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SUR L'EXISTENCE DES POTENTIELS
ET DE LEURS DÉRIVÉES3

1. Introduction. La théorie du potentiel peut être subdivisée en
deux parties qui se rattachent, l'une à la théorie des intégrales
définies, l'autre à la théorie des équations aux dérivées partielles ;

les potentiels sont, en effet, certaines intégrales définies multiples

qui ont la propriété de satisfaire aux équations de Laplace
ou de Poisson.

Dans la théorie de ces équations différentielles, la démonstration

de l'existence, dans un domaine donné, de solutions
soumises à certaines conditions aux limites du domaine constitue un
premier pas vers la solution des problèmes d'intégration
(problèmes de Dirichlet et de Neumann, par exemple). Quelque vif
que soit aujourd'hui l'intérêt qui s'attache à ces questions, ce
n'est pas d'elles qu'il s'agit dans cette conférence.

Si l'on se place au point de vue de la théorie des intégrales
définies, les fonctions sous le signe somme, dans les intégrales
qui expriment les potentiels et leurs dérivées, sont souvent infinies

dans le domaine d'intégration ; on se trouve en présence
d'intégrales généralisées (ou impropres) dont il s'agit d'établir la
convergence, ou si l'on veut Y existence, en même temps qu'indiquer

les limites dans lesquelles elles vérifient les équations
différentielles mentionnées. Je voudrais passer en revue les principaux
problèmes qui se présentent dans cette théorie et noter l'état
actuel de leur solution, sans viser à être complet2.

2. Définition. Considérons l'attraction newtonienne exercée sur
une masse ponctuelle M par plusieurs autres m. Lagrange a

remarqué le premier (1773) que les composantes de l'attraction,
X, Y, Z, suivant les axes d'un système de coordonnées rectangulaires,

sont les dérivées partielles — # — — d'une même
Ö5C ÖJ ÖZ

1 Conférence faite par M. Ch. Jaccottiît (Lausanne) cà la réunion delà Société mathématique
suisse, le 9 mars 1913, à Neuchâtel.

2 Les compléments et la bibliographie du sujet seront donnés dans l'article que prépare
l'auteur pour VEncyclopédie des sciences mathématiques pures et appliquées, édition
française, tome II, vol. 4, 24.
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fonction S2 des coordonnées du point P (.z-, y, z), où est située la

masse M. La fonction S2 a pour valeur 12 la somme
{m) rm

s'étendant à toutes les masses m, rm désignant la distance de la
masse m considérée à la masse M

Pour exprimer l'action exercée sur une masse ponctuelle M par
un corps continu K, Lagrange suppose ce corps décomposé en
masses élémentaires dm et fait la somme de toutes les actions
élémentaires. Les composantes de l'action totale sont encore les
dérivées partielles d'une fonction 22 (x, y, z)>

Q=ff-U-d"l=f.U ,fdZ-
K K

r désigne la distance de l'élément dm au point potentiè P (x, y, z),
siège de la masse M ; f est un facteur constant dépendant du choix
des unités, qui peut être pris égal à 1. Si, de plus, nous faisons

M + 1, nous avons 12 — Y — f~p • C'est à cette fonction Y
K

que Green a donné le nom de fonction potentielle et Gauss celui
de potentiel du corps K par rapport au point potentié P. La fonction

V a ainsi la signification suivante : X ~ — Y — —° d.r Oy

Z — — sont les composantes de l'attraction exercée par le corps
K sur la masse -f- 1 située en P (x, y, z).

3. Hypotheses physiques. Le fait de considérer l'action totale
comme la somme des actions élémentaires et d'exprimer le potentiel

par une intégrale implique l'hypothèse que la matière est
divisible à l'infini et que chacune des parcelles de matière, si
petite soit-elle, possède la propriété d'attirer suivant la loi de
Newton d'autres parcelles analogues-, à toutes les distances quelque

petites que soient ces distances. Or ceci paraît en contradiction

avec l'hypothèse delà constitution moléculaire de la matière
et l'existence des forces intra-moléculaires.

Mais il y a plus. Dans le but de pouvoir traiter commodément
l'intégrale Y, on fait d'autres hypothèses sur la répartition des
masses à l'intérieur du corps K. On admet en général la continuité

et la dérivabilité cle la fonction qui mesure la masse, de
manière à assurer l'existence de la densité. On sait que la densité
en un point N du corps est la limite de la densité moyenne d'un
élément de volume entourant le point N, lorsque cet élément de
volume s'évanouit en ce point. La densité au point N est ainsi

q zr lim — 2k ' ^/n dési&nant niasse contenue dans
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l'élément de volume AK. En introduisant dans l'intégrale \ cette
rpdK

fonction ç>, le potentiel prend la forme habituelle V j L-g~
K

On peut se demander si, dans ces conditions, le potentiel ne

perd pas sa signification physique ou si, tout au moins, \ représente

avec une approximation suffisante l'action réelle du corps K.
Avant d'aller plus loin, il faut remarquer que les physiciens

n'ont pas les mêmes idées sur la constitution de la matière. Les
avis oscillent entre ces deux conceptions extrêmes : une matière
continue au sens exact du mot, et une matière formée de corpuscules

très petits isolés les uns des autres, les molécules. L opinion
la plus généralement admise aujourd'hui est intermédiaire. Je

rappelle seulement, à ce propos, la superbe conférence dans

laquelle M. le professeur P. Weiss1 nous montrait l'atome comme
un complexe encore peu connu de particules de nature très
différente, parmi lesquelles on distinguait les particules a, les
électrons et les magnétons.

Les mathématiciens, comme le fait remarquer M. F. Klein dans
son cours de Calcul différentiel et intégral avec applications à la
géométrie (autogr., Leipzig 1902)! n'ont pas à décider laquelle de
ces hypothèses renferme la plus grande part de vérité. Leur rôle
est de montrer jusqu'à quel point ces différentes hypothèses peuvent

conduire aux mêmes résultats. Et c'est là, dit-il, l'un des

grands problèmes de ce qu'il appelle la a mathématique des

approximations. »

4. Approximation des potentiels physiques par des intégrales
définies. C'est dans cet ordre d'idées que se place J. G. Leatiiem,
dans sa brochure « Volume and Surface integrals used in physics »

(Cambridge 1905). Il admet la constitution moléculaire de la
matière et, exagérant volontairement son point de vue, considère un
corps comme une agglomération de corpuscules extrêmement
petits séparés les uns des autres par des espaces vides. Non seulement

cette matière ne peut être subdivisée à l'infini, mais il existe
un dernier degré de subdivision au delà duquel les parcelles de
matière n'ont plus la propriété d'attirer d'après la loi de Newton.
11 appelle particules les plus petites parcelles possédant cette
propriété. Rien n'empêche de se figurer ces particules comme
étant du même ordre de grandeur que les molécules. Le potentiel
se présente alors sous la forme d'une somme, 2 que l'auteur

veut représenter approximativement par l'intégrale Ç. Leva¬
it

luation de cette approximation on, si l'on veut, l'examen de la

1 Société helvétique des sciences naturelles, session d'Altdorl' 1912.
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question si les deux hypothèses de la continuité et de la discontinuité

de la matière conduisent approximativement au même résultat,

fait l'objet du premier chapitre de la brochure.
Dans ce but, il doit tout d'abord définir la densité q et veut

s'arranger de manière que cette fonction soit en général continue.
Il introduit pour cela la notion de petitesse physique (physical
smallness). Un corps, par exemple, sera considéré comme
physiquement très petit lorsqu'il sera imperceptible à nos sens, mais
non pas tel qu'il doive être considéré comme ayant les propriétés
physiques d'une molécule ; il doit au contraire renfermer un
grand nombre de molécules. On estime qu'un gaz, à pression et
température normales, renferme 4 X 1019 molécules par cm3. Un
cube dont le côté serait égal à la longueur d'onde de la lumière
de sodium, soit 6 X 10~5 cm., renfermerait encore 8,000,000 de
ces molécules. Si l'on considère 8 millions comme un grand
nombre, on pourrait prendre cette longueur d'onde comme
spécimen de petitesse physique et désigner son ordre de grandeur
par s. La densité en un point N du corps est alors définie comme
la densité moyenne d'une partie de ce corps entourant N et dont
toutes les dimensions sont de l'ordre s.

Dans cette hypothèse, Leathern cherche l'ordre de grandeur de

la difference entre et f —- et il arrive à la conclusion que
K

cet ordre est f ; tandis que l'ordre de grandeur de la difference
entre les composantes des attractions correspondant à ces potentiels

est s log f < f { question posée plus haut peut donc être
considérée comme affirmativement résolue. Il faut cependant
remarquer que la définition de la densité est quelque peu imprécise

; l'auteur ne s'en défend pas ; il s'adresse à des étudiants en
physique et n'a pas l'intention d'entrer dans des discussions
mathématiques délicates. Ainsi, il ne fait que rendre plausible
la continuité qu'il attribue à la fonction q.

5. Comportement des potentiels en dehors des masses attirantes.
Considérons maintenant les potentiels mathématiques exprimés

par des intégrales de la forme Y — j s'étendant à certaines
K

masses. Celles-ci peuvent être distribuées dans un volume, sur
une surface ou une ligne, ou encore en des points isolés. On
obtiendra, suivant les cas, des potentiels de corps, de surface, de
ligne ou de points. Nous considérerons aussi les potentiels de
double couche qu'il est superflu de définir ici. Si le point potentié
P se trouve à une distance finie de toute masse potentiante, la
distance r ne devient jamais infiniment petite et, pourvu que la
densité q soit une fonction intégrable, l'intégrale Y existe et
représente une fonction des coordonnées du point P.
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Poincaré 1

a démontré directement que ce potentiel Y est déve-

loppable aux environs d'un point (a, b, c), extérieur aux masses

potentialités, en une série entière 5Aaß — aY{y — b)$[z — c)Y ;

cette série converge absolument dans les environs du point [a, b, c)

sous la seule condition que f |().|d?K existe.
k

Un potentiel a, par suite, des dérivées de tous ordres, que 1 on
obtient en dérivant sous le signe somme. Les dérivées premières
satisfont à la relation suivante : Soit s une direction donnée par

ö ù b 5

ses cosinus directeurs a, ß, y ; soit -- — a — + ß — + Y 5" et

désignons par Xs la composante, suivant la direction s, de l'attraction

qu'exerce le corps sur la masse + 1 située en P, on a

ôV
°

(1) — z=z fc-A-ZV dK ~ X,W 05 J k

bs *

K

Les dérivées secondes satisfont à l'équation de Laplace :

ö2V ö2V ö2V
(2) AY —, q h s- 0
^ ' bx'2 ^ bf bz2

Ces propriétés appartiennent à tous les potentiels mentionnés,
dans l'hypothèse que le point P est à une distance finie des masses
potentiantes.

Dans tout ceci la densité q n'a joué qu'un rôle très effacé, elle
aura sa revanche tout à l'heure. Mais auparavant, je voudrais
signaler une question intéressante examinée récemment par
MM. Pizettï et Lauricella 2. Supposons que l'on donne le volume
occupé par un corps et l'action externe clu corps, c'est-à-dire son
potentiel extérieur, quelle est la répartition des masses à l'intérieur

du corps? Ainsi formulé, le problème a une infinité de
solutions et on peut se demander quel est le degré d'indétermination

de la densité q (q est supposée continue et dérivable deux
fois) Lauricella arrive à la conclusion que Jq est complètement
arbitraire. En d'autres termes, f{x, y, z) désignant une fonction

arbitrairement choisie à l'intérieur du corps, on peut poser
4q f[xyz) ; il existe alors une fonction ç», satisfaisant à cette

{* od K.
équation différentielle, telle que le potentiel / l— soit, à l'exté-

K
rieur du corps, identique au potentiel prescrit. -Cette question est

1 Acta mathematica, 22 (1898) p. 89.
2 P. Pizetti, Atti délia lt. Acc. Lincei (5) 1S, 1C1> sem., p. 211 : Annali di Mat. 17 (1910),

p. 225. — G. Lauriciïlla, Atti délia R. Acc. Lincei (5) 20, 1" Sem., p. 99.
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née de l'étude de la répartition des masses à l'intérieur du géoïde,
dont l'action externe est assez bien connue.

6. Potentiel d'an corps par rapport à un point intérieur. Quand
le point P est à l'intérieur du domaine K occupé par les masses
potentialités, la distance r devient nulle dans le champ d'intégration,

savoir au point P; la fonction sous le signe somme, dans les
intégrales qui expriment V et ses dérivées, devient infinie en ce

point. Ces intégrales, comme l'a fait remarquer Gauss, n'ont plus
cle sens, à moins d'être définies à nouveau, soit généralisées. Pour
cela, on entoure le point P d'une surface limite d'un certain
volume t; l'intégrale à généraliser est alors étendue au domaine
K — t. Puis on modifie la surface a de manière que toutes ses
dimensions deviennent infiniment petites et qu'elle s'évanouisse
au point P. Si l'intégrale étendue au domaine K — t tend vers une
limite finie lorsque a s'évanouit en P, elle est dite convergente,
et cette limite est prise comme valeur de l'intégrale généralisée ;

si, au contraire, la limite n'existe pas ou est infinie, l'intégrale est
dite divergente ; la généralisation proposée n'a pas de sens. La
convergence est de deux sortes : lorsque l'existence et la valeur de
la limite sont indépendantes de la succession des formes prises
par la surface a en s'évanouissant en P, l'intégrale est dite absolument

convergente, dans le cas contraire, semi-convergente.
Revenons au potentiel. On démontre aisément la convergence

absolue de l'intégrale Y pour tous les points intérieurs, puis sa

continuité, en montrant que Y possède des dérivées premières.
Le potentiel d'un corps est ainsi continu dans tout l'espace et y
possède des dérivées premières.

Ces dérivées premières peuvent-elles être obtenues, comme
dans le cas des points extérieurs, en dérivant sous le signe
somme

La réponse est affirmative. Pour le démontrer et étendre ainsi
aux points intérieurs la relation (1), il faut, 1°, non seulement

öV
établir l'existence cle la dérivée -- mais encore celle de l'inté-

Ö-9 '

grale X5, puis 2°, montrer l'égalité de ces deux limites.
Gauss et, à sa suite, Diiuchlet et Riemann se contentent d'établir

l'existence de X5. On compléterait la démonstration en établissant
le théorème suivant, que démontre J.-G. Leathem 1 clans les cas
intéressant la théorie du potentiel et sous la condition que q soit
dérivable : La dérivée d'une intégrale généralisée, au point P où
la fonction à intégrer devient infinie, s'obtient en dérivant sous le
signe somme, à la condition que l'intégrale primitive et celle
obtenue après la dérivation soient convergentes.

La première démonstration satisfaisante de l'égalité (1) est due

1 Loc. cit. p. 23.
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à M. Bouquet1; elle est valable sans autre condition pour q que
celle de l'intégrabilité.

7. Equation de Poisson. Considérons maintenant les dérivées
secondes. Poisson remarqua le premier (1813) que l'équation de

Laplace n'est plus vérifiée lorsque P appartient aux masses
potentialités et qu'elle devait être remplacée par la suivante :

Ö"V Ö"V Ö"V XV— /-(o) -(— — —I— ~ ~±7Z0 OU ùk. Y 1"? t
ùx ör2 ö "•

q étant la valeur de la densité au point P. Cette équation est dite
Xéquation de Poisson. Etablir Vexistence des dérivées secondes,

puis Véquation de Poisson, est le problème capital de cette théorie.
Ici la densité q est au premier plan, les progrès sont marqués

par des hypothèses de moins en moins restrictives concernant
cette fonction. Nous pouvons distinguer qiiatre périodes, suivant
les hypothèses dans lesquelles l'équation de Poisson a été établie :

lre période : q constant Poisson (1813).
2me » q dérivable (analytique) Gauss (1840), (E. Schmidt).
3me » q continue Holder (1882), Moreka.
4me » q intégrable H. Pétrini (1899),

E* période. Poisson, non seulement démontra l'équation qui
porte son nom dans le cas des corps homogènes, mais il donna
de ce théorème, dans le cas général, trois démonstrations
différentes. Ces démonstrations doivent être aujourd'hui considérées
comme insuffisantes, Poisson admettant implicitement l'existence
de AS et se bornant à calculer la valeur de cette expression. La
même observation s'adresse aux démonstrations de O. Rodrigues,
Ostrogradsky, Sturm, Pagani.

2me période. — C'est à Gauss2 qu'est due la première démonstration

satisfaisante de l'équation de Poisson Cet auteur admet
que q possède des dérivées premières finies ; mais, comme il le
fait remarquer, sa démonstration n'exige que la dérivabilité
(Gauss dit la continuité), de q le long de chacun des rayons
vecteurs partant du point P. Gauss établit l'existence et la continuité

Ö2 V
des dérivées etc., à l'intérieur du corps, leur absence de

signification à la surface, les discontinuités qu'elles éprouvent
lorsqu'on passe de l'intérieur à l'extérieur du corps et déduit de
ces résultats l'équation de Poisson. Il s'élève contre l'idée émise
par Poisson, Ostrogradsky et Pagani de poser AS — 2nq pour les
points de la surface, car AS n'y a pas de sens précis.

1 Publiée par Briot, Théorie mécanique de la chaleur ; Picard, Traité d'Analyse, I, p. 165.
2 Une traduction française du célèbre mémoire de Gauss se trouve dans le Journal de

Liouville, 7 (1842;.
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La démonstration de Gauss fut reprise et modifiée par Dirichlet
et dès lors les démonstrations du théorème de Poisson se font de
plus en plus nombreuses.

Le point de vue de Gauss (o dérivable) est naturellement celui
de presque tous les traités de la théorie du potentiel. On le
retrouve même dans certains travaux modernes : E. Schmidt1,
suivant les traces de H. Bruns 2, considère la densité q et le potentiel
comme des fonctions analytiques et ramène la question d'existence

des dérivées au théorème d'existence des solutions analytiques

des équations aux dérivées partielles.
11 faut encore citer la démonstration donnée par Kronecker

dans le Journal de Grelle de i860, quoique cette démonstration
soit incomplète, Kronecker se voyant obligé à admettre l'existence
des dérivées secondes. Pour la première fois, semble-t-il, on
abandonne l'idée de q dérivable et propose comme idéal de soumettre
q aux conditions les moins restrictives possibles. De plus, Kro-
necker fait voir que la difficulté de la démonstration provient de
l'hypothèse du point matériel que l'on suppose placé au point P.

Il remplace ce dernier, par exemple par une petite sphère homogène,

et établit facilement, pour l'action réciproque des deux
corps, un théorème correspondant à celui de Poisson. En faisant
tendre la sphère vers un point matériel, il obtient le théorème de
Poisson ; c'est ce passage à la limite qui est la partie difficile de
le démonstration et oblige Kronecker aux restrictions indiquées.

3me période. Les progrès de la théorie des fonctions vont
permettre un nouvel avancement de la solution du problème. Dans
sa dissertation, présentée à l'Université de Tubingue en 1882,
0. Holder reprend l'étude de l'existence des potentiels et de leurs
dérivées en considérant la densité q comme intègrable. Mais
l'étude des dérivées secondes est faite en exigeant que la fonction
q satisfasse, dans les environs du point P i.r, y, à la condition

A et A étant deux constantes positives, A <; 1. Cela revient à

considérer q comme continu au point P, avec encore une certaine
ô*V

restriction. Holder trouve alors pour —-2 l'expression

dans laquelle q0 est la densité au point P, (K) désigne le domaine

I
P *0 U — p [pc, y, "• | <C ArA

(K)-(R)

1 Mathematische Annalen, 68 (1909) p. 107.
2 Dissertation, Berlin 1871.
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occupé par le corps, (R) une sphère de rayon R et de centre P. De

ces résultats découle l'équation de Poisson.
Pour assurer la continuité de ces dérivées, l'auteur doit modifier

un peu la condition (4) et exiger que

| p(x',r',-F (•*•". I <A,,x '

[x',y',s')et(x",y",z") étant deux points quelconques des envi-
rons de P.

Les résultats de Holder ont été retrouvés et quelque peu étendus

par G. Morera 1, dans un travail admirable de clarté et de simplicité.

Morera commence par distinguer la convergence absolue et
la semi-convergence, puis montre que l'intégrale figurant dans la
formule de Holder est semi-convergente. Il obtient la formule

i?=~ p°/~y +/<p ~ •

S K

dans laquelle l'intégrale de volume est absolument convergente,
grâce à la présence du facteur q — q0 ; S désigne la surface qui

limite le corps K et ~ la dérivée suivant la normale à cette sur-1 Ö72

face. Les hypothèses faites sont : 1° la densité q est finie au point
r

P, qp ~ q0 ; 2° q est intégrable ; 3° l'intégrale J^—^dr est finie
o

et déterminée le long de chacun des rayons vecteurs partant de
P(/-— 0). Cette dernière condition entraîne la continuité de q au
point P et même la restreint. En remplaçant l'intégrale absolument

convergente par d'autres semi-convergentes, Morera retrouve
les résultats de Holder.

4me période. La solution complète du problème de Poisson est
due à Henrik Pétrini. Dans un mémoire très étendu, paru en 1908
dans les Acta mathematica, cet auteur rassemble et complète les
résultats qu'il avait publiés dès 1899 dans divers périodiques
suédois.

M. Pétrini ne soumet tout d'abord la fonction q à aucune autre
condition que celle de l'intégrabilité et il obtient des conditions

nécessaires et suffisantes pour l'existence des dérivées
secondes du potentiel. Il est ensuite obligé d'ajouter à la condition

d'intégrabilité de q, celle de continuité le long de chacun
des rayons vecteurs partant du point P : si au lieu de coordonnées
rectangulaires, on introduit des coordonnées polaires r, 9, ip et

1 Rendicouti d. Instituto Lonibardo (2) 20 (1887), p. 302, 543.
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pose r — lit, u cos 9, la densité o doit être telle que lim o (ht, 9. xp

h—o

existe et soit égale à une fonction ç>[\i, ifi intégrable le long de
chacun des rayons vecteurs issus de P. La condition nécessaire

et suffisante de l'existence de la dérivée par exemple, est alors

la convergence pour h =z 0 de l'intégrale

(Ol Dä( —

*=./K;i

dans laquelle h) et (a sont des sphères de centre P et de rayons
h et a, a étant une constante.

L'existence des dérivées secondes —\
—.>- Av une fois' Oy- '

assurée, JX se présente sous la forme d'une intégrale de surface
qui devient égale à — knq lorsqu'on suppose q continue au
point P. L'équation de Poisson, JX — est ainsi établie
dans le cas où q est continue et sous condition de convergence de
trois intégrales analogues à (5 En spécialisant, Pétri ni retrouve
les résultats de Morera, Holder et Gauss.

La continuité de q ne suffit pas à assurer l'existence des dérivées
secondes. M. Pétri ni donne comme exemple d'une densité con-

yvtinue dans tout 1 espace et pour laquelle les dérivées —8 etc.,

n'existent pas au point P yt\ //, .yi, la fonction

(6) o -2 —-- T — (£ — ,rf q- (r, — yr + il — zr
f log -

Le laplacien JX du potentiel correspondant n'existe pas non plus
et l'équation de Poisson est en défaut. Mais si l'on généralise
cette équation en définissant JX comme suit :

AY r rvôdV(ir -|- /?i, r, z) frVM', y,

/l2=l>
^g=0

1 /öY(jr, r + /?2, ") öY[or, r, sj\ 1 /öY(.r, y. g -j- h$) öY{.r,y, z)
+ r "tt: rr -r thz\ dy àr J hz\ <>g Ckg

les quantités h0 h2, hz tendant vers zéro de manière que

""(£) '»lim I — I — c-, constante 0 i, k zzz 1, 2? 1
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alors, 011 a la relation
ÄV - 4*p

Ce fait se présente chacpie fois quand la densité q est continue,
ö2V ö2Y ö2V

alors même que les de rive es —a, —5 —2- n existeraient pas

isolément.
Dans le cas général, où q est soumis aux deux seules conditions

d'intégrabilité et de continuité le long des rayons issus de P,

l'expression JY, (7), existe toujours, mais on a l'équation de Poisson
généralisée

(8) ÄV — 4-p -f 6

9 représentant une fonction dont l'intégrale est nulle dans n'importe

quelle partie du domaine d'intégration ; cette fonction 9

dépend de la formation de l'expression z/V, c'est-à-dire des

constantes cik. Réciproquement l'équation JY — 4nq n'a en

général pas de solution. Mais il existe une et une seule fonction 9
à intégrale nulle, telle que l'équation de Poisson généralisée (81

ait une solution, savoir Y f ~~ + U, U désignant une fonction
Iv

harmonique quelconque.
En résumé, dans le cas général, avec les deux conditions imposées

à £, les dérivées secondes satisfont à l'équation de Poisson
généralisée, (8). Lorsque, de plus, q est continue sans restriction,
on est certain d'avoir la relation JY — 4ttq, mais non encore
l'équation de Poisson ordinaire. Pour être assuré de l'existence
de cette dernière, il faut restreindre la continuité par l'adjonction
d'une condition analogue à celles de Holder ou de Morera.

8. Dérivées secondes dans des directions quelconques. Pétri ni
ö2V

fait une étude complète des dérivées —— Considérons deux1 ÖSi 06*2

éléments rectilignes, dsi et ds2, partant du point P et allant dans
des directions déterminées; désignons par Pd et P2 leurs extré-

öV
mités. Nous savons que — existe toujours. Pétrini définit

(9) ~ lim j — [Y-^) - ^ 1 l
ôStôs2 dsp= ü j l \ ùSi / y J pjj j

et cherche les conditions nécessaires et suffisantes à l'existence
de cette limite. En général, les dérivées —y— —— sont diffé-0 ÖSj ÖS2 Ô6"2ÔAi

rentes, l'auteur établit les conditions de leur égalité. Puis il
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s'occupe cle la continuité de ces dérivées quand la densité est
continue.

Le comportement de ces dérivées dans le voisinage de la surface

d'un corps est examiné tout d'abord dans le cas typique de
deux corps homogènes, de densités différentes ç>{ et q2, en contact
suivant une surface 2. Le cas, plus général, de densités continues
dans les deux corps se ramène, sous certaines conditions, au
précédent et conduit alors aux mêmes résultats.

Nous avons vu que Gauss n'attribuait aucun sens aux dérivées
secondes en un point de la surface I Au contraire, les dérivées
dans les directions dsi et ds%i définies par la formule (9), ont
souvent une valeur parfaitement déterminée en un tel point P0. La
nature de la surface aux environs de ce point a sur cette détermination

une certaine influence. M. Pétrini établit les conditions
trV

d'existence de ^ — lorsque le point P0 est régulier, comme aussi

lorsqu'il est conique ou de rebroussement. En un point conique,
la dérivée est en général infinie, sauf dans certaines directions
déterminées pour lesquelles elle est toujours finie. En un point
de rebroussement, la dérivée peut exister dans toutes les directions.

Pour établir la discontinuité lorsqu'on traverse la surface 2 au
point P0, on doit considérer la limite de la dérivée au point P

lorsque ce point s'approche du point P0 en suivant un certain
chemin. Cette limite dépend en général du chemin suivi. Cependant,

dans le cas de deux corps homogènes séparés parla
surface 2, supposée régulière en P0, si le chemin est entièrement
situé dans l'un des corps et n'est pas tangent à la surface de
séparation en P0, la limite existe et ne dépend pas du chemin
parcouru ; elle ne dépend que du corps dans lequel s'est effectué
le rapprochement. Nous avons alors trois quantités à considérer :

V
1° en Pn ;

ÖSiÖSg

2°

3°

é2 V \ pour un déplacement / ô2V

F==P \ÖÄiös"2/ r
' dans le corps de densité ot \àsiùs%jA

/ ö2V \ pour un déplacement / 0* V

p_p yösi. ds2/ r
' dans le corps de densité p2

Les limites 2° et 3° sont en général différentes, leur différence 1)
ö2V

est la discontinuité de la dérivée -—— Quand on traverse la surface ;
ÖSjÖSs 1

on trouve D 4tztet sont les cosinus des angles
que font les directions dsi, ds2 avec la normale à la surface en Pö.
La valeur 1° est égale à la valeur 2° ou à la valeur 3° suivant que
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l'élément dsA est situé dans le corps de densité q{ ou dans l'autre.

En d'autres ternies, s'approche de sa valeur en P0 lorsque

le chemin est situé clans le corps qui renferme l'élément dsi

9. Potentiels de simple couche. Les questions d'existence
concernant ces potentiels sont analogues-à celles examinées à propos
des potentiels de corps et révolution des deux théories s'est faite
à peu près parallèlement.

La surface S qui porte la couche attirante doit être une surface
à deux côtés que nous distinguons par les indices 1) et 2). Le

potentiel V f clans lequel <r désigne la densité super-
s

fîcielle r est, en général, une intégrale absolument

convergente en tout point de la surface S et qui représente une
fonction continue clans tout l'espace, même lorsqu'on franchit la
surface.

»V ,.»(;)
Dérivées premières. La relation — NA j <s A rJ ^5, valable

en tout point de l'espace non situé sur S, n'a plus de sens en un
point P0 de cette surface, l'intégrale du second membre étant
semi-convergente.

öV
On définit en un point P0 cle S comme nous avons défini,

dans le numéro précédent, ^ ^ en un point cle 2. Nous aurons

aussi à considérer la limite cle en un point P, lorsque ce point
P s'approche de P0. L'existence cle ces deux valeurs dépend,
1°, de la nature de la surface S aux environs clu point P0 ; 2°, du

comportement cle a sur cette portion de surface ; 3°, la seconde
limite dépend en plus clu chemin qu'a suivi P.

Dans certains cas, en particulier lorsque la surface possède un
plan tangent déterminé en P0 et que a est continue en ce point,

öV
la limite de — quand le chemin ne touche, ni ne traverse la

05 ' 1

surface, ne dépend que clu côté de la surface S auquel aboutit le
point P lorsqu'il arrive en P0. Comme clans le numéro précédent,

o i ÖV n /öV\ ßV\
on a, dans ce cas, 3 valeurs a distinguer : — en r0, 1^1 et I —

La différence entre ces deux dernières est la discontinuité lorsqu'on
franchit la surface en P0.

Dans la première période de recherches, on considéra des
surfaces analytiques régulières et une densité <r dérivable autant de
fois que cela était utile. Les dérivées normales attirent d'abord
l'attention. Coulomb (1788) avait déjà remarqué leur discontinuité



29+ C JA CCD F TE T

sous la forme suivante : l'attraction d'une couche infiniment mince
sur deux points matériels situés de part et d'autre de la couche
est différente ; quand l'une des composantes normales est nulle,
l'autre est égale à 4tf fois la densité au point correspondant de la
couche. Poisson (1811) après avoir indiqué que la somme des

composantes normales est égale à 4;ia et que les composantes
tangentielles sont continues, énonce la loi de discontinuité d'une
composante quelconque ; il communique, en l'étendant au cas
général, une démonstration donnée par Laplace pour le cas
particulier d'une surface attirante de niveau et basée sur des considérations

physiques. La première démonstration analytique est due
à Cauchy (1815). Green (1828) énonça le premier le théorème sous
sa forme actuelle en considérant le potentiel au lieu des attractions

; il déduit cette loi à l'aide de sa formule de transformation
des intégrales multiples.

C'est à Gauss (1840) qu'est due la première analyse rigoureuse
de la question. Mettant en évidence les hypothèses concernant la
surface S (existence d'un plan tangent, courbure finie, infinie

öY
sous certaines conditions) Gauss montre que l'équation — =: X,

n'a plus de sens en un point de la surface. Il établit, pour le

cas d'une densité dérivable, l'existence des limites (—\ et ^
Vds/t \ös/2

et calcule la discontinuité de — t
ÖS

Holder (1882) impose à la densité superficielle c la condition (4

qu'il avait imposée à la densité d'un corps. Il représente la surface
par les équations .£ — x (n, e), y — y (//, v\, z — z [n, e) et prescrit
aux six dérivées premières de ces fonctions une condition de
continuité analogue :

I x>/G0 ' h) + ri î — -r'Go' Yé I A ' l >
^ := |/~a ri2 '

A et yi sont des constantes positives, y < 1 ; il a aussi une
condition spéciale pour le bord de la surface. Dans ces hypothèses,

ï>V
il établit la loi des discontinuités de — puis le comportement

de cette dérivée dans les environs du bord de la surface : devient
ÖS

infinie logarithmiquement quand P s'approche indéfiniment de
öV

ce bord, et il donne une expression asymptotique de —.
Weingarten1, Morera2, Liapounoff3 et d'autres apportent encore

certaines simplifications ou contributions. Mais ici aussi, c'est
H. Pétrini qui, dans les mémoires déjà cités, parvient à élucider

1 Acta mathematical 10 (1887), p. 303.
2 Loc. cit., p. 543.
3 Journal de Math. (6j, 4 (1898), p. 241.



SUR L'EXISTENCE DES POTENTIELS 295

définitivement un grand nombre de questions. 11 libère la surface
S de l'obligation de posséder un plan tangent en utilisant les
surfaces qu'il appelle physiquement régulières. Une surface est dite
physiquement régulière au point P0, lorsque les conditions
suivantes sont remplies :

1° Ï1 doit exister une ligne à tangentes déterminées ne coupant
Ja surface qu'en P0 et dont tous les points, non situés dans les
environs de P0, sont à une distance finie des autres points de la
surface.

2° 11 doit exister un plan tt passant par P0, tel que toutes les
normales au plan, menées par les points de tt situés dans les
environs de P0, ne rencontrent la surface qu'en un nombre fini de

points.
Un cylindre de révolution, dont l'axe passe par P0 et est normal

au plan tt, détache de la surface S une portion S'. On peut se

borner à considérer le potentiel de cette portion S', V' f-qr •

s'
3° Le plan n doit pouvoir être choisi de façon que V' puisse se

mettre sous la forme J ~~ oh don est la projection de l'élément
ro'

dS, on' la projection de S', sur le plan tzt, 6 ne devant jamais devenir
infini ou indéterminé.

Le plan n rend le même service qu'aux autres auteurs le plan
tangent.

Des résultats obtenus par Pétrini, nous ne citons, comme
exemple, que le suivant :

Lorsqu'en un point Pn de S la dérivée — existe, la limite de —r u Ö.V ' ÖS

quand P s'approche de P0 par un chemin non tangent à la surface

en Pn existe aussi. Cette limite est égale à la valeur de — en Pn° ÖS 0

dans les deux cas suivants :

1° Si la dérivée est prise dans la direction de la tangente en P0
au chemin suivi par le point P ;

2° Si la fonction a est continue en P0 et si la surface y a un plan
tangent déterminé.

Dérivées secondes. Green détermina, déjà en 1828, la disconti-
ö2V

nuité de la dérivée —2 lorsque la surface qui porte la couche est

en même temps surface de niveau. P. Paci étendit les résultats
de Green au cas d'une distribution superficielle générale. Le
comportement des autres dérivées secondes, trouvé par Carl
Neumann, fut justifié par Beltrami et Horn, puis récemment par
Poincaré1, Korn2 et T. J. l'A. Bromwich3.

1 Théorie du Potentiel newtonien, Paris 1899, p. 232.
2 Lehrbuch der Potentialtheorie I, Berlin 1899, p. 49.
3 Arkiv der Math. u. Physik (3) 2 (1902), p. 295.
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H. Pétrini, dans son grand travail des Acta mathematica, reprend
l'étude de ces dérivées en lui donnant l'ampleur avec laquelle il
avait traité les autres questions. En particularisant ses résultats,
il retrouve ceux de Poincaré.

Dérivées troisièmes. Je ne connais aucun travail s'occupant des
dérivées troisièmes des potentiels de corps.

Celles des potentiels de surface — dans le cas où la surface
attirante est en même temps surface de niveau — ont été
considérées par P. Paci L mais cet auteur considère sa méthode comme
ne pouvant pas s'appliquer au cas général.

Tout, ou à peu près, reste à faire dans ce domaine.
10. Potentiels de ligne. L'étude de ces potentiels est relativement

peu avancée. Quant aux hypothèses faites, soit sur la nature
des lignes, soit sur la densité, on en est encore au point de vue
de Gauss.

On sait depuis longtemps qu'un tel potentiel devient infini
lorsque le point potentié s'approche indéfiniment de la ligne
attirante. Poincaré "2, dans l'hypothèse d'une densité et d'une ligne
analytiques, donna du potentiel V de cette ligne une expression
asymptotique \[a), telle que Y — Yfa) est holomorphe dans les
environs de la ligne attirante. 11 trouva Via! — U log R, où U et R
sont aussi des fonctions holomorphes des coordonnées du point
potentié P. 11 semble que ces résultats aient échappé à plusieurs
auteurs : Levi-Civita 8 et Yiterbi 4 obtiennent plus tard des expressions

asymptotiques moins parfaites, mais plus maniables et
établies dans des conditions un peu plus générales; A. Tonolo5,
voulant perfectionner leurs résultats et s'inspirant du travail déjà
cité de E. Schmidt, retrouve tout récemment les résultats de
Poincaré par une méthode complètement différente. Prenant
comme point de départ les expressions de Levi-Civita et de
Yiterbi, M. Olivo0 établit des expressions asymptotiques soit des

potentiels de simple et de double couche dans les environs de la
surface attirante et de son bord, soit des potentiels de corps dans
le voisinage d'un point régulier ou singulier de la surface.

11. Potentiels de double couche. Ces potentiels s'expriment par
des dérivées premières de potentiels de simple couche et l'étude
de leur dérivées premières se ramène à celles des dérivées secondes
des potentiels de simple couche (voir Poincaré, Potentiel newto-
nien, p. 218). Les problèmes sont donc analogues à ceux que nous
avons déjà examinés.

1 Rendiconti del Circolo mat. di Palermo, S (1894), p. 33.
a Acta mathematica, 22 (1898), Théorème 9.
8 Atti délia R. Acc. Lincei (Rendiconti), (5) 17, 2me sem., (1908), p. 3. 413, 535.
4 Rendiconti Istituto Lombardo (2) 42 (1909), p. 913.
6 Math. Anmalen, 72 (1912), p. 78.
6 Atti Istituto Veneto, 69 (1909-10), p. 519-546.



SUB L'EXISTENCE DES POTENTIELS 297

Remarquons que, contre toute attente, les dérivées premières
normales des potentiels de double couche sont en général continues

; cette propriété, due à Helmholtz, a été démontrée dans des

cas très généraux par Lïapounoff 1; elle est aussi l'objet d'une
étude approfondie de H. Pjétrini. Quant aux dérivées secondes,
leurs discontinuités sont établies par A. Korn2, dans des cas

assez étendus.
12. Potentiels de masses non dèriçables. Indiquons encore une

extension de la notion de potentiel due à J. Plemelj3.
Admettre l'existence d'une densité, c'est restreindre beaucoup

le mode de répartition des masses attirantes et particulariser
d'une façon peut-être excessive la notion de potentiel. On peut
très bien concevoir une répartition de masses n'admettant pas de
densité et M. Plemelj en revient à exprimer les potentiels

correspondants sous la forme de Lagrange f ~y ; seulement cette

intégrale doit être prise dans un sens analogue à celui donné par
Stieltjes4 aux intégrales de fonctions d'une variable.

11 s'agira donc, après avoir étendu aux intégrales multiples la
notion d'intégrales de Stieltjes5, d'aborder l'étude de ces potentiels
très généraux dont les propriétés seront assez différentes de celles
des potentiels classiques. En particulier, il ne faudra plus compter
sur l'existence de leurs dérivées en des points appartenant aux
masses potentialités. Aussi M. Plemelj développe-t-il une notion
destinée h remplacer, pour les potentiels de simple et de double
couche, les dérivées normales en un point de la surface attirante.

Cette notion permettra une extension des formules de Green et
les nouveaux potentiels deviendront des instruments beaucoup
plus puissants que les anciens, à l'aide desquels il sera possible
de résoudre les problèmes aux limites dans des cas plus généraux
que jusqu'ici.

Il semblait intéressant de terminer cette revue en signalant une
innovation qui fait prévoir de prochaines découvertes dans la
théorie du potentiel.

C. Jaccottet (Lausanne).

1 Journal de mathématiques (6) 4 (1898), p. 241.
2 Lehrbuch der Potentialtheorie, Berlin 1899, î, p. 51.
3 Preisschriften der fürstlich Jablonowskischen Ges-ellschalt, 40. 1911.
4 Annales de la Faculté des Sciences de Toulouse (1) 8 (1894), n° 10.
5 Cette extension a été donnée par M. Fréchkt, Nouvelles Annales de Mathématiques (4), 10

(1910), p. 241-256.
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