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310 L. GODEAUX

S1, notamment, 'une des sommes a 4+ b, @' + b oua’ + 0"
était nulle, I'axe Cw, C’'w’ ou C"w” correspondant serait avec la
valeur 2 — 1, rejeté a linfini. En choisissant pour A une valeur
quelconque ne rendant nulle aucune des quantités ia + b,
Aa" 4 &', la” 4 b”, on maintient, dans tous les cas, ces trois
axes a distance finie.

M. p’OcacnE (Paris).

DEMONSTRATION NOUVELLE ET EXTENSION
D'UN THEOREME DE M. G. K(ENIGS

Dans un mémoire publié en 1887', M. G. Ka~ics a détermingé,
par une méthode élégante, les surfaces de I'espace a trois dimen-
sions contenant deux faisceaux de coniques.

Dans le trayail actuel, j’expose une généralisation du théoreme
de M. Keenigs, en ce sens que je détermine les surfaces algébri-
ques de S, contenant deux faisceaux de courbes rationnelles. L.a
méthode que jemploie est fondée sur la représentation plane des
surfaces et est différente de celle de M. Kwenigs. Précisément,
y’établis le théoréme suivant :

1. — Si une surface algébrique de S, possede deux faisceaur de
courbes rationnelles, cette surface est rationnelle et peut étre re-
presenteée sur le plan de maniere qu'aux courbes d'un faisceau
correspondent les droites d’un faisceau et gu’aux courbes de Uautre
faisceau correspondent-des courbes rationnelles d’un certain ordre
w, le plus petit possible, passant w — v fois par le sommet du fais-
ceau de droites (v étant le nombre de points communs aux courbes
des faisceaux) et telles que leurs multiplicités en deux points-bases,
divers di sommet du faisceau de droites, n’aient jamais une somme
excedantv . De plus, il i’y a pas de points-bases v-uples et il en

. , ) . za e v
peut exister qu’un seul point-base dont la multiplicité surpasse 5
(en dehors du faisceau de droites). Les courbes représentant les
sections hyperplanes de la surface ne passent jamais, par deux
points-bases du faisceau de courbes d’ordre w dont la somme des
multiplicités est v, avec des multiplicites dont la somme surpasse

! Détermination de toutes les surfaces plusieurs fois engendrées par des coniques. Annales de
I'Ecole Normale sup. 1888, 3¢s., t. V, p. 177, (Voir aussi C. R. 1887).
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lordre d’une courbe rationnelle du faisceau coz'/'espona,’anl at

faisceau de droites.

Je considere, dans ce qui précéde, une surface rationnelle comme
completement donnée lorsque I'on connait une de ses représen-
tations planes.

Comme cas particulier, je déduis le théoreme de M. Keenigs,
que j’énonce comme ceci :

II. — Siune surface algébrique contient deux faisceaux de coni-
ques, cette surface est rationnelle et ¢’est ou la surface de Veronese,
de S,, ou la surface d’ordre huit, ¢ sections hyperplanes ellipti-
ques, représentant le systeme des quartiques planes @ deux points
doubles, ouw U'une des projections de ces deux surfuces.

Je déduis enfin ce théoréme :

HI. — 8¢ une surface algébrique contient un faisceau de coni-
ques et un faisceau de cubiques rationnelles, elle est rationnelle et
c’est une surface d'ordre 12, de S,,;, a sections hyperplanes de
genre deux, ou une surface dordre 11, de S,,, a sections de genre
deux, ou une surface d’ordre 8, de S,, a sections elliptiques (re-
presentant le systeme des courbes planes du troisiéme ordre ayant
un point-base), ou une régle cubique de S,, ou une quadrique, ou
une projection de Uune de ces surfaces.

1. — Soit F une surface algébrique d’ordre n, située dans un
espace linéaire S,, 4 » dimensions et contenant deux faisceaux
de courbes rationnelles. Dénotons par C, la courbe générique de
l'un des faisceaux, par C, la courbe générique de l'autre. Soient
n,, n, les ordres respectifs des courbes C,, C,, v le nombre de
points (> 1) communs a une C, et a une C, quelconque.

Les groupes de points d’intersection des courbes C, avec une
C, déterminée {mais choisie d’ailleurs arbitrairement) forment
une involution y’ sur cette courbe. Or, cette ¢. irbe C, étant ration-
nelle, il en est de méme de l'involution d’apres le théoreme bien
connu de Liroth, et par suite du faisceau des C, .

[Le faisceau rationnel des C, sera désigné, suivant 'usage, par
|C,|. On démontre de méme que les C, forment un faisceau ra-
tionnel (C,).

Mais, par un théoreme de M. Nother, une surface algébrique
possédant un faisceau rationnel de courbes rationnelles, est ra-
tionnelle ; donc la surface ¥ est rationnelle.

Nous désignerons par |C|le systeme des sections planes ou
hyperplanes de la surface I et nous supposerons que cette surface
est normale, c’est-a-dire qu’elle n’est la projection d’aucune sur-
face du méme ordre n appartenant & un espace linéaire a plus de
r dimensions. :

2. — Considérons une représentation plane de la surface, c’est-
a-dire établissons une correspondance birationnelle entre la sur-
face I' et un plan quelconque. Soient | C*| le systéme linéaire,
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simple, de dimension r, représentant le systéme des sections hy-
perplanes |C|. | C*,| le faisceau de courbes rationnelles corres-
pondant aux C,, | C*,!| le faisceau des courbes rationnelles corres-
pondant aux C, .

Mais nous avons une infinité de représentations planes d’une
surface, car on sait qu'on aurait pu prendre au lieu de | C* | un
systeme linéaire transformé de | C* | au moyen d’une transforma-
tion birationnelle quelconque. Nous pouvons profiter de cette
indétermination pour choisir un systeme |C*| plus commode
que les autres. Précisément, nous choisirons le systeme (C*| de
maniere que : '

1° Les courbes C*, soient les droites d’un faisceau de sommet P.

2° Les courbes C*, aient I'ordre minimum u.

3° Les courbes C* aient ordre minimum m (m n’étant natu-
rellement choisi que lorsque w est fixé).

Il est toujours possible de satisfaire au 1°), car étant donné un
faisceau de courbes rationnelles dans un plan, il existe toujours
une transformation birationnelle qui le change en un faisceau de
droites (cela résulte d’ailleurs du théoreme de M. Nother précé-
demment invoqué). Si donc nous avions affaire a une représenta-
tion plane de F dans laquelle les C*, ne seraient pas des droites,
il serait possible de trouver une transformation birationnelle (et
par conséquent une autre représentation plane de I} changeant
les C*, en des droites.

3. — Les courbes C*, rencontrent une courbe C*, en » points,
done on a uw > v et le point P est (uw — v) -uple pour toutes les
courbes C*,. '

De méme, le point P est (m-n,) - uple pour les courbes C*.

Désignons par «x, le nombre des points fixes du plan, en
dehors de P, i-uples pour les C*, et A-uples pour les C~
((=0,1,2, ... ,v; A=0,1,2, ..., n,).

Exprimons que les courbes C*, sont rationnelles, on a

(b — (e — 2) = (. — v (o — v —1) —|—22LU — 1’xik .
k I

De plus, deux courbes C*, n’ont aucun point variable en com-
mun, donec on a

= (. — v)? -{—2 21’2xik .
ki

Ces deux formules s’écrivent, apres quelques réductions,

Ezia‘ik:mp—i)—k‘/ , (1)
kI

Ezizxik = 2pv — V' . (2)
k I
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Exprimons que deux courbes C* ont n points variables com-
muns. On a

m?* = (m — ny)? —{—-22/1‘235,7{ +n. (3)
i K

Une courbe C* rencontre une courbe C*, en n, points, donc
on a

my. = Ezik'xik —+ (m — ng) (g — v) 4+ ny . (%)
ik
4. — Le nombre u, pour satisfaire & la seconde condition, doit

étre le plus petit possible, c¢’est-a-dire que l'on ne peut trouver
une transformation birationnelle changeant les courbes C*, en
des courbes d'un degré moindre, tout en faisant correspondre
des droites aux droites C*, .

Dans ces conditions, on doit avoir @y = 0 (A =0, 1, ..., n,,
sauf pour » = 1. En effet, supposons zyr > 0, » > 1. Alors on ne
peut avoir @z =0 (i=1, 2, ..., »-1), car les formules (1) et (2
donnent

Yy, T 2{w — 1) + v, VI, = 2o — v,

d’ot v = 1. 1l doit donc exister, en dehors de P et des points-
bases v-uples de | C*,|, quelques autres points-bases. Envisagons
un point-base P, v-uple et un point base P,, i-uplede |C*,| (i <Tr.
La transformation quadratique ayant pour points fondamentaux
P, P,, P, change les C*, en des droites et les C*, en des courbes
d’ordre 2u — (@ —v) —v — i = p — { < u. Or, nous venons de
voir que cela n’est pas possible si la représentation plane a été
choisie de maniéere a satisfaire a la condition 2°), donc sauf pour
v =1, on doit avoir xy; — 0. '

D’une maniére générale, on ne peut avoir, en dehors du point
P, un point-base P, i~uple et un point-base P, j-uple pour | C,|,
sii+ j>wv. En effet, si cela était possible, la transformation
quadratique ayant pour points fondamentaux P, P,, P, change-
rait les C*, en des droites, et les C*, en des courbes d’ordre
20— —v)—i—j =w—(+j—v) > u, de sorte que la re-
présentation plane ne pourrait satisfaire au 2°).

De cette propriété, on conclut que 'on ne peut avoir 2y > 0

c Y e
que pour une seule valeur 7/ > 3, et qu'alors, on a précisément
Xip — 1. .

Nous allons appliquer ces théorémes a la détermination des
faisceaux | C*, | lorsque 'on a v =1, 2 ou 3.

L’Enseignement mathém., 15¢ année; 1913. 22
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5. —v=1.0na7/=voul,donci=0o0ul. Les équations (1)
et (2) deviennent :
Xy = 2u —1

VR 1 )
Or, s1. Ly > 0, comme on a v =1 > 5 7 0u, onne peutavoilr

que x, =1, d'ot w = 1. Les C*, sont donc 1es droites d’un fais-
ceau.

Cela était évident a priori, car siune surface algébrique possede
deux faisceaux de courbes rationnelles unisécantes, on en obtient
une représentation plane en rapportant projectivement ces fais-
ceaux respectivement a deux faisceaux de droites d’'un méme
plan.

6. —v=2,0nai=1, dou

.’X'1/L_:2}),:/:lp.——',i ,
c’est-a-dire w = 2. Les C*, sont donc les coniques d’un faisceau.
7. —v=23. On a I =2 etsiipeut étre égal a2, on a v, = 1.

Nous avons donc deux cas a considérer :
1° 7 ne peut prendre la valeur 2. Alors on a

£

x”fZQp.—{——’l':Gp.——S),

c’est-a-dire 4u = 10, ce qui est impossible pour w entier.
2° { peut prendre la valeur:2. Alors on a

2+ x, =20+ 1, Aoy, =6 — 9

On en déduit g =3, x,, = 5.

Les C*, sont donc 'des cubiques planes dbant un point double
et cinq points simples en commun.

8. — Occupons-nous maintenant d’exprimer la condition 3°).

Les courbes C* ne peuvent avoir, en deux points différents de
P et dont les multiplicités pour fes C*, ont pour somme », des
multiplicités dont la somme surpasse n,

11 suffit, pour le prouver, de supposer qu il pmsse exister deux
points P, , P, respectivement multiples d ordres 7, v — 7 pour les
C*,, multlples d’ordre &, k' (k + &' > n,) pour les Cr.

Alors, une transformatlon quadratique dont les points fonda-
mentaux sont P, P,, P, change les C*, en des droites, les C*, en
des courbes d’ordre 2u — (W —v) — i — (v — i) = p, et les C* en
des courbes d’ordre 2m — (m — n,) — k — k' = m(k + £ — n,
< m. La condition 3°) ne serait donc pas remplie par |[C* ]|, ce
qui est contre 'hypothese.
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Nous avons donc compleétement démontré le premier théoreme
énoncé dans le préambule.

9. — Tutoreme pE M. G. K@nics. — Pour déterminer les sur-
faces I¥ possedant deux faisceaux de coniques, nous devons faire
n, =n, =2, et, si on écarte le plan (n =1)» < 2.

{¢r cas. — v = 1. Nous avons vu qu’alors, | C*, | est un faisceau
de droites dont le sommet sera désigné par P’ (u = 1).

Les équations (3) et (4) deviennent (A =< n, ou 2) ;

m = (m — 2)® 4 ay + by, + 10,
M= X1 + 21'12 —l— 2 .

| C*, | n”’ayant qu’un point-base, on a 2,, + x,, = 1.

De ces trois équations, on déduit aisément les trois solutions:

a) m=—2, x,, = &, =

| C*| est le systeme des coniques du plan et [’ est par suite la
surface de Véronese dans S..

by m=3, ay=1, #,=0

| C*| est le systeme des cubiques planes ayant deux points
bases simples et ¥ est une surface d’ordre 7, de S., a sections
hyperplanes elliptiqueq

c) m=—=hb, v, =0, = 1. ,

| C* | est le sy.steme des quartiques elliptiques (deux points-
bases doubles P, P’) et I est une surface d’ordre 8 de S, a sections
hyperplanes elliptiques. Remarquons que la surface du septiéme
ordre (cas &) s’obtient comme projection d'un de ses points de
cette surface du huitieme ordre.

2¢ cas. — v = 2. Alors, {C*,| est un faisceau de coniques
(v = 2). Nous désignerons par P,, P,, P,, P, les quatre points-
bases de ce faisceau. |

D’aprés Vobservation générale faite précédemment (n° 8), la
somme des multiplicités des courbes C* en deux des points P,

P,, P,, P,, ne peut excéder n, = 2, les équations (3] et (4) de-
viennent : ‘
m* = (m— 2% & xy + n , (= 4) ,
2m = xy + 2 . .
De la seconde, on déduit que .r,, est pair. Si x,, = 4, on a

m=3,n=—=%et le systeme | C*] est celui des cubiques planes
ayant cing points simples P, P,, P,, P,, P,. ¥ est donc une
surface d’ordre 4, a sections elliptiques, de S, .
- Six,=2,0na m=2,n=2etFestune quadrlque | C* | étant
1e systeme des coniques passant par deux des points P,, ..., P, .
L’hypothese ., = 0 conduit & m = 1 et est madmlssﬂ:)le. ‘
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Ainsi se trouve démontré le théoreme de M. G. Keenigs.

10. — SURFACES AYANT UN FAISCEAU DE CONIQUES ET UN FAISCEAU DE
CUBIQUES UNICURSALES. Nous poserons n, =— 3, n, =— 2 et nous au-
rons a examiner les trois cas v =1, 2, 3 (le dernier correspon-
dant a des cubiques gauches).

1°* cas. — v = 1. — Comme nous 'avons vu tantdt, on a u — 1,
et | C*,] est un faisceau de droites de sommet P’. Les équations
(3), (4], s’écrivent :

m* = (m — 3%+ k* +n , m==5r-+ 2,

en supposant P’ Z-uple pour les C*. Or, on a & < n,, c¢’est-a-dire
e == 3,

Nous avons donc quatre hypotheéses a faire :

a) k=3, m=5, n—=12.

| C*| est le systeme des quintiques ayant deux points-bases res-
pectivement doubles et triples. Ces quintiques sont donc de genre
deux et I¥ est une surface du douzieme ordre, & sections de genre
deux, de S,, (car les quintiques planes sont «*® et 'imposition de
points triples ou doubles équivaut respectivement a six ou trois
conditions).

b) k& :¢2, m="ha, n=11.

| C*[ est le systéme des quartiques de genre deux ayant un
point-base double et un point-base simple. F est done une sur-
face d’ordre 11, a sections de genre deux, de S,.

c) k=1, m=3, n =28.

| C*] est le systeme des cubiques planes avec un point-base P’
et I est donc une surface d’ordre 8, a sections elliptiques, de S, .

d) & =0, m = 2 (impossible).

2¢ cas. — v = 2. Actuellement, |C*,| est un faisceau de coni-
ques dont les points-bases sont P,, P,, P,, P,. (v =2]. On a
= 3 et par suite

X0 + xu + X+ a2 = 4

Les équations (3) et (4} deviennent:

m* = (m — 3 + ay + bdaye + Y2 + n
2m — X141 + 21'12 —l— 3.1‘13 + 2.

La premiére de ces équations s’écrit, plus simplement,
Xy + 4xg + Y3 +n=6m — 9 .

Nous allons donner a x,,, x,,, x,, les différentes valeurs com-
patibles avec I'inégalité écrite ci-dessus et nous en déduirons les
valeurs correspondantes de n et m. Nous formerons ainsi le ta-
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bleau suivant, en remarquant que x,, + 2x,, + 32,; et par suite
2, + 3x,, doivent étre pairs :

.'Z'“ xm x13 nm n
a) 4 0 0 3 5
b) 3 0 1 4 3
¢) 2 2 0 4 5
d) 2 1 0 3 3
e) 2 0 2 5 +1
f) 1 0 3 6 — 1
g) 0 4 0 5 5
h) 0 3 0 & 3
l) 0 2 2 6 1
J) 0 2 0 3 1
L/ 0 1 0 9 1
l) 0 0 4 7 — 5
m) 0 0 2 4 — 9
n) 0 0 0 — 3

Les cas a), ), ¢), dJ, g), ) sont évidemment les seuls a consi-
dérer. )

Dans le cas @), |C"| est le systéme des cubiques planes ayant
quatre points-bases simples P,, P,, P,, P, et I est donc la sur-
face d’ordre 5, de S, , a sections hyperplanes elliptiques.

Dans le cas b), | C*| est le systéeme des quartiques rationnelles
ayant un point-base triple P, et quatre points-bases simples
P, P,, P,, P,. I est donc une réglée cubique de S, .

Dans le cas ¢), | C*| est le systeme des quartiques elliptiques
ayant deux points-bases doubles P,, P, et trois simples P, P,. P,.
F est une surface d’ordre 5 de S,, a sections hyperplanes ellipti-
ques. . _

Dans le cas d), | C*| est le systeme des cubiques ayant trois
points-bases, un double P, et deux simples P,, P,. I est une
réglée cubique de S, .

Dans le cas g), | C*| est le systeme de quintiques elliptiques
ayant cing points doubles. IF est une surface d’ordre 5, de S,, a
sections elliptiques. )

Dans le cas 4), | C*| est le systeme des quartiques rationnelles
a trois points-bases doubles et un simple. I est une réglée cubi-
(que de S, .

3° cas. — v = 3. Alors, nous savons que |(C*,| est un faisceau
de cubiques planes ayant un point-base double P, et cing points-
bases simples P,, P,, P,, P,, P, (u=3).

D’aprés ce que nous avons vu au n° 8, la somme des multipli-
cités du point P, et de 'un des points P,, ... , P, pour | C*| est
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au plus égale a trois. Soit /; la multiplicité de P; pour |C*|
(l=1, 2, ..., 6.
On aura a faire quatre hypotheses :
a) ky = 3. Alors, k,— ... =k, = 0. Les équations (3] et (4] de-
viennent
m* = (m — 3+ 9 + n , 3m =6 4+ 2 .

Cela est impossible en nombres entiers.
B) ke, =2. Alors £ =1 (i=2,3,...,6). On pourra écrire, en
appelant .z;, le nombre des points P,, ... , P, simples pour les C*,

m* = (m — 3%+ 4 4+ ay 4+ n,
3”1:4:—‘*—.1'11—{—2:&'11-{‘6 .

Ty doit étre multiple de 3 et d’autre part, .r,, = 5, donc on peut
avoir :

a) &y =3, m=—23, n=2.

F est alors un quadrique, |C*| étant le systéme des cubiques
planes avec un point-base double et trois simples.

b} «,, =0, m = 2, ce qui est impossible.

y). k, = 1. Soit alors x,, le nombre des points P,, ... , P, sim-
ples pour les C*, x,, celui de ces points doubles pour les C*.

On a
m* = (m — 3> + 1 4 xy + [i*Tl“:’ 7
3m = 2 + xy + 20 + 2 = 2y + 20 + &

Nous dressons un tableau analogue a celui de tantot, mais en

omettant d’écrire les cas a rejeter.

.'1711 51‘12 mn n

a) 5 0 3 3

| C*{ est le systeme des cubiques planes a six points-bases sim-
ples et F est donc une surface cubique générale de S,.
d) &, = 0. Avec nos notations habituelles, nous aurons

n —l— X11 + 4.7'12 -+— 9.1'13 — bm — 9 s
. 3m —_— 11 -l— 2.2"12 —f“ 3{)’)13 "I" 2.
On en déduit
n + 3‘7'13 _l“ 3 = LAt

Or, x,, =< 5, donen + 3 &x,, = 2 et par conséquent .r;; = 0,
n=2 x,=>5, x, = 0, 3m = 7, ce qui est impossible. Donc
I’hypothése d) est a rejeter.

Ainsi se trouve démontré notre théoréeme III énoncé au début
de ce travail.

Janvier 1913. Lucien Gopeauvx (Morlanwelz, Belgique!.




	DÉMONSTRATION NOUVELLE ET EXTENSION D'UN THÉORÈME DE M. G. KŒNIGS

