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SUR LA RESOLUTION GRAPHIQUE D’UN SYSTEME
DE TROIS EQUATIONS LINEAIRES

[.La méthode de Massau pour la résolution d’un systeme quel-
conque d’équations linéaires! a I'intérét d’une pleine généralité.
Mais il est possible, en certains cas particuliers, d’obtenir des
constructions plus simples que celles qui en dérivent. C’est ainsi
que, pour le cas de trois équations linéaires, au reste quelcon-
(ues, que nous écrirons

aX + bY ++ ¢Z = d ,
a’X + Y 4 7L =d
a"X 4+ b"Y + "2 = d"

nous allons faire connaitre ici une solution, reposant tout simple-
ment sur l'interprétation de ces équations en coordonnées paral-
leéles, et qui comporte des tracés sensiblement plus simples que
ceux exigés par la méthode de Massau. Pour la résolution d’un
tel systeme, cette derniére méthode nécessite 'emploi de quatre
fausses positions, alors que la solution ici indiquée n’en utilise
que deux.

. Faisant choix de deux axes paralleles quelconques Aw et By,
portons sur ces axes les échelles définies par

u— X , p — AY

A étant un parametre arbitraire qu'on prendra le plus souvent égal
a 1, mais dont, le cas échéant, on pourra disposer comme on
lindiquera plus loin. lLes trois équations ci-dessus devenant
ainsi
aku 4+ by = Ad — ¢Z) ,
a'iu 4 v = Kd" — Z)

" u 4+ 0"y = r(d" — "Z)

|

1 Voir l'exposé de cette méthode dans mon volume: Calcul graphique et Nomographic
(nos 13 a 15).
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définissent alors trois systémes linéaires de points (Z) distribués
respectivement sur les paralleles Cw, C'w’, C"w" aux axes, telles
que
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et déterminés sur ces supports par les formules

% (d — cZ) ,Md — c'7) L Md"— ")
! ’ a0

A N — AN+

Supposons ces cing échelles métriques marguées sur les sup-
ports correspondants. Pour avoir la solution en X, Y, Z du systeme
considéré, il nous faudra trouver trois points des échelles (Z) por-
tées par Cw, C'w’, C"w" qui, tout en ayant la méme cote Z, soient
alignés. La droite sur laquelle ils se trouveront coupera les
échelles de A« et By en des points dont les cotes feront connaitre
les valeurs de X et Y qui, jointes a cette valeur commune de 7,
constitueront le systeme (X, Y, Z) cherché.

Or, si nous considérons les droites unissant les points de méme
cote sur deux des trois échelles Cw, C'w’, C"w", ces droites pas-
sent toutes par un méme point, attendu que ’élimination de 7
entre les expressions de w et w' par exemple conduit a une équa-
tion linéaire en w et w'.

Soient P, Q, R les podles ainsi obtenus par association des
mémes valeurs de Z sur Cw et C'w’, C'w’ et C"w", C"o" et Cw.
[alignement cherché devra passer par chacun de ces trois poles
qui, dés lors, sont nécessairement en ligne droite.

Or, pour nous procurer I'un d’eux, nous n’avons qu’a prendre
entre Cow et C'w’, ou entre C'w’ et C"w”, ou entre C"w" et Cw, les
alignements joignant les points qui correspondent a deux mémes
cotes: Z. =0 et Z — 1, par exemple.

En général, avons-nous dit, on prendra A = 1 ; mais on pourra
aussi dlsposer de ce paramétre de facon a idlre varier homogra-
phiquement la figure en vue d’une disposition plus avantageuse.
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S1, notamment, 'une des sommes a 4+ b, @' + b oua’ + 0"
était nulle, I'axe Cw, C’'w’ ou C"w” correspondant serait avec la
valeur 2 — 1, rejeté a linfini. En choisissant pour A une valeur
quelconque ne rendant nulle aucune des quantités ia + b,
Aa" 4 &', la” 4 b”, on maintient, dans tous les cas, ces trois
axes a distance finie.

M. p’OcacnE (Paris).

DEMONSTRATION NOUVELLE ET EXTENSION
D'UN THEOREME DE M. G. K(ENIGS

Dans un mémoire publié en 1887', M. G. Ka~ics a détermingé,
par une méthode élégante, les surfaces de I'espace a trois dimen-
sions contenant deux faisceaux de coniques.

Dans le trayail actuel, j’expose une généralisation du théoreme
de M. Keenigs, en ce sens que je détermine les surfaces algébri-
ques de S, contenant deux faisceaux de courbes rationnelles. L.a
méthode que jemploie est fondée sur la représentation plane des
surfaces et est différente de celle de M. Kwenigs. Précisément,
y’établis le théoréme suivant :

1. — Si une surface algébrique de S, possede deux faisceaur de
courbes rationnelles, cette surface est rationnelle et peut étre re-
presenteée sur le plan de maniere qu'aux courbes d'un faisceau
correspondent les droites d’un faisceau et gu’aux courbes de Uautre
faisceau correspondent-des courbes rationnelles d’un certain ordre
w, le plus petit possible, passant w — v fois par le sommet du fais-
ceau de droites (v étant le nombre de points communs aux courbes
des faisceaux) et telles que leurs multiplicités en deux points-bases,
divers di sommet du faisceau de droites, n’aient jamais une somme
excedantv . De plus, il i’y a pas de points-bases v-uples et il en

. , ) . za e v
peut exister qu’un seul point-base dont la multiplicité surpasse 5
(en dehors du faisceau de droites). Les courbes représentant les
sections hyperplanes de la surface ne passent jamais, par deux
points-bases du faisceau de courbes d’ordre w dont la somme des
multiplicités est v, avec des multiplicites dont la somme surpasse

! Détermination de toutes les surfaces plusieurs fois engendrées par des coniques. Annales de
I'Ecole Normale sup. 1888, 3¢s., t. V, p. 177, (Voir aussi C. R. 1887).
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