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paraissent absurdes au premier abord. C'est ainsi qu'à côté de
la science contemplative, une technique a dû se développer, dont
le but est strictement utilitaire et qui vise seulement à accroître,
par tous les moyens possibles, la puissance de la démonstration.
A ne vouloir jamais descendre des cimes splendides qu'elle
prétend explorer, la science se condamnerait elle-même à l'impuissance.

Pierre Boutroux (Poitiers).

SUR LE PROLONGEMENT, PAR CONTINUITÉ.
DES FONCTIONS D'UNE VARIABLE COMPLEXE

1. — Soient Dd et D2 deux domaines, simplement connexes,
séparés par une ligne rectifîable L. Je suppose que les frontières
Cj et C2 des domaines D4 et D2 sont aussi des lignes rectifîables.

Cela étant posé, supposons que dans Dd se trouve définie une
fonction holomorphe f [z] prenant sur L une suite continue de
valeurs ; supposons, de même, que dans D2 se trouve définie une
fonction holomorphe ffz) prenant sur le L la même suite continue
de valeurs que /j (2).

2. — M. Painlevé a démontré (dans sa Thèse : Sur les lignes
singulières des fonctions analytiques, page 27) que la fonction f(z)
définie de la manière suivante :

f(z) rz: ft(z) dans le domaine ;

f(z) — fi[z) dans le domaine D2 ;

f[z) =r fi{z) — ffz) sur la ligne L ;

est holomorphe dans le domaine D, obtenu en supprimant la
ligne L.

En d'autres termes : deux fonctions holomorphes, définies dans
deux domaines contigus, et se raccordant, (les fonctions) par
continuité le long de la frontière commune (ligne rectifîable) se
prolongent mutuellement et ne forment, dans le domaine-somme
(obtenu en supprimant la frontière commune) qu'une seule et
même fonction holomorphe.

fi. — La démonstration de M. Painlevé est basée sur l'intégrale
de Cauchy. Je vais donner une autre démonstration1 basée sur une
transformation de la définition des fonctions holomorphes.

1 T. Lhvi-Civita, Sulla continuazionc analitica [Atti e Memorie délia R. Academia di Scienze,
Lettere ed Arti in Padova, vol. XXVIII, Dispensa I (1912), pp. 3-5].
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D'après un théorème de Morera, une fonction f(z) définie dans
un domaine simplement connexe D est holomorphe dans ce
domaine si

1° elle est continue dans D ;

2° l'intégrale

f f(--
C

est nulle, pour tout contour fermé C tracé dans D.
4. — Venons maintenant au théorème de M. Painlevé. On montre

immédiatement que la fonction f[z), définie au n° 2, satisfait
aux conditions de Morera.

D'abord, elle est continue dans le domaine D.
Ensuite l'intégrale

I=j7 [z)dz
C

est évidemment nulle si le contour C est situé tout entier dans Dt
ou dans D2. Supposons maintenant que ce contour fermé traverse
la ligne I, et, pour simplifier, supposons que C traverse L seulement

en deux points : a et ß.
Pour calculer l'intégrale I, on peut la décomposer en deux

autres intégrales :

I h + I,

l'intégrale 1^ étant obtenue en intégrant f(z) le long d'un contour
fermé C1 formé avec la partie de C qui se trouve dans I)i et l'arc
aß de la ligne L ; de même, l'intégrale I2 étant obtenue par
l'intégration de f{z) le long du contour fermé C2, formé de la partie
de C, située dans D2 et de Parc aß de la ligne L.

Mais, à cause de la continuité des fonctions (z) et/^jg] sur ^
on trouve facilement

'
h 0 I2 0

d'où
•1 0.

Et, ainsi, la fonction f(z) satisfait, dans D, aussi à la seconde
condition de Morera. Elle est donc holomorphe dans D.

5. — L'importance de ce mode de démonstration me semble
résider dans ce fait qu'il permet de généraliser le théorème de
M. Painlevé et de prolonger, par continuité, des fonctions non-
holomorphes.

En effet, reprenons les domaines D1 et D2, définis au n° 1, mais
cette fois-ci supposons que l'on définit, dans chacun de ces
domaines des fonctions non-holomorphes mais appartenant à la
même classe.

Voici ce que j'entends par là.
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Lorsqu'une fonction f[z), continue, n'est pas holomorphe
l'intégrale.

i =/«.-]
c

prise suivant un contour fermé quelconque C [tracé dans le
domaine où se trouve définie f[$J] n'est pas nulle; mais sa valeur
peut s'exprimer quelquefois d'une manière simple en fonction du
contour C. C'est cette manière d'exprimer la valeur de I en fonction

de C qui sert à caractériser une classe de fonctions, et par
suite à distinguer une classe des autres classes de fonctions.

Voici un exemple simple :

Supposons que la valeur de 1 est égale à l'aire de la région
délimitée par C, multipliée par l'affixe du centre de gravité de cette
région.

Nous avons défini ainsi une classe G de fonctions non-holo-
morphes : g[z).

6. — Je dis que le théorème de M. Painlevé est généralisable à

cette classe de fonctions.
En d'autres termes : si dans le domaine D1 se trouve définie

une fonction gA (z) et dans D2 une fonction de même classe g,2 [z-,
et si ces deux fonctions se raccordent par continuité le long de
la ligne L (qui sépare D1 et DJ la fonction g[z) définie comme il
suit :

g(z) gi(z) dans Di ;

g (s) gdz) dans D2 ;

g (z) gt\z) g% iz) «ur L

est une fonction qui, dans le domaine-somme D, appartient à la
même classe que g\ (z) et g2{z).

On n'a qu'à reprendre le mode de raisonnement du n° 4 et à

faire usage d'une propriété élémentaire du centre de gravité.
D'ailleurs la classe des fonctions g[z) peut être définie aussi

par un système d'équations aux dérivées partielles absolument
analogue au système par lequel Cauchy définit les fonctions
holomorphes.

7. — J'ai donné dans une Note des Comptes Rendus1 la condition
nécessaire et suffisante pour qu'un-e fonction de variable
complexe, appartenant à une classe déterminée, soit prolongeable par
continuité.

D. Pompéiu (Bucarest).
1 T. 156, p. 376, séance du 3 lévrier 1913. Dans cette Note des Comptes Rendus se trouve

indiquée aussi la démonstration du texte (n° 4). En lisant cette Note, M. le prof. T. Levi-
Civita a bien voulu me communiquer qu'il avait, avant moi, donné, dans les Atti e Memorie de
l'Académie de Padoue, la même démonstration, comme application du théorème de Morera au
prolongement des fonctions holomorphes.
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