constitue en grandeur et en forme le maximum
absolu et unique cherché, et ma méthode, consistant à supprimer
successivement toutes les irrégularités de courbure par des
amputations de plus en plus restreintes, établit simultanément la limite
de grandeur et la limite de forme.

Pour la forme sphérique je ne donne que ma démonstration
spéciale car j'estime qu'elle est tellement préférable aux exposés
antérieurs, que ces derniers ne seront plus guère utilisés à

l'avenir. Par contre, pour la forme circulaire dont on s'occupe bien
plus souvent, j'ajoute à mon procédé spécial, deux autres démonstrations.

La première (triangle rectangle), utilisée également par
Steiner, représente la solution la plus simple ; la seconde (polygones
réguliers) conduit directement à la solution cherchée, sans un
exposé préalable ; je l'ai établie dans ce but spécial.

I. — Parmi toutes les courbes planes fermées de même périmètre,
la courbe circulaire est celle qui limite la plus grande surface.

(1) Lorsqu'une droite AB (fig. 1) divise en deux parties égales
la longueur ACBD d'un contour fermé renfermant une aire maximum,

elle doit aussi diviser l'aire limitée par ce contour en deux
parties égales. Supposons dans le cas contraire, que l'aire ACB,
par exemple, soit supérieure à l'aire ADB et faisons tourner le contour

ACB autour de AB comme axe pour le rabattre en sa position
symétrique AC'B ; alors l'aire totale ACBCA dont le périmètre n'a
pas changé, sera supérieure à l'aire de la figure primitivement
considérée; celle-ci ne pourrait donc pas représenter un maximum.

(2) Le contour cherché ne doit contenir aucune cavité ou pointe
rentrante. Considérons dans le contour ABCD (fig. 2) une cavité A
et une pointe B dirigées vers l'intérieur. Dans les deux cas il est
possible de mener une sécante découpant à l'intérieur une partie
du contour de façon à agrandir l'aire tout en diminuant simultanément

la longueur du contour. La figure considérée tout d'abord
ne satisferait donc pas aux conditions posées.

(3) Le contour cherché ne doit pas non plus présenter des bosses
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ou pointes dirigées vers l'extérieur. Considérons en effet (fig. 2)

les pointes saillantes ü et C. Dans le cas de D ainsi que dans le

cas d'une bosse, il y a raccordement concave aux abords, ce qui
d'après (2) doit être exclu. Dans le cas de C il y a raccordement

convexe; menons par un point E voisin de C la droite EF bissectrice

à la fois pour le contour et l'aire comprise et faisant en E

un certain angle avec le contour. (Si cet angle était en particulier
un angle droit, on choisirait sur l'arc convexe ou rectiligne EC

un autre point E7). Remplaçons maintenant la moité EDAF du

contour par le rabattement symétrique de ECBF autour de EF

comme axe, ce qui dans la nouvelle figure totale ne change ni la

longueur du contour ni la valeur de l'aire qu'il comprend. Entre
le point C et son symétrique C' par rapport à EF il existe alors
un contour concave et la figure, d'après (2), ne peut constituer un
maximum.

On pourrait, il est vrai, objecter que l'arc convexe F1C étant tel
qu'en chaque point il reste normal à la bissectrice qu'on y fait
passer, la démonstration ci-dessus serait en défaut. Mais alors il
suffirait de faire passer le point E' voisin du point C un peu au
delà de celui-ci. Comme en C il y a rupture brusque de courbure,
la conception de la bissectrice toujours normale au contour devient
inadmissible.

(4) Le contour cherché ne doit contenir aucune partie rectiligne.
Ceci résulte de la démonstration (3) ci-dessus dans laquelle il suffit
de considérer (fig. 2) la partie EC du contour comme formée par
une ligne droite. De plus, dans ce cas l'objection mentionnée
ci-dessus disparait d'elle-même, car si en E la bissectrice EF
était normale à EC elle ne pourrait plus l'être en tout autre point
E7 de EC, deux bissectrices ne pouvant jamais être parallèles.

(5) Il résulte de ce qui précède que le contour cherché doit
présenter partout une courbure continue, convexe et dépourvue
de points singuliers. Cette courbure ne peut croître ou décroître
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continuellement en intensité, autrement le contour ne pourrait
être une courbe fermée ; elle sera donc alternativement croissante
ou décroissante à moins qu'elle ne reste constante. Considérons
(fîg. 3) une bissectrice AB et supposons que le point A décrive la
totalité du contour. Dans toutes les positions de AB cette droite
devra toujours rester normale à la courbe au point A, car autrement

en appliquant la démonstration du n° (3) donnée (fîg. 2) pour
le point G, on prouverait que la courbe ne convient pas pour le
maximum cherché. La bissectrice AB devra pour les mêmes
raisons rester aussi normale à la courbe en sa seconde extrémité
B; ce sera donc une droite toujours doublement normale à la
courbe. La bissectrice AB, en exécutant son mouvement de rotation,

roule sur la développée du contour.
Cette développée doit être une courbe fermée ; elle doit présenter

un point de rebroussement pour chaque maximum ou minimum
de courbure du contour. Il résulte encore de là que AB doit
conserver une longueur constante, car ce qui se déroule d'un côté
s'enroule de l'autre. La possibilité d'une pareille conception se
démontre par un exemple :

Concevons que la développée se compose de trois arcs de cercle
égaux 00', O'O", 0"0 (fîg. 3) tangents deux à deux. Sur le milieu
J de l'arc O'O" posons le milieu de la droite AB, qui roulant
ensuite sur cette développée quasi triangulaire, engendre le
contour développant. A chaque maximum de courbure d'un côté,
correspond un minimum de courbure de l'autre côté, comme le
fait voir la position A'B' de la droite mobile. On peut concevoir
une infinité de pareilles figures, même de courbure irrégulière,
dans lesquelles toutefois la développée devra toujours présenter
un nombre impair de points de rebroussement et entre ceux-ci
des arcs de même longueur, à défaut de quoi ce qui précède ne
serait pas possible1.

A

B

Fig. 3. Fig. 4.

1 On peut, pour s'en convaincre, essayer la construction (fig. 3) avec 4 arcs de cercle
égaux pour la développée. On reconnaît de suite que l'on obtient ainsi plusieurs develop-
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(6) Le contour doit forcément être de forme circulaire. En effet,
si une forme du contour, telle qu'elle vient d'être décrite, est
admissible géométriquement,1 nous y rencontrons cependant,
dans le cas du problème actuel, une impossibilité, qui ne disparaît
que si la développée considérée se réduit à un point unique, à

défaut de quoi la droite AB ne pourrait pas rester bissectrice
dans toutes ses positions. Lorsque de fait, le point J de contact
avoisine l'un des points de rebroussement, comme pour A'B', l'un
des rayons vecteurs développants est plus grand que l'autre, clone
l'accroissement de l'aire d'un côté ne peut être égal à la diminution

de l'autre côté. Donc enfin la développée OO'O" doit forcément

se réduire à un point unique et nous arrivons ainsi
immédiatement au développement du contour circulaire, c. cp f. cl.

(7) Au lieu d'établir, comme ci-dessus (5) et (6) la forme
circulaire du contour cherché, en considérant le mouvement de
rotation d'une bissectrice doublement normale, on peut arriver à

la même conclusion à l'aide de la démonstration suivante déjà
utilisée dans les mémoires de Steiner et qui est certainement la
plus simple1.

Considérons (fig. 4) une bissectrice AB et un point C pris à

volonté sur le contour ; menons les droites CA et CB. Dans le
triangle ACB l'angle en C doit être un angle droit, car s'il ne
l'était pas, on pourrait agrandir la demi-surface ABECD sans
changer la longueur du contour curviligne en remplaçant cet
angle par un angle droit, tout en laissant sur les côtés AC et BC
les segments courbes qu'ils sous-tendent. En remplaçant ensuite
la deuxième moitié ABE'CT)' du contour par la figure symétrique
de la première prise par rapport à AB, on aurait augmenté l'aire
de la figure totale, sans changer la valeur du contour.

Ces modifications de forme introduisant même en A, C, B, C'
des points singuliers dans le contour on pourrait encore y
appliquer les procédés mentionnés au (2), etc. Le contour doit
donc forcément être circulaire.

(8) Au lieu d'utiliser les deux démonstrations ci-clessus, qui
s'appuient sur notre exposé préliminaire, on peut arriver sans
celui-ci, directement à la conclusion voulue, à l'aide d'une
démonstration que nous avons établie, en considérant des
polygones réguliers d'un nombre infini de côtés.

pantes au lieu d'une seule, tandis que dans le cas d'un nombre impair de rebroussements,
comme ci-dessus, les deux extrémités de AB décrivent une seule et même courbe. Il suffit
pour cela que les arcs de développée aient même longueur, mais il n'est pas nécessaire qu'ils
soient circulaires ni même qu'ils soient tangents entre eux. Ce qu'il importe de remarquer,
c'est que dans ces conditions, après une révolution complète de la droite AB, le point B se
trouve exactement à la place où se trouvait précédemment le point A, tandis que dans le cas
d'un nombre pair de rebroussements, ce serait le point A qui serait revenu sur lui-même.

1 Notre première démonstration spéciale, offre toutefois l'avantage de pouvoir être utilisée
de nouveau plus loin, pour notre démonstration concernant la forme sphérique.
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Si (fig. 5) deux côtés adjacents AC' et BC' d'un polygone sont
inégaux on peut remplacer le contour ACB par un autre ACB de
même longueur, à côtés égaux et qui renferme une plus grande
surface % de façon que :

AC -j- GB AC7 + C'B et surf. ACB > surf. AC'B

Menons la droite CH parallèle à AB et prolongeons AC de sa

propre longueur jusqu'au point D qui est alors le symétrique de
B par rapport à CH. Joignons ce point D au point C" où AC'
coupe CH et joignons C"B en sorte que C"D C"B. On voit sur la
figure que :

AC" + C"B AC" + C"D > AD AC + CB

Donc le contour ACB étant plus grand que le contour ACB, le
point C' où il doit y avoir égalité, se trouve forcément au-dessous
de la droite CH et la surface ACB surpasse la surface AC'B de la
surface BC'C.

Lorsque AC' tend vers AC l'aire BC'C" tend vers zéro.
Si d'autre part (fig. 6) dans un polygone ayant tous ses côtés

égaux à 7', deux angles voisins A M'Y et BN'M' sont inégaux, on
peut déformer le contour AM'N'B en un autre AMNB à côtés de
même longueur, à angles égaux et comprenant une surface plus
grande. Soit J le point d'intersection des droites MN et M'N'. 11

s'agit de prouver qu'en passant de AM'N'B à AMNB l'agrandissement

AMJM'A surpasse la diminution BNJN'B.

1 Le lieu géométrique des points C' est une ellipse ayant A et B comme foyers et C comme
sommet du petit axe. La hauteur du point C au-dessus de AB est donc maxima et ceci
suffirait pour démontrer la proposition.
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Remarquons d'abord que MM' > NN' car si l'on avait MM' ^
NN' il faudrait que M'N' fut plus grand que MN ce qui se

démontre comme suit : les droites MM' et NN' se coupent en H ;

l'angle NMH est plus grand que l'angle de MN avec la tangente
en M au cercle décrit avec A comme centre et r comme rayon.
L'angle MNH est plus petit que l'angle de MN avec la tangente
en N au cercle décrit de B comme centre et r comme rayon. MN
faisant avec les tangentes mentionnées des angles égaux, on a

donc NMH > MNH. Abaissons M'P et N'P' perpendiculaires sur
MN ; alors on aurait (même dans le cas où MM' — NN') forcément :

NP' > MP d'où résulte M'N' > PP' > MN contrairement à

M'N' MN. Donc il faut que MM'> NN' et surf. AMM'>
surf. BNN'.

Menons maintenant MK de telle façon que l'on ait pour les

angles l'égalité JMK JN'N. Le point K doit se trouver sur JM'
car Tangle JMH est plus grand que JNH et à plus forte raison plus
grand que JN'N. Par suite de la similitude des triangles MJK et
N'JN et des inégalités MK >> MM' > NN' on aura pour les surfaces
MJM' > MJK > N'JN et ceci complète la démonstration qu'il
fallait donner pour AMJM'A >> BNJN'B.

Lorsque M'N' tend vers MN, cette inégalité tend vers une
égalité, pour laquelle les deux termes tendent vers zéro. Si Ton

pousse la déformation en sens inverse, on atteint la limite où la
ligne brisée AM'N' devient une ligne droite AN". 11 n'y a pas lieu
d'aller au delà puisqu'alors la diminution de Taire comprise
devient manifeste.

(9) Parmi tous les polygones ayant un périmètre de longueur
donné et un nombre de côtés donné, le polygone régulier
comprend la plus grande surface et entre deux polygones réguliers
ayant un périmètre de longueur donné, celui qui a le plus grand
nombre de côtés comprend aussi la plus grande surface.

Le premier énoncé résulte immédiatement de ce qui a été
démontré au n° 8, car il faut, d'après cela, dans le polygone
considéré, que tous les côtés soient égaux et que tous les angles
soient égaux. Le second énoncé résulte de ce que le polygone
d'un plus petit nombre de côtés peut toujours être considéré
comme un polygone irrégulier d'un plus grand nombre de côtés.

{10) Le contour cherché, renfermrant la plus grande surface à

égalité de périmètre, doit être circulaire. On peut en effet
toujours inscrire dans le contour considéré un polygone ayant
m côtés égaux à r. On prendra à cet effet les m côtés r assez
petits pour qu'en les portant sur le contour, le polygone ne se
ferme pas; puis on fera croître r d'une manière continue jusqu'à
ce que la ligne polygonale se ferme. Le polygone alors inscrit
devra être un polygone régulier, autrement en le déformant de
manière qu'il devienne régulier, tout en laissant les segments
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curvilignes attachés à ses côtés, on agrandirait l'aire comprise
sans changer la longueur du contour. Si l'on suppose maintenant
que le nombre m des côtés croisse jusqu'à l'infini, les polygones
réguliers s'assimilant alors de plus en plus au contour considéré,
qui doit les contenir tous, on en conclut que ce dernier doit être
un cercle.

Cette troisième démonstration, moins simple que les deux
précédentes, offre cependant l'avantage de conduire directement à

la conclusion sans s'appuyer sur notre exposé préliminaire. Elle
nous fait indirectement connaître aussi certaines propriétés des
polygones, auxquelles il convient d'ajouter encore la suivante:

Parmi tous les polygones de périmètre donné, formés par une
suite de m côtés de longueurs quelconques, également données,
celui qui est inscriptible dans un cercle contient la plus grande
surface. On peut en effet porter la suite de m côtés sur une
circonférence d'un rayon suffisamment grand pour que la ligne
polygonale ne se ferme pas. On fera ensuite décroître le rayon d'une
manière continue jusqu'à ce qu'il y ait fermeture ; le polygone
sera alors inscrit.

Portant maintenant les m côtés de ce polygone sur les côtés
respectifs du premier polygone, avec les segments circulaires
qu'ils sou^-tendent, on obtiendra une figure à contour curviligne,
ayant une surface totale moins grande que celle du cercle.
Retranchant de part et d'autre les segments circulaires, il reste
les deux polygones à comparer, dont celui qui est inscriptible
contient la plus grande surface.

(11) Les propriétés du cercle entier se généralisent pour le
segment circulaire comme suit :

Lorsqu'une ouverture entre deux points d'un contour fermé
pour le reste, doit être close par une ligne de longueur donnée,
c'est le segment circulaire dont l'arc possède cette longueur, qui
contient la plus grande surface, car l'aire du cercle entier auquel
ce segment appartient, ne pourrait qu'être diminuée si on le
remplaçait par tout autre contour de même longueur.

II. — De toutes les formes géométriques d'un corps limité de
toute part dans l'espace, la forme sphérique est celle qui, à égalité
de grandeur de l'enveloppe, renferme le plus grand volume.

(12) Toute section plane AB (fig. 7) pratiquée à travers un corps
solide, renferme une surface moins grande que la surface de
chacune des calottes détachées dans le corps. Considérons d'abord
la calotte supérieure dont la surface peut être entièrement projetée
sur la section AB. Menons à travers la calotte ACB un grand
nombre de plans parallèles entre eux, perpendiculaires à la section
AB, et divisant cette calotte en disques minces. Menons ensuite
un second système de plans parallèles, perpendiculaires aux
disques et à la section AB, lesquels divisent les disques en un
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grand nombre de prismes minces (ou plutôt troncs de prismes) à

base rectangulaire. Chacun de ces prismes projette une petite
parcelle de la surface de calotte sur la base rectangulaire dans la
section AB. Le nombre de prismes projetants devenant infiniment
grand, les parcelles de la calotte peuvent être considérées comme
de petits parallélogrammes toujours plus grands que leur projection

sur la section AB, s'ils ne possèdent pas, comme clans le cas
de parallélisme, une valeur au moins égale. Tout le long du contour
de la section AB les parcelles cle calotte seront triangulaires en

général, mais la conclusion reste la même.
Dans la seconde calotte détachée AA'C'B'B la surface surpasse

à plus forte raison celle de la section AB, puisque déjà la portion
A'C'B' qui se projette sur la section AB est plus grande que la
surface de celle-ci, d'après ce qui précède.

(13) Considérons (fig. 8) clans un corps solide, la calotte ACB
détachée par une section plane AB et supposons que l'on prolonge
toutes les ordonnées de cette calotte, perpendiculaires à la section,
d'une quantité égale a leur propre longueur; il en résultera une
nouvelle surface AC'B symétrique cle ACB par rapport à la section
AB. Nous allons démontrer que le corps ACB possède exactement
la même valeur de surface enveloppe et la même valeur de volume
que son symétrique ACB.

Menons à travers le corps ACB un grand nombre cle plans
parallèles entre eux, perpendiculaires à la section AB et divisant
ce corps en disques minces. Menons ensuite un second système
de plans parallèles perpendiculaires aux disques et à la section
AB, lesquels divisent les disques en un grand nombre de prismes
minces (ou plutôt troncs de prismes) à base rectangulaire clans la
section AB. Le nombre des prismes projetants devenant infiniment
grand, les parcelles de la surface peuvent être considérées comme
de petits parallélogrammes. Considérons (fig. 8) l'un de ces
parallélogrammes abcd\ celui-ci sera reproduit exactement dans la
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surface symétrique ACB, çar les longueurs des quatre côtés et des
diagonales sont'les mêmes de part et d'antre.

Sur l'extrémité du disque considéré bghc il y aura, au lieu d'un
parallélogramme, un triangle ghf qui sera également reproduit
dans la figure symétrique, car les longueurs des trois côtés restent
les mêmes. Donc on conclut que les surfaces enveloppes des deux
corps symétriques ACB et ACB ont la même valeur.

D'autre part le volume de l'un des troncs de prisme, par exemple,
celui provenant de cibcd, s'obtient en multipliant l'ordonnée du
centre de abcd par la surface de la base rectangulaire. Ces deux
facteurs se trouvent reproduits dans le tronc de prisme symétrique ;

il en est donc de même pour le volume. Enfin vers l'extrémité du
disque il y a, au lieu d'un tronc de prisme, une petite pyramide
fegh dont le volume s'obtient en multipliant la base triangulaire
egh parle tiers defe. Ces facteurs étant reproduits dans la pyramide
symétrique il en est encore de même du volume. Donc en somme
les deux corps symétriques ACB et AC'B ont des volumes de valeur
égale.

(14) Toute section plane qui dans le corps de forme cherchée
divise la surface enveloppe en deux parties de valeur égale, doit
aussi diviser le volume du corps en deux parties de valeur égale.
Dans le csls contraire, en effet, on pourrait remplacer la moindre
partie parla figure construite symétriquement sur la section avec
l'autre partie d'après (13) et on aurait ainsi obtenu un volume
encore plus grand sans changer la valeur totale de l'enveloppe, ce
qui doit être exclu en principe.

(15) La forme du corps cherchée ne doit présenter aucune cavité,
rigole, arête vive ou pointe dirigées vers l'intérieur. Dans le cas
d'une cavité proprement dite, on trouvera toujours un point de

la surface, pour lequel celle-ci est
C concave dans toutes les directions,

le plan tangent dans le voisinage res-/ // / \ tant entièrement compris à l'intérieur.
/ / / / \ß Alors toute section plane parallèle à

/ -"fi / Jy/\ ce plan et voisine,'détache une
I / Jcalotte de surface tombant à l'inté-
Y_ rieur et de ce fait amoindrit la valeur

V" de l'enveloppe tout en augmentant
v°lume compris (12). Dans le cas

d'une rigole, il y a concavité dans le
Fig. 9. sens transversal, tandis que dans le

sens longitudinal (fig. 9) il peut y
avoir convexité. On pourrait bien en pareil cas, considérer
l'extrémité de la rigole où généralement il y aura concavité ; mais
il se pourrait que la rigole n'ait pas d'extrémité, en revenant en
forme annulaire sur elle-même ; il se pourrait encore que vers
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l'extrémité il y ait raccordement convexe avec la surface arrondie.

En pareil cas coupons la surface (fig. 9) par un plan^
bissecteur AEFB faisant avec la rigole un certain angle DFB et

remplaçons la partie inférieure du corps par la figure symétrique
de la partie supérieure ACDB, ce qui (13) ne change ni la valeur
de l'enveloppe ni celle du volume compris. La rigole CEFD et la

rigole symétrique CEFD' se coupent suivant un profil concave
EF. Entre le point J où les talwegs de rigoles se rencontrent et le

point E il y a sûrement une arête vive rentrante, concave, où l'on

peut à l'aide d'une section plane, détacher une calotte tombant à

l'intérieur, ce qui amoindrit la valeur de l'enveloppe tout en

augmentant celle du volume.

Fig. 10. Fig. 11

Considérons maintenant le cas (fig. 10) où la rigole ne présenterait

aucune concavité, ni dans un sens ni dans l'autre, étant
formée de talus convexes ou plans, qui se coupent suivant une
arête vive ü convexe et se raccordent en CE et DF avec le reste
de la surface. Menons comme ci-devant à travers le corps un plan
bissecteur AEFB coupant la rigole suivant un angle aigu DFB et
remplaçons la partie inférieure du corps par la figure symétrique
à la partie supérieure (13). La rigole CEFD et la rigole symétrique
CEFD' se coupent suivant l'arête vive EF et les arêtes vives iï et
i'J se rencontrent en J où il s'est formé une pointe rentrante, que
l'on peut couper par une section plane très voisine, de façon à

détacher une calotte tombant à l'intérieur, ce qui amoindrit la
valeur de l'enveloppe tout en agrandissant celle du volume.

La démonstration que nous venons de donner serait applicable
à toute arête vive ou pointe rentrant clans la surface de l'enveloppe.

(16) La forme de corps cherchée ne doit présenter ni bosses, ni
bourrelets, ni arêtes vives ou pointes dirigées vers l'extérieur. En
tant qu'il s'agit de bosses, bourrelets ou autres parties saillantes,
dépourvues d'arêtes vives ou pointes, on remarquera qu'une
pareille excroissance, si elle ne forme partie de la surface même,
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sera toujours raccordée avec elle par des parties concaves et doit
de ce fait (15) rester exclue.

Considérons maintenant (fig. 11) le cas d'une arête vive û reliée,
en CE par un raccordement convexe avec la surface. Menons
parallèlement à la tangente en un point i de l'arête û et dans le
voisinage, un plan bissecteur AB qui coupe la surface du corps
/JBD en biais. (Si ce plan sécant était par hasard normal à la
surface dans le voisinage du point B, on prendrait entre BD et i
un autre plan sécant bissecteur B'D' qui ne le serait pas).
Remplaçons ensuite la partie inférieure du corps par la figure
symétrique de la partie supérieure (13) ce qui ne modifie en rien la
valeur de l'enveloppe et du volume compris. Il s'est formé alors
entre l'arête :J et l'arête symétrique i'V une rigole rentrante, ce
qui (15) doit rester exclu.

On pourrait, il est vrai, objecter que la surface du corps entre
BD et il étant telle que les plans bissecteurs B'D' menés dans
cet intervalle parallèlement à la tangente en z, rencontrent cette
surface toujours normalement, la démonstration ci-dessus serait
en défaut. Mais en pareil cas il suffirait de faire passer le plan
sécant B'D' un peu au delà de la tangente en z. Puisqu'on ce
point il y*a rupture brusque de courbure, la conception du plan
bissecteur toujours normal à la surface est alors inadmissible.

La démonstration donnée ci-dessus pour le cas d'une arête
vive à raccordements convexes, serait également applicable au
cas d'une pointe raccordée de la même façon.

(17) La forme de corps cherchée ne doit contenir aucune ligne
droite ni aucune surface plane. Ceci résulte de la démonstration
(16) pourvu que dans la figure (11) on considère B i comme une
ligne droite ou BzJ comme une surface plane. En outre, si dans
cette figure le plan bissecteur BD était normal à la droite ou au
plan en B, tout autre plan bissecteur B'D' entre B et i ne le serait
plus, puisqu'il ne peut y avoir deux plans bissecteurs parallèles.

Il résulte de tout ce qui précède que la forme de corps cherchée
doit être partout continue, arrondie, convexe et dépourvue de
points singuliers.

(18) Tout plan bissecteur, doit en chaque point de la courbe de
section, être normal au plan tangent à la surface en ce point. En
effet si cela n'était pas, on pourrait, en procédant d'après (15) et
(16), remplacer l'une des moitiés du corps par la figure
symétrique de l'autre et établir ainsi une rigole, permettant de diminuer
l'enveloppe tout en augmentant le volume compris.

(19) La forme de corps cherchée doit être la forme sphérique.
En effet, menons à travers le corps (fîg. 12) le plan bissecteur
XX' pris à volonté puis perpendiculairement à celui-ci le plan
bissecteur ZZ' qui coupe le premier suivant YY', enfin
perpendiculairement à cette droite le plan bissecteur XZX'Z', qui
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coupe cette ligne en 0 et le premier plan bissecteur mentionné
XX', suivant la droite XOX'. Nous avons établi ainsi les trois
axes rectangulaires usuels et nous allons prouver que la première
section XYX'Y' menée tout d'abord, à volonté, doit être circulaire.

Supposons (flg. 12) que le plan bissecteur XXX'// se meuve de

façon à rester toujours perpendiculaire au planXdX'V et de

façon que le point X fasse un tour complet sur la périphérie de

cette section. En une position quelconque X" de ce point, la
droite X"X'", suivant laquelle se coupent les deux plans, doit
d'après (18) être toujours normale à la courbe XX"X' et il en est

de même pour le second point d'intersection X'". Nous sommes
ainsi ramenés absolument à ce qui a été dit au n" 5 (ig. 8 quanl
au mouvement de rotation de la droite doublement normale,
roulant sur la développée de la courbe de section ; toutefois ici
on ne peut affirmer pour le moment, que cette droite mobile soit
bissectrice de la section XX'X'X". Pour tout le reste rien n'est
changé: la droite X"X'B conserve une longueur constante ; elle
roule sur une développée à nombre impair de rebroussements...
etc. Pour simplifier nous admettrons comme dans la dig. 8 qu'il
n'y en ait que trois; ce qui suit s'appliquerait tout aussi bien à

un nombre supérieur.
La droite X"X'" roule donc dans le-plan XX"X'X'" sur une

développée quasi triangulaire. Le plan bissecteur mobile roule sur
une surface cylindrique normale au plan XX"X'X"' et ayant cette
développée quasi triangulaire comme base. Ce cylindre coupe la
surface du corps (fig. 13) suivant deux contours quasi triangulaires
00^ et 0'0',0'2. Chaque point d'un pareil contour OC)/);,
correspond à une position du plan bissecteur mobile et à une
ligne de contact du cylindre, normale au plan XYX'Y'. Il faut
donc, d'après (18), qu'en chacun de ces points (fig. 13) du contour
00,0,, le plan tangent à la surface du corps, soit parallèle au

Z

Fig. 12.
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plan XYX'YL Ceci ne serait possible que si le contour OOjO^
était dans un plan, ou si à l'intérieur la surface était concave.
L'un et l'autre cas doivent, d'après (15) (16) (17), être exclus et
cette impossibilité ne disparaît que si la développée quasi
triangulaire (fig. 12) dans le plan XYX'Y' se réduit à un point unique
le cylindre de roulement se réduisant alors à un axe de rotation.
Le mouvement de la droite X"XW engendre donc un cercle.

Le plan bissecteur XYX'Y7, ayant été pris à volonté, on en
conclut que tout plan bissecteur coupe le corps suivant un cercle.
Ceci s'applique en particulier au plan bissecteur mobile qui, tournant

autour d'un diamètre, engendre alors une sphère, c. q. f. d.
(20) Spécialement, quant à la forme à adopter pour calottes de

chaudières, têtes de bouées, corps d'aérostats... etc., on peut
généraliser facilement pour la calotte sphérique ce qui vient
d'être démontré pour la sphère entière ; à savoir:

Parmi toutes les formes de surface d'une étendue donnée,
pouvant constituer la clôture d'une ouverture circulaire, la calotte
sphérique possédant cette étendue offre le contenu maximum,
car le volume de la sphère entière à laquelle appartient cette
calotte, ne pourrait être que diminué, si on la remplaçait par
tout autre surface de clôture ayant même étendue,

Max Edler v. Leber (Vienne, Autriche).

SUR RENSEIGNEMENT
DE LA THÉORIE DES INTÉGRALES ABÉLIENNES

La théorie des intégrales abéliennes, à laquelle se rattachaient,
au siècle passé, tant de grands noms depuis Abel à \Y ei er strass,
maintenant que l'on est arrivé à trouver sa vraie forme, simple,
élégante et toute naturelle, n'attire guère l'attention que d'un très
petit nombre de mathématiciens. A quoi cela tient-il

En laissant de côté les causes subjectives, comme les préjugés,
par exemple, et en passant directement aux causes objectives, on
les trouve dans la marche historique du développement de cette
théorie. Le génie d'Abel a brillamment commencé la théorie des
intégrales qui portent maintenant son nom immortel, en analysant
les divers cas particuliers de son célèbre théorème, directement,
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