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SUR L’EXISTENCE DES POTENTIELS
ET DE LEURS DERIVEES!

1. Introduction. l.a théorie du potentiel peut étre subdivisée en
deux parties qui se rattachent, 'une a la théorie des intégrales
définies, 'autre a la théorie des équations aux dérivées partielles ;
les potentiels sont, en effet, certaines intégrales définies multi-
ples qui ont la propriété de satisfaire aux équations de Laplace
ou de Poisson.

Dans la théorie de ces équations différentielles, la démons-
tration de ’existence, dans un domaine donné, de solutions sou-
mises a certaines conditions aux limites du domaine constitue un
premier pas vers la solution des problémes d’intégration (pro-
blemes de Dirichlet et de Neumann, par exemple). Quelque vif
que soit aujourd’hui l'intérét qui s’attache a ces questions, ce
n’est pas d’elles qu’il s’agit dans cette conférence.

Si I'on se place au point de vue de la théorie des intégrales
définies, les fonctions sous le signe somme, dans les intégrales
qui expriment les potentiels et leurs dérivées, sont souvent infi-
nies dans le domaine d’intégration; on se trouve en présence
d’intégrales généralisées (ou impropres) dont il s’agit d’établir la
convergence, ou si 'on veut lexistence, en méme temps qu’indi-
quer les limites dans lesquelles elles vérifient les équations diffé-
rentielles mentionnées. Je voudrais passer en revue les principaux
probléemes qui se présentent dans cette théorie et noter I'état
actuel de leur solution, sans viser a étre complet 2.

2. Définition. Considérons l'attraction newtonienne exercée sur
une masse ponctuelle M par plusieurs autres 7. [LAGRANGE a re-
marqué le premier (1773) que les composantes de l'attraction,
X, Y, Z, suivant les axes d’un systéme de coordonnées rectangu-

0Q  2Q  2Q

laires, sont les dérivées partielles = | S
z

= d’'une méme
QX dy ’

! Conférence faite par M. Ch. Jaccorrrr (Lausanne) a la réunion de la Société mathématique
suisse, le 9 mars 1913, a Neuchatel.
? Les compléments et la bibliographie du sujet seront donnés dans l'article que prépare

Vauteur pour UEncyclopédie des sciences mathématiques pures et appliquées, édition fran-
¢aise, tome 11, vol. 4, 24.

L’Enseignement mathém.. 15¢ année: 1913 an
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fonction £ des coordonnées du point P (z, , z), ol est située la

, . mM
masse M. La fonction £ a pour valeur £ — — s/ , la somme

(1) rm
s’étendant a toutes les masses m, r, désignant la distance de la
masse m considérée a la masse M .

Pour exprimer 1'action exercée sur une masse ponctuelle M par
un corps continu K, l[agrange suppose ce corps décomposé en
masses élémentaires dm et fait la somme de toutes les actions
élémentaires. Les composantes de D'action totale sont encore les
dérivées partielles d’'une fonction & (x, y, z),

o *ff M.dm — M. /dnz_

r désigne la distance de I'élément dm au point potentie P (v, y, z),
siege de la masse M ; f"est un facteur constant dépendant du choix
des unités, qui peut étre pris égal a 1. Si, de plus, nous faisons

dm - . . ;
M = + 1, nous avons £ =V ——f ~ . Clest a cette fonction V

que GreeN a donné le nom de fonctzon potentielle et Gauss celut

de potentiel du corps K par rapport au point potentié P. La fonc-

. P i % ; . oV , Y
tion V a ainsi la signification suivante : X == S Y == Fyalt

, 0V . . ,
L = 37 sont les composantes de lattraction exercée par le corps

K sur la masse 4 1 située en P (2, v, z).

Hypotheses physiques. le fait de considérer l'action totale
comme la somme des actions élémentaires et d’exprimer le poten-
tiel par une intégrale implique I'hypothése que la matiére est
divisible a l'infini et que chacune des parcelles de matiéere, si
petite soit-elle, possede la propriété d’attirer suivant la loi de
Newton d’autres parcelles analogues, a toutes les distances quel-
que petites que soient ces distances. Or ceci parait en contradic-
tion avec 'hypotheése de la constitution moléculaire de la matiere
et existence des forces intra-moléculaires.

Mais il y a plus. Dans le but de pouvoir traiter commodément
Iintégrale V, on fait d’autres hypothéses sur la répartition des
masses a l'intérieur du corps K. On admet en général la conti-
nuité et la dérivabilité de la fonction qui mesure la masse, de
maniere a assurer U'existence de la densité. On sait que la densité
en un point N du corps est la limite de la densité moyenne d'un
élément de volume entourant le point N, lorsque cet élément de
volume s’évanouit en ce point. La densité au point N est ainsi

Am dm e ~
AIQT()(AK) = R Am désignant la masse contenue dans
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I'élément de volume AK. En introduisant dans l'intégrale V cette
odK

/. ro

. KX

On peut se demander si, dans ces conditions, le potentiel ne
perd pas sa signification physique ou si, tout au moins, V repré-
sente avec une approximation suffisante I'action réelle du corps K.

Avant d’aller plus loin, il faut remarquer que les physiciens
n’ont pas les mémes idées sur la constitution de la matiere. Les
avis oscillent entre ces deux conceptions extrémes: une matiere
continue au sens exact du mot, et une matiere formée de corpus-
cules trés petits isolés les uns des autres, les molécules. L’opinion
la plus généralement admise aujourd’hui est intermédiaire. Je
rappelle seulement, a ce propos, la superbe conférence dans
laquelle M. le professeur P. Weiss! nous montrait 'atome comme
un complexe encore peu connu de particules de nature tres diffé-
rente, parmi lesquelles on distinguait les particules a, les élec-
trons et les magnétons.

L.es mathématiciens, comme le fait remarquer M. I'. Kreix dans
son cours de Calcul différentiel et intégral avec applications a la
géométrie (autogr., Leipzig 1902), n'ont pas a décider laquelle de
ces hypothéses renferme la plus grande part de vérité. Leur role
est de montrer jusqu’a quel point ces différentes hypotheses peu-
vent conduire aux mémes résultats. Et c’est Ja, dit-il, I'un des
grands probléemes de ce qu’il appelle la « mathématique des
approximations. »

k. Approximation des potentiels physiques par des intégrales
définies. C'est dans cet ordre d’idées que se place J. G. Learuey,
dans sa brochure « Volume and Surface integrals used in physics »
(Cambridge 1905). Il admet la constitution moléculaire de la ma-
tiere et, exagérant volontairement son point de vue, considere un
corps comme une agglomération de corpuscules extrémement
petits séparés les uns des autres par des espaces vides. Non seule-
ment cette matiere ne peut étre subdivisée a I'infini, mais il existe
un dernier degré de subdivision au dela duquel les parcelles de
matiere n’ont plus la propriété d’attirer d’apres la loi de Newton.
Il appelle particules les plus petites parcelles possédant cette
propriété. Rien n'empéche de se figurer ces particules comme
étant du méme ordre de grandeur que les molécules. Le potentiel

fonction g, le potentiel prend la forme habituelle V —

. m ‘
se présente alors sous la forme d’une somme, 2—; , que l'auteur

de

.
v

veut représenter approximativement par l’intégrale/' L’éva-
. K
luation de cette approximation ou, si 'on veut, examen de la

1 Société helvétique des sciences naturelles, session d’Altdorf 1912.
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(uestion si les deux hypotheses de la continuité et de la disconti-
nuité de la matiere-conduisent approximativement au méme résul-
tat, fait l'objet du premier chapitre de la brochure.

Dans ce but, il doit tout d’abord définir la densité ¢ et veut
s’arranger de maniere que cette fonction soit en général continue.
Il introduit pour cela la notion de petitesse physique (physical
smallness). Un corps, par exemple, sera considéré comme physi-
quement tres petit lorsqu’il sera imperceptible a nos sens, mais
non pas tel qu’il doive étre considéré comme ayant les propriétés
physiques d’une molécule; il doit au contraire renfermer un
grand nombre de molécules. On estime qu’un gaz, a pression et
température normales, renferme 4 >< 10'® molécules par cm®. Un
cube dont le coté serait égal a la longueur d’onde de la lumiére
de sodium, soit 6 > 10~® em., renfermerait encore 8,000,000 de
ces molécules. Si l'on considére 8 millions comme un grand
nombre, on pourrait prendre cette longueur d’onde comme spé-
cimen de petitesse physique et désigner son ordre de grandeur
par &. La densité en un point N du corps est alors définie comme
la densité moyenne d’une partie de ce corps entourant N et dont
toutes les dimensions sont de l'ordre «.

Dans cette hypothése, I.eathem cherche 'ordre de grandeur de

m odK
la différence entre 2 et /—— et il arrive a la conclusion que

K
cet ordre est ¢; tandis que l'ordre de grandeur de la différence

entre les composantes des attractions correspondant a ces poten-
tiels est ¢ log ¢ << 1/ ¢ . La question posée plus haut peut donc étre
considérée comme aflirmativement résolue. Il faut ('ependant
remarquer que la définition de la densité est quelque peu impreé-
cise ; auteur ne s’en défend pas; il s’adresse a des étudiants en
phySIque et n'a pas lintention d’entrer dans des discussions
mathématiques délicates. Ainsi, il ne fait que rendre plausible
la continuité qu’il attribue a la fonction g.

5. Comportement des potentiels en dehors des masses attirantes.

Considérons maintenant les potentiels mathématiques exprimés

< s , »odK
par des intégrales de la forme :/ g

K
masses. Celles-ci peuvent étre distribuées dans un volume, sur

‘une surface ou une ligne, ou encore en des points isolés. On
obtiendra, suivant les cas, des potentiels de corps, de surface, de
ligne ou de points. Nous considérerons aussi les potentiels de
double couche qu’il est superflu de définir ici. Si le point potentié
P se trouve a une distance finie de toute masse potentiante, la
distance  ne devient jamais infiniment petite et, pourvu que la
densité ¢ soit une fonction intégrable, l'intégrale V existe et
représente une fonction des coordonnées du point P.

s’étendant a certaines
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Poincart ! a démontré directement que ce potentiel V est déve-
loppable aux environs d’un point (a, b, ¢), exterlieur aux masses po-

\‘ "\\ .
tentiantes, en une série entiere EAagY('L’ — a)*ly — bz — )7 ;
cette série converge absolument dans les environs du point {a, b c)

sous la seule condition que /‘I 0| dK existe.
‘ K
Un potentiel a, par suite, des dérivées de tous ordres, que l'on

obtient en derlvant sous le signe somme. Les dérivées premiéres

satisfont a la relation suivante: Soit s une dlrectlon donnée par
. : d d

ses cosinus directeurs o, 8, y ; soit e ~ + p’ v 5o, et

désignons par X; la composante, suivant la chrectmn S, de I'attrac-

tion qu’exerce le corps sur la masse 4 1 située en P, on a

I

XS

' ¢
. Y )
) K

LLes dérivées secondes satisfont a I’équation de lLaplace

Y *V >*V
X

(2) AV

Ces propriétés appartiennent a tous les potentiels mentionnés,
dans ’hypothese que le point P est a une distance finie des masses
potentiantes.

Dans tout ceci la densité g n’a joué qu'un role tres effacé, elle
aura sa revanche tout a ’heure. Mais auparavant, je voudrais
signaler une question intéressante examinée récemment par
VIM Pizerri et Lauricerra 2. Supposons que 'on donne le volume
occupé par un corps et I'action externe du corps, c’est-a-dire son
potentiel extérieur, quelle est la répartition des masses a 'inté-
rieur du corps? Ainsi formulé, le probleme a une infinité de
solutions et on peut se demander quel est le degré d’indétermi-
nation de la densité g (¢ est supposée continue et dérivable deux
fois)? Lauricella arrive a la conclusion que 4o est completement
arbitraire. En d’autres termes, flx, y, z) désignant une fonc-
tion arbitrairement choisie a I'intérienr du corps, on peut poser
Ao = flryz); il existe alors une fowction g, satisfaisant a cette

dK
équation différentielle, telle que le potentlel f— soit, a lexté-

rieur du corps, identique au potentiel plescmt. LCette question est

1 Acta mathematica, 22 (1898) p. 89. .
2 P. Pizrrmi, Atti della R. Acc. Lincei (5) 18, 1er sem., p. 211; Annali di Mat. 17 (1910),
P- 225. — G. LAURIGRLLA, Aiti della R. Acc. Lincei {5) 20, ler sem., p- 9.
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née de I'étude de la répartition des masses a 'intérieur du géoide,
dont 'action externe est assez bien connue.

6. Potentiel d’un corps par rapport a un point intérieur. Quand
le point P est a I'intérieur du domaine K occupé par les masses
potentiantes, la distance r devient nulle dans le champ d’intégra-
tion, savoir au point P; la fonction sous le signe somme, dans les
intégrales qui expriment V et ses dérivées, devient infinie en ce
point. Ces intégrales, comme l'a fait remarquer Gauss, n’ont plus
de sens, & moins d’étre définies a nouveau, soit généralisées. Pour
cela, on entoure le point P d’une surface ¢, limite d'un certain
volume 7 ; 'intégrale a généraliser est alors étendue au domaine
K — 7. Puis on modifie la surface ¢ de maniére que toutes ses
dimensions deviennent infiniment pectites et qu’elle s’évanouisse
au point P. SiV'intégrale étendue au domaine K — 7 tend vers une
limite finie lorsque ¢ s’évanouit en P, elle est dite conyergente,
et cette limite est prise comme valeur de l'intégrale généralisée ;
si, au contraire, la limite n’existe pas ou est infinie, I'intégrale est
dite divergente; la généralisation proposée n’a pas de sens. La
convergence est de deux sortes : lorsque ’existence et la valeur de
la limite sont indépendantes de la succession des formes prises
par la surface o en s’évanouissanten P, l'intégrale est dite absolu-
ment conyergente, dans le cas contraire, semi-conyergente.

Revenons au potentiel. On démontre aisément la convergence
absolue de l'intégrale V pour tous les points intérieurs, puis sa
continuité, en montrant que V posseéde des dérivées premieres.
L.e potentiel d’un corps est ainsi continu dans tout l'espace et y
posséde des dérivées premieéres.

Ces dérivées premieres peuvent-elles étre obtenues, comme
dans le cas des points extérieurs, en dérivant sous le signe
somme

L.a réponse est affirmative. Pour le démontrer et étendre ainsi
aux points intérieurs la relation (1), il faut, 1°, non seulement
établir I'existence de la dérivée ?& , mais encore celle de l'inté-
grale Xy, puis 2°, montrer l'égalité de ces deux limites.

Gauss et, a sa suite, Diricurer et Riemany se contentent d’établir
I’existence de X;. On compléterait la démonstration en établissant
le théoréeme suivant, que démontre J.-G. Lraruen?! dans les cas
intéressant la théorie du potentiel et sous la condition que ¢ soit
dérivable : [La dérivée d'une intégrale généralisée, au point P o1
la fonction a intégrer devient infinie, s’obtient en dérivant sous le
signe somme, a la condition que l'intégrale primitive et celle
obtenue aprés la dérivation soient convergentes.

La premiere démonstration satisfaisante de 1’égalité (1) est due

1 Loc. cit. p. 23.
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a M. Bouoguer!; elle est valable sans autre condition pour ¢ que
celle de I'intégrabilité.

Equation de Poisson. Considérons maintenant les dérivées
secondes. Porssox remarqua le premier (1813) que I'équation de
lLaplace n’est plus vérifiée lorsque P appartient aux masses poten-
tiantes et qu’elle devait étre remplacée par la suivante :

%V 0tV oV
dact

(3)

/ ) S —
= — 4rg ou AV = — 4no

o étant la valeur de la densité an point P. Cette équation est dite
Véquation de Poisson. Etablir Uexistence des déripées secondes,
puis Uéquation de Poisson, est le probleme capital de cette théorie.

lei la densité g est au premier plan, les progres sont marqués
par des hypothéses de moins en moins restrictives concernant
cette fonction. Nous pouvons distinguer quatre périodes, suivant
les hypothéses dans lesquelles 'équation de Poisson a été établie :

L période : ¢ constant Poissox (1813).

)me » o dérivable (analytique] Gauss (1840), (K. Schmidt!.
3me » o continue Hovper {1882), MorEra.
fyme » o intégrable H. Pérrint (1899).

I*® période. Poisson, non seulement démontra I’équation qui
porte son nom dans le cas des corps homogenes, mais il donna
de ce théoréeme, dans le cas général, trois démonstrations diffé-
rentes. Ces démonstrations doivent étre aujourd’hui considérées
comme insuffisantes, Poisson admettant implicitement 1’existence
de 4V et se bornant i calculer la valeur de cette expression. La
méme observation s’adresse aux démonstrations de O. Rodrigues,
Ostrogradsky, Sturm, Pagani

2me période. — est a Gauss? qu'est due la premiére démons-
tration satisfaisante de lequatlon de Poisson . Cet auteur admet
que ¢ posséde des dérivées premieéres finies; mais, comme il le
fait remarquer, sa démonstration n’exige que la dérivabilité
(Gauss dit la continuité), de ¢ le long de chacun des rayons vec-

teurs partant du point P. Gauss établit 'existence et la continuité
02V e

des dérivées 5.7 0 ete., a I'intérieur du corps, leur absence de
signification a la survface, les discontinuités qu’elles éprouvent
lorsqu’on passe de l'intérieur a I'extérieur du corps et déduit de
ces résultats I’équation de Poisson. Il s’éléve contre I'idée émise
par Poisson, Ostrogradsky et Pagani de poser 4V == 29 pour les
points de la surface, car 4V n’y a pas de sens précis.

! Publiée par Brior, Théorie mécanique de la chaleur ; Picarp, Traité &’Analyse, 1, p. 165.

2 Une traduction fran¢aise du célébre méntoire de Gauss se trouve dans le Journal de
Liouville, 7 (1842).
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La démonstration de Gauss fut reprise et modifiée par DiricHLET
et des lors les démonstrations du théoreme de Poisson se font de |
plus en plus nombreuses.

Le point de vue de Gauss (¢ dérivable) est naturellement celui
de presque tous les traités de la théorie du potentiel. On le re-
trouve méme dans certains travaux modernes : E. Scamipr !, sui-
vant les traces de H. Bruns %, considere la densité p et le potentiel
comme des fonctions analytiques et raméne la question d’exis- “
tence des dérivées au théoréme d’existence des solutions analyti-
ques des équations aux dérivées partielles.

11 faut encore citer la démonstration donnée par Kroxecker
dans le Journal de Crelle de 1869, quoique cette démonstration
soit incompleéte, Kronecker se voyant obligé a admettre 1'existence
des dérivées secondes. Pour la premiére fois, semble-t-il, on aban-
donne l'idée de ¢ dérivable et propose comme idéal de soumettre
o aux conditions les moins restrictives possibles. De plus, Kro-
necker fait voir que la difficulté de la démonstration provient de
Phypothese du point matériel que 'on suppose placé au point P.
I1 remplace ce dernier, par exemple par une petite sphere homo-
gene, et établit facilement, pour laction réciproque des deux
corps, un théoréme correspondant a celui de Poisson. En faisant
tendre la sphere vers un point matériel, il obtient le théoreme de
Poisson ; c’est ce passage a la limite qui est la partie difficile de
le démonstration et oblige Kronecker aux restrictions indiquées.

ame période. L.es progres de la théorie des fonctions vont per-
mettre un nouvel avancement de la solution du probleme. Dans
sa dissertation, présentée a 'Université de Tubingue en 1882,
O. Hovver reprend I'étude de 'existence des potentiels et de leurs
dérivées en considérant la densité ¢ comme intégrable. Mais
I'étude des dérivées secondes est faite en exigeant que la fonction
o satisfasse, dans les environs du point P (x, y, z), a la condition

O —ela, v, 2| < Ak

(%) o1k, 7, (

A et 1 étant deux constantes positives, A < 1. Cela revient a con-
sidérer ¢ comme continu au point P, avec encore une certaine

O?\f
. . . ’ .
restriction. Holder trouve alors pour e I'expression
1
T D? -
0%V i /‘ r IK 4
; = lim [ ¢. ~dK — — 7o
ox? a0 ¢ ' 0 3 P

(KI-({R)

dans laquelle g, est la densité au point P, (K} désigne le domaine

! Mathematische Annalen, 68 (1909) p. 107,
2 Dissertation, Berlin 1871.
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oceupé par le corps, (R) une sphére de rayon R et de centre P. De
ces résultats découle I’équation de Poisson. '

Pour assurer ka continuité de ces dérivées, Uauteur doit modifier
un peu la condition (4) et exiger que

| ‘O(x/’ j"’, :11) e ‘O(ll,f”, )‘”’ ;//) l < A’,)\ ,
(@, ¢y, 3') et (¢, y", z") étant deux points quelconques des envi-
rons de P.

Les résultats de Holder ont été retrouvés et quelque peu étendus
par G. Morera !, dans un travail admirable de clarté et de simpli-
cité. Morera commence par distinguer la convergence absolue et
la semi-convergence, puis montre que U'intégrale figurant dans la
formule de Holder est semi-convergente. Il obtient la formule

0x” on

' 1
0*V D<i> ok 62<7)
= [ ot 5, 98 +kf(p—po>w—_2—-dK,

S

dans laquelle U'intégrale de volume est absolument convergente,
grice & la présence du facteur ¢ — g,; S désigne la surface qui
limite le corps K et . la dérivée suivant la normale a cette sur-
face. Les hypothéses faites sont: 1° la densité ¢ est finie au point
-
P, 0p == 0, ; 2° 0 est intégrable; 3° l'intégrale f‘o—j‘o—”d?" est finie
0
et déterminée le long de chacun des rayons vecteurs partant de
P(r = 0). Cette derniere condition entraine la continuité de ¢ au
point P et méme la restreint. En remplacant l'intégrale absolu-
ment convergente par d’autres semi-convergentes, Morera retrouve
les résultats de Holder.

4me période. La solution compléte du probléeme de Poisson est
due a Henrik Piérrint. Dans un mémoire tres étendu, paru en 1908
dans les Acta mathematica, cet auteur rassemble et complete les
résultats qu’il avait publiés des 1899 dans divers périodiques
suédois. .

M. Pétrini ne soumet tout d’abord la fonction ¢ & aucune autre
condition que celle de l'intégrabilité et il obtient des condi-
tions nécessaires et suffisantes pour 1'existence des dérivées
secondes du potentiel. Il est ensuite obligé d’ajouter a la condi-
tion d’intégrabilité de g, celle de continuité le long de chacun
des rayons vecteurs partant du point P : si aulieu de coordonnées
rectangulaires, on introduit des coordonnées polaires 7, 6, ¥ ct

L Rendiconti d. Instituto Lombardo (2) 20 (1887), p- 302, 543,

“
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poser =ht, u =cos§, la densité ¢ doit étre telle que lim g (ht, 8. v
h=0
existe et soit égale a une fonction o(«, w' intégrable le long de
chacun des rayons vecteurs issus de P. La condition nécessaire
s _a .., OV
et suffisante de I'existence de la dérivée 2 par exemple, est alors
: QX" ’

la convergence pour 42 = 0 de l'intégrale

ey
(a) o —
(5) ) K]z = / o : -dK

. D

dans laquelle (%) et (a' sont des sphéres de centre P et de rayons
h et a, a étant une constante.
2V VY
\S,;'f’ 52# o2
assurée, 4\ se présente sous la forme d'une intégrale de surface
qui devient égale a — 4mg lorsqu’on suppose ¢ continue au
point P. L’équation de Poisson, 4V = — 4mp, est ainsi établie
dans le cas ol ¢ est continue et sous condition de convergence de
trois intégrales analogues a (5:. En spécialisant, Pétrini retrouve
les résultats de Morera, Holder et Gauss.

La continuité de o ne suffit pas a assurer l'existence des dérivées
secondes. M. Pétrini donne comme exemple d’'une densité con-

. . , 0w ’ De\'
tinue dans tout l'espace et pour laquelle les dérivées -, , ete.,
O

[L'existence des dérivées secondes une fois

n’existent pas au point P [z, y, 5}, la fonction

(6) B = = — = (= 3t

I.e laplacien 4V du potentiel correspondant n’existe pas non plus
et I'équation de Poisson est en défaut. Mais si I'on généralise
cette équation en définissant 4V comme suit :

) /\'l; ] 8 \,()!".:.
(7) A\':lim [:i((\(r_(_ 1, ) )._L\(l 0, ))
h1=0 721 ox DX
ho=—1)
hg=0
+1 oVix, » + hy, 2} dVia, ”, =) 4 1 /oVir, _T,-: + hy) D\'{(zr,_y, 7))
hg N 0 R, - Ny

les quantités 4, 4,, &, tendant vers zéro de maniere que

h.
lim (#) — ¢,;, = constante = 0 , i, k=12 3,
A. -
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alors, on a la relation

AV — — 4=

sl

“

Ce fait se présente chaque fois quand la densité ¢ est continue,
V'V Y

;. .
-— — -—s n existeralent pas
dat’? 9y’ gt P

alors méme que les dérivées

isolément.

Dans le cas général, ou ¢ est soumis aux deux seules conditions
d’intégrabilité et de continuité le long des rayons issus de P,
Iexpression AV, (7), existe towjours, mais on a l’équation de Poisson
geénéralisce

(8) ﬁ::——ér.p—f—@,

f représentant une fonction dont l'intégrale est nulle dans n’im-
porte quelle partie du domaine d’intégration; cette fonction 6

dépend de la formation de l'expression AV, c’est-a-dire des
constantes ¢, . Réciproquement 1'équation 4V = — 4mg n’a en
général pas de solution. Mais il existe une et une seule fonction #

a intégrale nulle, telle que I'équation de Poisson généralisée (8

odk ., . .
— -+ U, U désignant une fonction

ait une solution, savoir V:f
K
harmonique quelconque.
En résumé, dans le cas général, avec les deux conditions impo-
sées a g, les dérivées secondes satisfont a I'équation de Poisson
généralisée, (8). Lorsque, de plus, ¢ est continue sans restriction,

on est certain d’avoir la relation 4V = — 4w, mais non encore
I'équation de Poisson ordinaire. Pour étre assuré de I'existence
de cette derniere, il faut restreindre la continuité par ’'adjonction
d’une condition analogue a celles de Holder ou de Morera.

8. Dérivées secondes dans des directions quelconques. Pétrini

9

. ’ 1 ’ . , b V . ,
fait une étude complete des dérivées Yo Considérons deux
051059 -

éléments rectilignes, ds, et ds,, partant du point P et allant dans
des directions déterminées; désignons par P, et P, leurs extré-

. ’ GV’ . ’ b ’ . . ’ .
mités. Nous savons que 55, existe toujours. Pétrini définit
St .
'V .
(9) —— = lim

1 /DV) Y Z
ds, (_5’51/ P, 081 / S

et cherche les conditions nécessaires et suffisantes a existence

.. . e o’V 'V .
de cette limite. En général, les dérivées sont diffé-
, bS]_ b32 . 652-651

rentes, l'auteur établit les conditions de leur égalité. Puis il

0S¢ 632 d32:0
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s'occupe de la continuité de ces dérivées quand la densité est
continue.

Le comportement de ces dérivées dans le voisinage de la sur-
face d'un corps est examiné tout d’abord dans le cas typique de
deux corps homogenes, de densités différentes g, et 9,, en contact
suivant une surface 2. Le cas, plus général, de densités continues
dans les deux corps se ramene, sous certaines conditions, au pré-
cédent et conduit alors aux mémes résultats.

Nous avons vu que Gauss n’attribuait aucun sens aux dérivées
secondes en un point de la surface 2. Au contraire, les dérivées
dans les directions ds, et ds,, définies par la formule (9}, ont sou-
vent une valeur parfaitement déterminée en un tel point P,. La
nature de la surface aux environs de ce point a sur cette détermi-
nation une certaine influence. M. Pétrini établit les conditions

o*V

RETTAC
lorsqu’il est conique ou de rebroussement. En un point conique,
la dérivée est en général infinie, sauf dans certaines directions
déterminées pour lesquelles elle est toujours finie. En un point
de rebroussement, la dérivée peut exister dans toutes les direc-
tions.

Pour établir la discontinuité lorsqu’on traverse la surface 2 au
point P, on doit considérer la limite de la dérivée au point I’
lorsque ce point s’approche du point P, en suivant un certain
chemin. Cette limite dépend en général du chemin suivi. Cepen-
dant, dans le cas de deux corps homogenes séparés par la sur-
face 2, supposée réguliere en P, si le chemin est entierement
situé dans l'un des corps et n'est pas tangent a la surface de
séparation en P,, la limite existe et ne dépend pas du chemin
parcouru ; elle ne dépend que du corps dans lequel s’est elfectué
le rapprochement. Nous avons alors trois quantités a considérer :

d’existence de lorsque le point P, est régulier, comme aussi

1o en P, ;
085108,
90 i !V 7 pour un déplacement 02V
Z m , . —_ —
e Dsibsz)p dans le corps de densité ¢, 081053 /4
3 I *V pour un déplacement oV
o 1m , - — |-
p=p, \0S1- 0z /p  dans le corps de densité g, 081053 /5
[Les limites 2° et 3° sont en général différentes, leur différence D
. C (. OV
est la discontinuité de la dérivée ., quand on traverse la surface
o1V 2

on trouve D =47 {9, — 0,) p, p,, p, et w, sont les cosinus des angles
(que font les directions ds,, ds, avec la normale a la surface en P,
La valeur 1° est égale a la valeur 2° ou a la valeur 3° suivant que
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I’élément ds, est situé dans le corps de densité g, ou dans Iautre.
o?Y
08108y

le chemin est situé dans le corps qui renferme 1'élément ds, .

9. Potentiels de simple couche. Les questions d’existence con-
cernant ces potentiels sont.analogues:a celles examinées a propos
des potentiels de corps et I'évolution des deux théories s’est faite
a peu pres parallelement.

La surface S qui porte la couche attirante doit étre une surface
A deux cotés que nous distinguons par les indices 1] et 2). Le
potentiel V = G—jlé , dans lequel ¢ désigne la densité super-

(3

S
dm

ficielle (o‘ = -3
convergente en tout point de la surface S et qui représente une
fonction continue dans tout l'espace, méme lorsqu’on franchit la
surface.

En d’autres termes, s'approche de sa valeur en P, lorsque

>, est, en général, une intégrale absolument

dS, valable
0s

1
. ol =
r . 1 .y . DX - ? r
Deérivées premieres. La relation — = X, = /o‘
[ (¥
S
en tout point de ’espace non situé sur S, n’a plus de sens en un
point P, de cette surface, l'intégrale du second membre étant

semi-convergente.

., OV . —
On définit — en un point P, de S comme nous avons défini.

2V

dans le puméro précédent, en un point de 2. Nous aurons

051083
. . « 7 a_ oV . ‘ .

aussi & considérer la limite de - en un point P, lorsque ce point
P s’approche de P,. L’existence de ces deux valeurs dépend,
1°, de la nature de la surface S aux environs du point P,; 2°, du
comportement de ¢ sur cette po’rtion de surface; 3°, la seconde
limite dépend en plus du chemin qu’a suivi P.

Dans certains cas, en particulier lorsque la surface possede un
plan tangent déterminé en P, et que ¢ est continue en ce point,

_ oV . .
la limite de 55, quand le chemin ne touche, ni ne traverse la

surface, ne dépend que du coté de la surface S auquel aboutit le

point P lorsqu’il arrive en P,. Comme dans le numéro précédent,
on a, dans ce cas, 3 valeurs a distinguer : Z;—\ en P, <§Y> et (D—\—> :
s 0s /4 08 /5
La différence entre ces deux derniéres est la discontinuité lorsqu’on
franchit la surface en P, .
Dans la premiére période de recherches, on considéra des sur-
faces analytiques réguliéres et une densité ¢ dérivable autant de
fois que cela était utile. Les dérivées normales attirent d’abord

k] 4 - . s ’ . . . ,
I'attention. Couroms (1788) avait déja remarqué leur discontinuité
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sous la forme suivante : 'attraction d’'une couche infiniment mince
sur deux points matériels situés de part et d’autre de la couche
est différente ; quand 'une des composantes normales est nulle,
I'autre est égale a 47 fois la densité au point correspondant de la
couche. Poissox (1811) apres avoir indiqué que la somme des
composantes normales est égale a 4me et que les composantes
tangentielles sont continues, énonce la loi de discontinuité d'une
composante quelconque ; il communique, en 1'étendant au cas
géneéral, une démonstration donnée par Laprace pourle cas parti-
culier d’une surface attirante de niveau et basée sur des considé-
rations physiques. [La premiére démonstration analytique est due
a Cavcny (1815). Greex (1828) énonca le premier le théorcme sous
sa forme actuelle en considérant le potentiel au lieu des attrac-
tions ; il déduit cette lol a 1'aide de sa formule de transformation
des intégrales multiples.

Clest a Gauss (1840) qu’est due la premiere analyse rigoureuse
de la question. Mettant en évidence les hypotheses concernant la

surface S (existence d’un plan tangent, courbure finie, infinie
: - , .oV
sous certaines conditions) Gauss montre que 'équation — = X;

’ 0s
n'a plus de sens en un point de la surface. Il établit, pour le

Ry o gy s ® _ Y oY
cas d’'une densité dérivable, 'existence des limites <T> et <\—>
0s /4 08 /,

. . . oV
et calcule la discontinuité de <=,
OS

Horver (1882) impose a la densité superficielle ¢ la condition (4
qu’il avait imposée a la densité d’un corps. Il représente la surface
par les équations w —= & (i, ¢), y = y (1, ¢), 5 = z (1, v} et prescrit
aux six dérivées premieres de ces fonctions une condition de
continuité analogue :

o3 J—
b/ (uy + 5, vy + 1) — ' (uy, vo) | < AT, =B + ¢,

A et w sont des constantes positives, u < 1; il a aussi une con-

dition spéciale pour le bord de la surface. Dans ces hypotheses,
. . . . C e oV .
il établit la loi des discontinuités de — , puis le comportement

oV

de cette dérivée dans les environs du bord de la surface : = devient
C

infinie logarithmiquement quand P s’approche indéfiniment de
. ' . . oV
ce bord, et il donne une expression asymptotique de =
- Qs
WeincarTen?, Morera?, Liarounorr? et d’autres apportent encore
certaines simplifications ou contributions. Mais ici aussi, c’est

H. Pérrint qui, dans les mémoires déja cités, parvient a élucider

Acta mathematica, 10 (1887), p. 303.
Loe. cit., p. 543.
Journal de Math. (6), 4 (1898), p. 241.

I N
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définitivement un grand nombre de questions. 1l libére la surface
S de 'obligation de posséder un plan tangent en utilisant les sur-
faces qu’il appelle physiquement régulieres. Une surface est dite
physiquement réguliére au point P,, lorsque les conditions sui-
vantes sont remplies :

1° Il doit exister une ligne a tangentes déterminées ne coupant
la surface qu'en P, et dont tous les points, non situés dans les
environs de P, , sont a une distance finie des autres points de la
surface.

2° 11 doit exister un plan = passant par P,, tel que toutes les
normales au plan, menées par les points de 7 situés dans les
environs de P, nerencontrent la surface qu’en un nombre fini de
points.

Un cylindre de révolution, dont ’axe passe par P, et est normal

au plan 7, détache de la surface S une portion S’. On peut se

Y . . 8 sdS
borner a considérer le potentiel de cette portion S', V! —= [ — .
. s’
3° Le plan 7 doit pouvoir étre choisi de fagon que V' puisse se

Sd(l) . . . 1 ’ s
mettre sous la forme | — , ou dw est la projection de I'élément

0l
dS, o' la projection de S', sur le plan 7, 0 ne devant jamais devenir
infini ou indéterminé.
e plan 7 rend le méme service qu'aux autres auteurs le plan
tangent.
Des résultats obtenus par Pétrini, nous ne citons, comme
exemple, que le suivant:

0

R

) : . (.o OV . 4 Y
Lorsqu’en un point P, de S la dérivée - existe, la limite de =

quand P s’approche de P; par un chemin non tangent & la surface

.
en Py, existe aussi. Cette limile est égale & la valeur de %} en P,
dans les deux cas suivants :

1o Si la dérivée est prise dans la direction de la tangente en P,
au chemin suivi par le point P ;

2° Si la fonction ¢ est continue en P et si la surface y a un plan
tangent déterminé. .

Dérivées secondes. Grren détermina, déja en 1828, la disconti-

;.o OV :
nuité de la dérivée 52 lorsque la surface qui porte la couche est.
en méme temps surface de niveau. P. Pacr étendit les résultats
de Green au cas d’une distribution superficielle générale. Le
comportement desautres dérivées secondes, trouvé par Carl Neu-
MANN, fut justifié par Brirrami et Horw, puis récemment par
Porncari?, Korn? et T. J. 'A. Bromwich 2.

! Théorie du Potentiel newtonien, Paris 1899, p- 232.
% Lehrbuch der Potentialtheorie I, Berlin 1899, p. 49.
8 Arkiv der Math. w. Physik (3) 2 (1902), p. 295.
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H. Pétrini, dans son grand travail des Acta mathematica, reprend
I’étude de ces dérivées en lui donnant 'ampleur avec laquelle il
avait traité les autres questions. En particularisant ses résultats,
il retrouve ceux de Poincaré.

Dérivées troisiemes. Je ne connais aucun Lravail s’occupant des
dérivées troisicmes des potentiels de corps.

Celles des potentiels de surface — dans le cas ou la surface
attirante est en méme temps surface de niveau — ont été consi-
dérées par . Pacr?, mais cet auteur considere sa méthode comme
ne pouvant pas s’appliquer au cas général. '

Tout, ou a peu prés, reste a faire dans ce domaine.

10. Potentiels de ligne. 1.’étude de ces potentiels est relative-
ment peu avancée. Quant aux hypothéses faites, soit sur la nature
des lignes, soit sur la densité, on en est encore au point de vue
de Gauss.

On sait depuis longtemps qu’un tel potentiel devient infini
lorsque le point potentié s’approche indéfiniment de la ligne
attirante. Poincari 2, dans I’hypothese d’'une densité et d’une ligne
analytiques, donna du potentiel V de cette ligne une expression
asymptotique V(@ telle que V — V!9 est holomorphe dans les
environs de la ligne attirante. 1l trouva Vi@l = U log R, ou U et R
sont aussi des fonctions holomorphes des coordonnées du point
potentié P. [l semble que ces résultats aient échappé a plusieurs
auteurs : Levi-Crvrra® et Vitersr * obtiennent plus tard des expres-
sions asymptotiques moins parfaites, mais plus maniables et
établies dans des conditions un peu plus générales; A. Tovxoro?,
voulant perfectionner leurs résultats et s'inspirant du travail déja
cité de E. Schmidt, retrouve tout récemment les résultats de
Poincaré par une méthode completement différente. Prenant
comme point de départ les expressions de Levi-Civita et de
Viterbi, M. Ouivo® établit des expressions asymptotiques soit des
potentiels de simple et de double couche dans les environs de la
surface attirante et de son bord, soit des potentiels de corps dans
le voisinage d’un point régulier ou singulier de la surface.

11. Potentiels de double couche. Ces potentiels s’expriment par
des dérivées premieres de potentiels de simple couche et I'étude
de leur dérivées premiceres se ramene a celles des dérivées secondes
des poteatiels de simple couche (voir Poixcarg, Potentiel newto-
nien, p. 218). Les problemes sont donc analogues a ceux que nous
avons déja examinés.

Rendiconti del Circolo mat. di Palermo, 8 (1894), p. 33.

Acta mathematica, 22 (1898), Théoréme 9.

Atti della R. Acc. Lincei (Rendiconti), (5) 17, 2me sem., (1908), p. 3. 413, 535.
Rendiconti Istituto Lombardo (2) 42 (1909), p. 913.

Math. Annalen, 72 (1912), p. 78.

Atti Istituto Veneto, 69 (1909-10), p. 519-546.
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Remarquons que, contre toute attente, les dérivées premieéres
normales des potentiels de double couche sont en général conti-
nues ; cette propriété, due a HeLmuortz, a été démontrée dans des
cas tres généraux par Liarouworr?; elle est aussi 'objet d'une
étuade approfondie de H. PiTrint. Quant aux dérivées secondes,
leurs discontinuités sont établies par A. Korx?, dans des cas
assez étendus.

12. Potentiels de masses non dérivables. Indiquons encore une
_extension de la notion de potentiel due a J. PLEMELS °.

Admettre I'existence d’une densité, c’est restreindre beaucoup
le mode de répartition des masses attirantes et particulariser
d’'une facon peut-étre excessive la notion de potentiel. On peut
trés bien concevoir une répartition de masses n’admettant pas de
densité et M. Plemelj en revient a exprimer les potentiels corres-
pondants sous la forme de Lagrange dTm ; seulement cette
intégrale doit étre prise dans un sens analogue a celui donné par
StieLtsEs * aux intégrales de fonctions d’une variable.

1l s’agira done, apres avoir étendu aux intégrales multiples la
notion d’intégrales de Stieltjes®, d’aborder I’étude de ces potentiels
tres généraux dont les propriétés seront assez différentes de celles
des potentiels classiques. En particulier, il ne faudra plus compter
sur ’existence de leurs dérivées en des points appartenant aux
masses potentiantes. Aussi M. Plemelj développe-t-il une notion
destinée a remplacer, pour les potentiels de simple et de double
couche, les dérivées normales en un point de la surface attirante.

Cette notion permettra une extension des formules de Green et
les nouveaux potentiels deviendront des instruments beaucoup
plus puissants que les anciens, a I'aide desquels il sera possible
de résoudre les problemes aux limites dans des cas plus généraux
que jusqu’ici.

Il semblait intéressant de terminer cette revue en signalant une
innovation qui fait prévoir de prochaines découvertes dans la
théorie du potentiel.

C. Jaccorrer (Lausanne).

Y Journal de mathématiques (6) 4 (1898), p. 241.

* Lehrbuch der Potentialtheorie, Berlin 1899, I, p. 51.

3 Preisschriften der fiurstlich Jablonowskischen Gesellschaft, 40, 1911,
4 Annales de la Faculté des Sciences de Toulouse (1) 8 (1894), ne 10.

5 Cette extension a ¢té donnée par M. Fri:cuir, Nouvelles Annales de Mathématiques (4), 10
(1910), p. 241-236.

L’Enseignement mathém., 15¢ année ; 1913, 21
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