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Si, notamment, l'une des sommes a b, a' -f- b' ou a!' b"

était nulle, l'axe Cm, C'm' ou C"w" correspondant serait avec la
valeur A — 1, rejeté à l'infini. En choisissant pour À une valeur
quelconque ne rendant nulle aucune des quantités ka -|- G
la' -f- b', ka" -f- b", on maintient, dans tous les cas, ces trois
axes à distance finie.

M. d'Ocagne (Paris).

DÉMONSTRATION NOUVELLE ET EXTENSION
D'UN THÉORÈME DE M. G. KŒNIGS

Dans un mémoire publié en 1887 l, M. G. Kœxigs a déterminé,
par une méthode élégante, les surfaces de l'espace à trois dimensions

contenant deux faisceaux de coniques.
Dans le trayail actuel, j'expose une généralisation du théorème

de M. Kœnigs, en ce sens que je détermine les surfaces algébriques
de Sr contenant deux faisceaux de courbes rationnelles. La

méthode que j'emploie est fondée sur la représentation plane des
surfaces et est différente de celle de M. Kœnigs. Précisément,
j'établis le théorème suivant :

L — Si une surface algébrique de Sr possède deux faisceaux de
courbes rationnelles, cette surface est rationnelle et peut être
représentée sur le plan de manière qu'aux courbes d'un faisceau
correspondent les droites d'un faisceau et qu'aux courbes de l'autre
faisceau correspondent-des courbes rationnelles d'un certain ordre
g, le plus petit possible, passant g — v fois par le sommet du faisceau

de droites / v étant le nombre de points communs aux courbes
des faisceaux) et telles que leurs multiplicités en deux points-bases,
divers du sommet du faisceau de droites, n'aient jamais une somme
excédant v De plus, il n'y a pas de points-bases v-uples et il en

peut exister qu'un seul point-base dont la multiplicité surpasse ^
(en dehors du faisceau de droites). Les courbes représentant les
sections hyperplanes de la surface ne passent jamais, par deux
points-bases du faisceau de courbes d'ordre g dont la somme des

multiplicités est v, avec des multiplicités dont la somme surpasse

1 Détermination de toutes les surfaces plusieurs fois engendrées par des coniques. Annales de
l'Ecole Normale sup. 1888, 3e s., t. V, p. 177. (Voir aussi C. R. 1887).
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l'ordre d'une courbe rationnelle du faisceau correspondant au
faisceau de droites.

Je considère, dans ce qui précède, une surface rationnelle comme
complètement donnée lorsque l'on connaît une de ses représentations

planes.
Comme cas particulier, je déduis le théorème de M. Kœnigs,

que j'énonce comme ceci :

II. — Si une surface algébrique contient deux faisceaux de coniques,

cette surface est rationnelle et c'est ou la surface de Veronese,
de S4, ou la surface d'ordre huit, à sections hyperplanes elliptiques,

représentant le système des quartiques planes à deux points
doubles, ou l'une des projections de ces deux surfaces.

Je déduis enfin ce théorème :

III. — Si une surface algébrique contient un faisceau de coniques

et un faisceau de cubiques rationnelles, elle est rationnelle et
c'est une surface d'ordre VI, de SH, à sections hyperplanes de

genre deux, ou une surface d'ordre il, de S10, ci sections de genre
deux, ou une surface d'ordre 8, de S8, A sections elliptiques
(représentant le système des courbes planes du troisième ordre ayant
un point-base), ou une règle cubique de S4, ou une quadrique, ou
une projection de l'une de ces surfaces.

1. — Soit F une surface algébrique d'ordre n située dans un
espace linéaire Sr, à r dimensions et contenant deux faisceaux
de courbes rationnelles. Dénotons par C4 la courbe générique de
l'un des faisceaux, par C2 la courbe générique de l'autre. Soient
ni, /?2 les ordres respectifs des courbes C1 C2, v le nombre de

points 1) communs à une et à une C2 quelconque.
Les groupes de points d'intersection des courbes Cd avec une

C2 déterminée (mais choisie d'ailleurs arbitrairement) forment
une involution y' sur cette courbe. Or, cette c irbe C2 étant rationnelle,

il en est de même de l'involution d'après le théorème bien
connu de Liiroth, et par suite du faisceau des C4.

Le faisceau rationnel des C4 sera désigné, suivant l'usage, par
| C41. On démontre de même que les C2 formentun faisceau
rationnel (C2).

Mais, par un théorème de M. Nöther, une surface algébrique
possédant un faisceau rationnel de courbes rationnelles, est
rationnelle ; donc la surface F est rationnelle.

Nous désignerons par J C | le système des sections planes ou
hyperplanes de la surface F et nous supposerons que cette surface
est normale, c'est-à-dire qu'elle n'est la projection d'aucune surface

du même ordre n appartenant à un espace linéaire à plus de
/ dimensions.

2. — Considérons une représentation plane de la surface, c'est-
à-dire établissons une correspondance birationnelle entre la surface

F et un plan quelconque. Soient jC*| le système linéaire,
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simple, de dimension représentant le système des sections
hyperplanes |C | I C*| I le faisceau de courbes rationnelles
correspondant aux C1 | C% l le faisceau des courbes rationnelles
correspondant aux C2

Mais nous avons une infinité de représentations planes d'une
surface, car on sait qu'on aurait pu prendre au lieu de | G* j un
système linéaire transformé de | C* | au moyen d'une transformation

birationnelle quelconque. Nous pouvons profiter de cette
indétermination pour choisir un système ] G* | plus commode
que les autres. Précisément, nous choisirons le système G* I de
manière que :

1° Les courbes C*f soient les droites d'un faisceau de sommet P.
2° Les courbes C% aient l'ordre minimum p.
3° Les courbes G* aient l'ordre minimum m (m n'étant

naturellement choisi que lorsque p est fixé).
Il est toujours possible de satisfaire au 1°), car étant donné un

faisceau de courbes rationnelles dans un plan, il existe toujours
une transformation birationnelle qui le change en un faisceau de
droites (cela résulte d'ailleurs du théorème de M. Nöther
précédemment invoqué). Si donc nous avions affaire à une représentation

plane de F dans laquelle les C*t ne seraient pas des droites,
il serait possible de trouver une transformation birationnelle (et

par conséquent une autre représentation plane de F) changeant
les G*! en des droites.

3. — Les courbes C% rencontrent une courbe C*1 en v points,
donc on a p ^ v et le point P est (p — v) -uple pour toutes les
courbes C*2.

De même, le point P est (m-nA) - uple pour les courbes CL
Désignons par xik le nombre des points fixes du plan, en

dehors de P, /-uples pour les C% et Âr-uples pour les G*

Ii== 0, 1, 2, v ; k 0, 1, 2, ni).
Exprimons que les courbes C% sont rationnelles, on a

((X — 1) (y — 2) — (y — fi (y — v — 1) +2 2 F1' ~~ 11 Xik '
k i

De plus, deux courbes C*2 n'ont aucun point variable en commun,

donc on a

[J2 — f-J. - V)2 '
k i

Ges deux formules s'écrivent, après quelques réductions,

+ ^ in
k i

2!" v'• ('2'

k i
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Exprimons que deux courbes C* ont n points variables
communs. On a

m* — (7n — 72i)8 +22^+ n • (3)
i k

Une courbe C* rencontre une courbe C% en /z2 points, donc

on a

m\x — + (m — '+ + — v) + /?2 (4)

i k

4. — Le nombre [i, pour satisfaire à la seconde condition, doit
être le plus petit possible, c'est-à-dire que l'on ne peut trouver
une transformation birationnelle changeant les courbes C*2 en
des courbes d'un degré moindre, tout en faisant correspondre
des droites aux droites C*4

Dans ces conditions, 011 doit avoir xVk — 0 (À— 0, 1, ni
sauf pour v — 1. En effet, supposons Svk >0, v > i. Alors on ne

peut avoir xa 0 (/ i, 2, r-1), car les formules (1) et \2

donnent

yocvk zzz 2 \x — 1) + v yxrk ~ ^3 — v '

d'où v — 1. 11 doit donc exister, en dehors de P et des points-
bases r-uples de | C*2| quelques autres points-bases. Envisagons
un point-base P1 r-tiple et un point base P2, z-uple de | C% | (/<+ v

La transformation quadratique ayant pour points fondamentaux
P, Pi, P2 change les C*t en des droites et les C*2 en des courbes
d'ordre 2ja — fß — v) — v — i p, — i <+ fj>. Or, nous venons de
voir que cela n'est pas possible si la représentation plane a été
choisie de manière à satisfaire à la condition 2°), donc sauf pour
v 1, on doit avoir xVk 0.

D'une manière générale, on ne peut avoir, en dehors du point
P, un point-base P1 z-uple et un point-base P2 /-uple pour | C21
si i -j- j +> v. En effet, si cela était possible, la transformation
quadratique ayant pour points fondamentaux P, Pi P2 changerait

les C*i en des droites, et les C*2 en des courbes d'ordre
2/M — [fi — v) — i —j — la, —- [i 4-./ — v) > de sorte que la
représentation plane ne pourrait satisfaire au 2°).

De cette propriété, on conclut que l'on ne peut avoir xa 0

que pour une seule valeur i ^ et qu'alors, on a précisément
Xik= 1.

Nous allons appliquer ces théorèmes à la détermination des
faisceaux | C*21 lorsque l'on a v — 1, 2 ou 3.

L'Enseignement mathém., 15e année; 1913. 22
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5. v z=± 1. On ä / ^ i' ou 1, donc i — Ö ou i. Les équations (L)

et (2) deviennent :

^ v v 1

Or, si xxk > 0, comme on a v 1 > ^ y ou y on ne peut avoir

que ,r.u. ~ i, d'où ^ ~ 1. Les C\2 sont donc les droites d'un
faisceau.

Cela était évident à priori, car si une surface algébrique possède
deux faisceaux de courbes rationnelles unisécantes, on en obtient
une représentation plane en rapportant projectivement ces
faisceaux respectivement à deux faisceaux de droites d'un même
plan.

6. — v ~ 2, On a i 1, d'où

— 2u. — 4u. — 4

c'est-à-dire ß — 2. Les C\2 sont donc les coniques d'un faisceau.
7. — v =z 3. On a z ^ 2 et si z peut être égal à 2, on a .zy. — 1.

Nous avons donc deux cas à considérer :

1° i ne peut prendre la valeur 2. Alors on a

~ 2u. -j- 1 — 6ul — 9

c'est-à-dire i\ß ~ 1(1, ce qui est impossible pour ß entier.
2° z peut prendre la valeur 2. Alors on a

2 + xlk 2p. -j— 1 4 -}- oclk ~z 6a — 9

On en déduit ß 3, .ru =: 5.

Les C% sont donc des cubiques planes ayant un point double
et cinq points simples en commun.

8. — Occupons-nous maintenant d'exprimer la condition 3°).
Les courbes C* ne peuvent avoir, en deux points différents de

P et dont les multiplicités pour les C\2 ont pour somme r, des
multiplicités dont la somme surpasse ni.

11 suffit, pour le prouver, de supposer qu'il puisse exister deux
points P1, P2 respectivement multiples d'ordres z, v — z pour les
C% multiples d'ordre k, kr [k -f- k' >> pour les C*.

Alors, une transformation quadratique dont les points
fondamentaux sont P, Pi P3 change les C*1 en des droites, les C\2 en
des courbes d'ordre 2^ — Iß — v) — z — {y — z) — ß, et les C* en
des courbes d'ordre 2m — [m — zz/j — k — k' m[k -|- k- — n{)
<7 z>2- La condition 3°) ne serait donc pas remplie par | C* | ce
qui est contre l'hypothèse.
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Nous avons donc complètement démontré le premier théorème
énoncé dans le préambule.

9. — Théorème de M. G. Kœnigs. — Pour déterminer les
surfaces F possédant deux faisceaux de coniques, nous devons faire
ni n2 2, et, si l'on écarte le plan [n 1} v ^ 2.

1er cas. — v 1. Nous avons vu qu'alors, | C*2 | est un faisceau
de droites dont le sommet sera désigné par Pr — 1).

Les équations (3) et (4) deviennent (k ^ nA ou 2) ;

7?i2 zzn (7?i — 2)2 —\- Xu -|— 4x^2 -f~ '

•771 X±i -f- 2xa -f- 2

1 C*2 | n'ayant qu'un point-base, on a .rM -f- xi2 ^ i.
De ces trois équations, on déduit aisément les trois solutions :

a) m ~ 2, xH =tri2 - 0.
| G* | est le système des coniques du plan et F est par suite la

surface de Véronèse dans S5.

b) m 3, «r,, 1, — 0.
I C* j est le système des cubiques planes ayant deux points

bases simples et F est une surface d'ordre 7, deS7, à sections
hyperplanes elliptiques.

c) m — 4, 0, xi2 1.

| C* | est le système des quartiques elliptiques (deux points-
bases doubles P, P') et F est une surface d'ordre 8 de S8 à sections
hyperplanes elliptiques. Remarquons que la surface du septième
ordre (cas b) s'obtient comme projection d'un de ses points de
cette surface du huitième ordre.

2e cas. — v 2. Alors, j C\2 | est un faisceau de coniques
(fi 2). Nous désignerons par Pi, P2, P3, P4 les quatre points-
bases de ce faisceau.

D'après l'observation générale faite précédemment (n° 8jt la
somme des multiplicités des courbes C* en deux des points P4,
P2, P3, P4, ne peut excéder nA ~ 2, les équations (3) et (4)
deviennent :

77l2 (777. 2 2 -}- 3C1± + Il [Xvi — 4)

2/71 — x±i -{— 2

De la seconde, on déduit que xu est pair. Si xu 4, on a
m ~ 3, n 4 et le système | C* j est celui des cubiques planes
ayant cinq points simples P, P4, P2, P3, P4. F est donc une
surface d'ordre 4, à sections elliptiques, de S4.

Si xu —— 2, on a m 2, n 2 et F est une quadrique, | C* | étant
le système des coniques passant par deux des points P1 P4

L'hypothèse .rH 0 conduit k m 1 et est inadmissible.
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Ainsi se trouve démontré le théorème de M. G. Kœnigs.
10. — Surfaces ayant un faisceau de coniques et un faisceau de

cubiques unicursales. Nous poserons ns — 3, n2 ~ 2 et nous
aurons à examiner les trois cas v 1, 2, 3 (le dernier correspondant

à des cubiques gauches).
1er cas. — v 1. — Comme nous l'avons vu tantôt, on a fx 1,

et C% | est un faisceau de droites de sommet PC Les équations
(3), (4j, s'écrivent :

m2 — (jn — 3)2 E n m k -f- 2

en supposant P' Zr-uple pour les C*. Or, on a k ^ ni, c'est-à-dire
k ^ 3.

Nous avons donc quatre hypothèses à faire :

a) k 3, m 5, n ~ 12.
C* | est le système des quintiques ayant deux points-bases

respectivement doubles et triples. Ces quintiques sont donc de genre
deux et F est une surface du douzième ordre, à sections de genre
deux, de Slt (car les quintiques planes sont co'i0 et l'imposition de
points triples ou doubles équivaut respectivement à six ou trois
conditions)*

b) k — 2, m 4, n — 11.
| C* [ est le système des quartiques de genre deux ayant un

point-base double et un point-base simple. F est donc une
surface d'ordre 11, à sections de genre deux, de S10.

c) k 1, m — 3, n 8.
| C* | est le système des cubiques planes avec un point-base P'

et F est donc une surface d'ordre 8, à sections elliptiques, de S8.
d) k 0, m — 2 (impossible).
2e cas. —v 2. Actuellement, | C*2 | est un faisceau de coniques

dont les points-bases sont Pi, P2, P3, P4. [ß^2}m On a
h ^ 3 et par suite

#10 ~f" #11 H~ #12 ~f~ #13 — 4

Les équations (3) et (4) deviennent :

7?l2 (771 3)2 -j- OCii -J- 4«Tj2 H- *^#13 "j" ft »

2m -{- 2t'i2 -(- 3.r18 -f~ 2

La première de ces équations s'écrit, plus simplement,

X\\ -j- 4^2 H- 9^13 —(— IX — 6T?I —- 9

Nous allons donner à xiX, 2, xX3 les différentes valeurs
compatibles avec l'inégalité écrite ci-dessus et nous en déduirons les
valeurs correspondantes de n et m. Nous formerons ainsi le ta-
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bleau suivant, en remarquant que 2.rl2 -f- 3xl3 et par suite

xn + 3x13 doivent être pairs :

xn X12 xm m 71

a) 4 0 0 3 5

1') 3 0 1 4 3

c) 2 2 0 4 5

dj 2 1 0 3 3

e) 2 0 2 5 + i
f) 1 0 3 6 — i
Si 0 4 0 5 5

h) 0 o
O 0 4 3

i) 0 2 2 6 1

j) 0 2 0 3 1

k) 0 1 0 2 — 1

V 0 0 4 7 - 3

m) 0 0 2 4 — 3

n) 0 0 0 1 — 3

Les cas ci), b), cj, dj, g), h) sont évidemment les seuls à considérer.

Dans le cas a), |C*| est le système des cubiques planes ayant
quatre points-bases simples P1 P2, P3, P4 et F est donc la surface

d'ordre 5, de S5, à sections hyperplanes elliptiques.
Dans le cas b), | C* | est le système des quartiques rationnelles

ayant un point-base triple Pi et quatre points-bases simples
P, P2, P3, P4 F est donc une réglée cubique de S4

Dans le cas c), | G* | est le système des quartiques elliptiques
ayant deux points-bases doubles P1, P2 et trois simples P, P3, P4.
F est une surface d'ordre 5 de S5, à sections hyperplanes elliptiques.

Dans le cas dj, | G* ] est le système des cubiques ayant trois
points-bases, un double Pi et deux simples P3, P4. F est une
réglée cubique de S4

Dans le cas g), | G* | est le système de quintiques elliptiques
ayant cinq points doubles. F est une surface d'ordre 5, de S., à

sections elliptiques.
Dans le cas h), j C* | est le système des quartiques rationnelles

à trois points-bases doubles et un simple. F est une réglée cubique

de S4

3e cas. — v — 3. Alors, nous savons que | C% I est un faisceau
de cubiques planes ayant un point-base double P1 et cinq points-
bases simples P2, P3, P4, P5, P6 (g 3).

D'après ce que nous avons vu au n° 8, la somme des multiplicités
du point Pi et de l'un des points P2, PG pour | C* | est
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au plus égale à trois. Soit lu la multiplicité de 1\ pour | C* j

(/= 1, 2, 6).
On aura à faire quatre hypothèses :

a) kA 3. Alors, k2= kG 0. Les équations (3) et (4)
deviennent

m1 — (m — 3)a -j- 9 -{- n 37n 6 —{— 2

Cela est impossible en nombres entiers.
ß) ki ~ 2. Alors k ^ 1 [i — 2, 3, 6). On pourra écrire, en

appelant le nombre des points P2, P6 simples pour les C*,

m2 — {m — 3)2 -j- 4 -f- Xu -j- n

3/77 —: 4 -j- Xu -j— 2 —: Xu -j- 6

doit être multiple de 3 et d'autre part, .rn ^5, donc on peut
avoir :

a) 3, m 3, n — 2.
F est alors un quadrique, | C* j étant le système des cubiques

planes avec un point-base double et trois simples.
b) 0, m — 2, ce qui est impossible.
y). k{ 1. Soit alors le nombre des points P2, PB simples

pour les C*, .r,.2 celui de ces points doubles pour les C*.
On a

m2 ~ (m — 3)2 -f 1 F F 4xls -f~ n
37/7 — 2 -)- xu -p 2xn -j- 2 — xu F 2x12 F 4

Nous dressons un tableau analogue à celui de tantôt, mais en
omettant d'écrire les cas à rejeter.

Xll -ri2 1)1 'l

a) 5 0 3 3

| C* j est le système des cubiques planes à six points-bases simples

et F est donc une surface cubique générale de S3.
ô) 7kt 0. Avec nos notations habituelles, nous aurons

77 —j- Xu "j- 4^12 H- 9«^*13 6777 9

3/77 Xu "F ^x12 ~F 3^13 F 2

On en déduit
n F 3 j1is F 3 Xu '

Or, x'u ^ 5, donc n -f 3 ^ 2 et par conséquent ,r13 — 0,

n — 2, :.vli 5, xn 0, 3m 7, ce qui est impossible. Donc
l'hypothèse J) est à rejeter.

Ainsi se trouve démontré notre théorème III énoncé au début
de ce travail.

Janvier 1913. Lucien Godeaux (Morlanwelz, Belgique).
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