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calcul : il suffit de remplacer %?—, dans 1'équation différentielle
]

(3), par @, et g par g + 5 .

Cette développée de la tractrice du cercle est d’apres MorLEY la
courbe que Ch. Lasourave appelle courbe a n saillies, dans le cas
de la représentation au moyen des fonctions circulaires; dans
le cas de la représentation au moyen des fonctions hyperboliques,
la courbe peut étre aisément construite a partir de la spirale de
Poinsot : elle se rattache done, dans ce cas, a la spirale logarith-
mique. Entre ces deux cas, se place celui ou la courbe roulante

est
2a

r=iTe

¢’est-a-dire est une transformée cissoidale de deux spirales hyper-
boliques. (Voir G. Ka@~ics, Lecons de Cinématique, Paris, 1897,
p- 170 ; G. Loria, Spezielle Kurven, II, p. 158 et 128).

\

E. Turrigre (Poitiers).

SUR LES AXES PRINCIPAUX D’INERTIE

Lorsqu’on étudie le complexe formé par les axes principaux
d’inertie d’'un systeme, on choisit généralement comme axes coor-
donnés les axes de symétrie de 'ellipsoide central d'inertie. C’est
a 'aide de ce systeme de référence que 'on rétablit ordinairement
le remarquable théoreme de Binet montrant, entre autre, que le
complexe des axes principaux est identique au complexe des nor-
males aux quadriques homofocales a l'ellipsoide central de gyra-
tion. Dans beaucoup d’ouvrages d’enseignement on emploie aussi,
pour chercher la condition a laquelle doit satisfaire une droite
pour étre axe principal, un systeme de référence dont ’axe des z
coincide avec la droite choisie. On se borne alors a établir une
condition analytique. [l est pourtant facile d’interpréter géomé-
triquement la relation a laquelle on arrive. On obtient ainsi des
théorémes qui, sans avoir I'importance du théoreme de Binet,
- sont cependant intéressants.

Pour qu’une droite quelconque, choisie comme axe Oz, soit
avec axe principal d’inertie il faut et il suffit que 'on puisse trou-
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ver sur cette droite un point O, (0, 0, A} tel que les deux premiers
produits d’inertie relatifs a des axes paralleles aux axes coordonnés
et passant par ce point soient nuls, c¢’est-a-dire que 'on ait:

Xmy(z — h) =0, Xmx(z — h) =0,

ou, en appelant M la masse totale du systéme, 2 _, Yo %y les coor

données du centre de gravité, D et E les deux premiers produits
d’inertie relatifs aux axes primitifs O, Oy, Oz :

D — kMyg =0, E — thg =0 .

D’oti la condition classique :
ng——Eyg:O . (1)

Pour interpréter cette équation considérons I'ellipsoide d’inertie
ayant pour centre 'origine O des axes coordonnés :

AX? + BY* 4+ CZ* — 2DYZ — 2EXZ — 2FXY =1

[’équation du plan diamétral conjugué, dans cet ellipsoide, a
I’axe Oz a des coeflicients respectivement proportionnels a :

— E — D C .

D’autre part les coefficients de '’équation du plan déterminé
par 'axe considéré et le centre de gravité du systéme sont pro-
portionnels a : :

¥ — X, 0.

La condition (1) exprime la perpendicularité de ces deux plans.
Donc, l'origine ayant été laissée arbitraire sur 'axe :

La condition nécessaire et suffisante pour qiu’un axe soit prin-
cipal est que le plan diamétral conjugué a la direction de ['axe
dans Uellipsoide d’inertie relatif @ un point quelconque de cet axe
soit normal au plan déterminé par Uaxe et le centre de gravité.

De la résulte que si un axe est principal tous les plans diamé-
traux conjugués a sa direction, dans les ellipsoides d’inertie
ayant pour centre les différents points de 'axe, sont perpendi-
culaires 4 un méme plan : le plan déterminé par l'axe et le centre
de gravité.

I’axe des z étant toujours la dioite considérée, supposée axe
principal, prenons comme axe des x la perpendlculalre abalssee
du centre de gravité sur Oz. Alors :

J'g' I
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et la condition (1} se réduit a :
D=20. (1)

[La cote 2 du point pour lequel 'axe Oz est principal est donnée

par :
E— thg =0 (2)

Soient O, (0, 0, «) un point quelconque de Oz et A,, B;, C,, D,,
E,, F,, les coefficients de 1’équation de lellipsoide d’inertie de
centre O rapporté a des axes menés par O,, parallelement aux
axes Oux, OJ, Oz. Les coefficients de lequatlon du plan diamétral
(,onJugue a la direction de Vaxe dans lellipsoide d’inertie relatif
a O, sont proportionnels a:

— Ei — D1 G
or . .
Eit=2mx(z — o) =E — ang

Di = Xmy(z —a) =0, Ci=2Xm(a*+ ) =C .

Le plan diamétral considéré a comme équation par rapport aux
axes Ox, Oy, Oz :
) — (B — aMay)X + ClZ — o) =0
ou : ,
— EX + CZ + a(Mz,X — C} =0

11 décrit donec, lorsque « varie, un faiscean dont l'axe a pour

équations : |

M:)ch = C, EX = (CZ ,
ou :

‘{:MC—— Z—=— — —h .

Cette droite est située dans le plan perpendiculaire a I’axe au
point pour lequel celui-ci est principal. 1l suffit de se rapporter a
I'étude des percussions pour remarquer que c’est la ligne suivant
laquelle il faudrait faire agir une percussion appliquée au sys-
téme pour que, celui-ci pouvant tourner autour de Oz, les appuis
de ’axe ne supportent aucune percussion. Nous pouvons donc
énoncer le théoreme :

S7 une droite est axe principal d’inertie, les plans diametraux
conjugués a la droite dans les differents ellzpsozdes d’inertie ayant
pour centres les points de cette droite forment un faisceau de
plans. L'axe de ce faisceau est la ligne suivant laquelle il faudrait
faire agir une percussion appliquée au systeme pour que lCaxe
pr mczpal supposé immobilisé ne supporte aicune percussion.

I'. Bouny (Mons).
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