Zeitschrift: L'Enseignement Mathématique
Herausgeber: Commission Internationale de I'Enseignement Mathématique

Band: 15 (1913)

Heft: 1: L'ENSEIGNEMENT MATHEMATIQUE

Artikel: SUR UN CAS PARTICULIER DU PROBLEME DE L'ELIMINATION
ENTRE PLUSIEURS EQUATIONS INTEGRALES

Autor: Cailler, C.

DOl: https://doi.org/10.5169/seals-14851

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine
Urheberrechte an den Zeitschriften und ist nicht verantwortlich fur deren Inhalte. Die Rechte liegen in
der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veroffentlichen
von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanalen oder Webseiten ist nur
mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les
revues et n'est pas responsable de leur contenu. En regle générale, les droits sont détenus par les
éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications
imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée
gu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals
and is not responsible for their content. The rights usually lie with the publishers or the external rights
holders. Publishing images in print and online publications, as well as on social media channels or
websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 30.01.2026

ETH-Bibliothek Zurich, E-Periodica, https://www.e-periodica.ch


https://doi.org/10.5169/seals-14851
https://www.e-periodica.ch/digbib/terms?lang=de
https://www.e-periodica.ch/digbib/terms?lang=fr
https://www.e-periodica.ch/digbib/terms?lang=en

SUR UN CAS PARTICULIER
DU PROBLEME DE L’ELIMINATION
ENTRE PLUSIEURS EQUATIONS INTEGRALES

M. HoLmerEN, par une question posée dans 1'/ntermeédiaire des
Mathématiciens?, au suyet de 'équation intégrale

x

oly)dy

attire l'attention stir les équations du type de Volterra dans les-
quelles le noyau affecte la forme 4 (x — y) telles que

x

o (x) *—fkwc — y)oly)dy = flx) . (1)

0

On connait la parenté qui relie les équations de ce type aux
équations différentielles linéaires ordinaires a coefficients cons-
tants, parenté qui rend vraisemblable a priori leur résolution par
des formules élémentaires. On est d’autant mieux fondé a prévoir
une semblable résolution que M. Levi-Civita a donné, en 18952,
la solution générale de 'équation de premiere espece correspon-
dant a (1), a savoir |

X

fh (x — y)ely)dy = flx) - (2

0

En fait, les deux probléemes (1) et (2) peuvent étre facilement
- réduits 'un a Pautre et ne sauraient étre regardés comme essen-
tiellement distincts. En étudiant leur relation, j’ai eu l'occasion

! Interm. des Mathém., Tome X1X, p- 102, mars 1912,
* Actes de UAcadémie de Turin, novembre 1895.




34 C. CAILLER

de remarquer que le procédé classique, parlequel on élimine plu-
sieurs variables entre des équations linéaires a coeflicients cons-
tants, peut étre immédiatement transporté aux équations inté-
grales de premiere et de seconde espece lorsque tous les noyaux
ont la forme A(x — y). l.e passage est immédiat et la théorie dé-
veloppée ci-dessous n’est qu’'une sorte de duplicata de celle des
déterminants de l'algebre ordinaire. l.e probléeme d’élimination
ainsi traité est sans doute bien particulier par suite de la forme
toute spéciale des noyaux; mais 'analogie dont il s’agit le rend
néanmoins intéressant et justifiera peut-étre les quelques lignes
que je vais lui consacrer.

Mes remarques ont leur origine naturelle dans ma Note sur une
opération analytique et son application aux fonctions de Bessel*.

Nommons, pour abréger, produit intégral de n fonctions a,(x),
a,'x), ..., ap(x) d’'une variable 2 l'intégrale multiple

xﬂ_ll‘/‘---‘/.al(frlx) agf(xz) ... an(l"nx) dt . 3)

exécutée dans l'espace (x,, &,,...,2p—1)a (n— 1) dimensions?.
[’élément de cet espace, ou dt, est égal a dt = dw,dx, ... dr,—1;
la lettre x,, introduite par raison de symétrie, est telle qu’on a
identiquement '

xr+x+ ... Fax,=1; (4)
enfin le champ d’intégration est défini par les n inégalités
0= <1, (i=1,2,..n). (5)
Le facteur 2" ' de la formule (3) y a été introduit de maniére a

permettre pour le produit intégral — que je désignerai souvent
par [a,a,a, ... ap, — la notation suivante

[(l1a2 e all] :f/...fal(xl)az(.rg) o (ln(xn)dt ¥ (6)

les variables x; étant cette fois soumises aux restrictions que voici

Oé;_‘étl, et X1+ X2+ oo+ X, = (7)

1 Mém. de la Soc. de Phys. et d’Hist. nat. de Geneve, vol. 34 (1904%).
% Cette notion de produit intégral qui s’introduit ici est formée sur le modcle des noyaux
itérés des théories générales.
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En prenant cette seconde forme, on a, par exemple, pour deux

facteurs
X

[(tiag]:fa(3>ﬂ2(r—1‘d) —*f Yag(x — y)dy . (8

0

Bien entendu le produit intégral de n facteurs a, ... a, dépend
de leur ensemble et non pas simplement de leur produit algé-
brique effectué; ainsi, avant de calculer une expression telle que
[p], il importe de connaitre le mode de formation de la quantité p,
notamment le nombre de facteurs, ou de dimensions, qu ‘elle con-
tient. Par exemple, si a est de premiere dimension, c’est-a-dire
facteur unique, je prendrai par convention [¢] = a; au contraire

V X x
[, 1] :/a(z)dz. :fa[x — z)dz
0 0

comme on vient de voir. De méme

0w

=

1] =1 [11] = [111] = ete.

]

lol

Le symbole [a,a, ... a,] possede les propriétés classiques de la
multiplication ordinaire. Quand on applique, par exemple a la
déﬁniti()n'(‘} la regle du jacobien on constate immédiatement la
symétrie des n dimensions «,, 2,, ... x». En prenant pour coor-
données x,, x5, ..., 2, au heu de 1:1, Loy ooy, Tn_1, 'élément dt se
change en dr,dx, ... dv,; comme d’ autre part les conditions (4)
et (5) qui définissent le champ d’intégration sont aussi symé-
triques, on voit que le produit intégral [a, a, ... a,] est commutatif
comme ne dépendant pas de 'ordre des facteurs.

[La propriété associative, d’apres laquelle pour opérer la multi-
plication de plusieurs facteurs on peut remplacer quelques-uns
d’entre eux par leur produit effectué, demeure aussi inaltérée.
Pour le faire voir, il suffira de vérifier 'équation

laas ... a,| = [may ... @, yla, ,a,l] (9)

qui redonne le cas général par alternance et répétition.
Or mettons le produit [a,a, ... a,], ou (3], sous la forme

n-—32 A ;
X f...f(h(.l"ix) B (Lll—z(xll—2x) daal -y d‘T,L..__."_)

(n—2)

g X fan_1 (x, _,x)a,(x,x)dx, % . (10)
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Alors, dans l'intégrale simple réservée a droite pour étre exécutée
la premiere,.faisons
X, X =y 1~y —axg— ... —x,_,
d’ou
xdax

dy xxr =l —a;y— ... —x

n "n__l)x = XU -—Yy ;

Iu—l —

I'intégrale en accolade est ainsi devenue

LU

fa/l—l {)) aIL (xu - ‘” dj ’

0

c’est, d’apres (8], la fonction [a,—1a,] une fois la variable .« rem-
placée par wu, ou x(l ——- 2, — 2, ... — 2,—2). On n’a plus besoin
que de reprendre la définition (3) pour reconnaitre dans (10) le
second membre de la propriété associative (9).

[’extension au produit intégral de la propriété distributive né-
cessite quelques précautions. .

Si les «, b, ¢, ... sont des quantités de premiere dimension,
ainsi que les totaux a, 4+ a, + ..., b, + b, + ... etc., le produit
intégral

[lar + az + .0 (b 4+ bs + ) (es + .00) o]

a un sens completement déterminé par nos précédentes conven-
tions. Pour le calculer, il faut, conformément a 1'équation (3,
intégrer le dit produit apres avoir remplacé & par x,2 dans tous
les a, par 2,2 dans tous les b, etc. La regle de multiplication des
polynomes, équivalente a la propriété distributive, se trouve
exacte ainsi qu'on le constate immédiatement.

Prenons le cas un peu plus général d’'une expression polyndme
P, dont tous les termes sont de méme dimension; on a, par
exemple, sans introduire explicitement des coefficients numé-
riques (ul peuvent étre réunis aux facteurs algébriques

P = wa, ... a, + bibyb; ... b, + cics ... Cp F -+ . (11)

Nous prendrons comme définition du symbole [P], non encore
rencontré jusqu’ici, I’équation

[P] = [a1a; ... a,] =4 [bibs ... b, | + [crcq ... A (12)

Cette valeur est naturellement entiérement différente de celle
qu’on trouverait en traitant P comme une fonction toute donnée
en x. Pour trouver la valeur exacte, il faut éviter dans (11) toute
réduction de facteurs ou de termes semblables, traiter en un mot
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les constituants a, b, ¢ ... comme autant de fonctions indépen-
dantes et indéterminées. La remarque que voici donne le moyen
d’étendre aux polynoémes du type P les reégles ordinaires de l'al-
gébre.
Soient P et Q deux polyndmes respectivement de m*™ et de n'*™*
dimension, ou ,
P=ayay ... a, 4+ by ... b, 4 ...

Q = Uy g ... a” + 31‘8’ Cae ‘Gn + e

leur produit algébrique étant du type P, on trouve immédiatement
par la régle précédente

(PQ] = |mas ... a, 01 ... o] 4+ [ay ... a,Bi... B, 4. b, o1 ... o] 4.
D’autre part, les fonctions [P] et [Q] étant toutes calculées, ainsi
[P] = [mas ... a,,] + [biby ... b1+ ... [Q=1[oy... a,] + B B,] 4+

~en appliquant a ces fonctions [P], [Q], ou les crochets dans les
seconds membres sont de premiéere dimension, la regle distribu-
tive démontrée plus haut, on a

[[P1Q]] = [as ... @00 ... &) + [@ray .. By.oo B] + .

Ainsi, on aura

[PQ] = [[P}[Q]]

et.de méme
[PQR] = [[P][Q][R]] = [P[QR]] = [[P][QR]] .

De la résulte enfin que si I'expression P se présentait sous la
forme

P = EFG ... + E’F'G’ ... - E"F'"G" ... + .

oules E, F, G, ... sont des polyndmes contenant les facteurs cons-~
tituants @, 0, ¢, ... , comme on a évidemment

[P] = [EFG ...] 4 [E'F'G’ ...] + [E"F'G" .| + ... |
on aurait aussi, pour réduire le nombre des facteurs, la formule

[Pl = [[E][F}[G] -..] + [[E][F'}[G'] ..] + ..

En un mot, les opérations algébriques sont possibles a condi-
tion de mettre entre crochets les facteurs polynomes dont on

veut opérer le produit. Nous allons avoir Voceasion d’appliquer
cette remarque.
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Tout ceci étant bien compris, je passe a la notion fondamentale
pour la suite, du déterminant intégral

(t“ 6612 am

ou [at]J

[ci tous les a;; fonctions de x sont supposés de premiere dimen-
sion; ce sont les constituants. Si nous développons le détermi-
nant nous avons un polynoéme du type P; [a;] n’est autre chose
que la somme des produits intégraux des n? termes de P, c’est, si
l'on veut encore, 'intégrale multiple

cee Wy,

U R

Il n

ou les notations sont celles des formules (3) a [6), et dans laquelle
les a;;(x)<de la j*™° colonne sont remplacés par a;;{x;x).

Cette définition du déterminant intégral A = [a;;] laisse intactes
la plupart des pr opr iétés du déterminant algébrique ordinaire
D =ay|; pour s’en assurer, il suffit d'invoquer les propmeteq
des produits intégraux de la forme [P] dont il a été question a
I'instant. Voici quelques-unes de ces propriétés.

Le changement des lignes en colonnes et des colonnes en lignes
est sans effet.

Si on développe la quantité D = | ay;| suivant les éléments d'une
ligne et qu’'on désigne en général par b;;le mineur de I'élément a;;,
on a les identités algebrlques

si 1=y ,
“li[)’lj —+ a2l.b2j + .4+ am.hnj = i ity (13)
Or les éléments b;; sont de la (n — 1)* dimension par rapport
aux données a;;; si on désigne par f; le produit intégral de b;;,
on trouve immédiatement en exécutant 'opération [] sur les deux
membres de 'équation (13),
A si 1 =]

. (14)
0 si 1A

[“n’plj] + [a%P‘)J] 4 e la,n-@"j] —

Les déterminants intégraux f;; = [b;;], sont les mineurs intégraux
de D.

Soient deux déterminants D =| aij| et D' =jd's|, les éléments
constituants a et a’ étant de premiére dimension; soient encore
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A et A’ les déterminants intégraux correspondants A = [D] et
A’ = [D’]. Le produit DD’ est du type P, on a donc

|DD’] = [AA’] = [DA’] = |D’A] . (15)

D’autre part, opérons le produit DD’ par la régle classique de la
multiplication des déterminants, nous aurons pour ce produit un
déterminant dont les éléments tels que

!

/ !
Cif = @045 F Ay s T+ oon @y

sont des types E, F, G, ... ; ainsi nous aurons encore la quantité
[DD’] en calculant le déterminant intégral dont les éléments
sont [ci], avec

, , ’ .
cz:i — [@1ia'ljJ + [ai’iGQjJ + et [aniaan )

Prenons en particulier pour D’ le déterminant aux éléments
By = [by] et soient A = [a;], A" = [B8;]; dans ce cas, a cause des
identités (14), ¢; est nul sauf dans la diagonale principale, pour
laquelle ¢;; = A. En vertu de (15), nous trouvons alors

[AAY] = [A.A ... A] .
()

Si donc A =0, et que l’équatio'n intégrale [Agp] = /' n'admette
qu’une solution, nous tirons pour la valeur du déterminant inté-
gral adjoint A’

AM=[A"1=T[A.A.. A].
(n—1)

Sans insister davantage sur ces relations qu’on pourrait, bien
entendu, étendre et multiplier en suivant les analogies que sug-
gere immédiatement l'algebre élémentaire, j’aborde le probléeme
d’élimination dont il a été question ci-dessus et qu’il est mainte-
nant aisé de résoudre a ’aide de l'algorithme des déterminants
intégraux.

Prenons un systéme de n équations intégrales a n? noyaux
hij(x — y); ce sont les équations suivantes

1, n x
D [l —pedy = ugla) (=1, 2,0 (16)
¢t 0 B
avec les n inconnues ¢,, ¢,, ... ¢, et les seconds membres

Uyy Ugy oo ttp. L’élimination, toujours possible, va réduire le sys-
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téme a un autre analogue, mais ol les inconnues sont séparées
et tel que

?
/‘A(x — yle; ) dy = U.(x) . (17)

Pour démontrer ce point, j’écris le systeme (16) sous la forme
[hﬂ?l] + Ulﬂfpz] + .. [hjnq:n] = u; (=1, .. n (18)

on va le résoudre, par les propriétés des déterminants intégraux,
exactement de la méme maniere qu'un systéme linéaire de l'al-
gébre ordinaire. Formons un déterminantintégral en prenantles 4;;
comme éléments constituants, et soit A — [A;;]; désignons les mi-
neurs intégraux de A par ;.

Multiplions I'équation (18) par #;;, soumettons les deux membres
a lUopérateur [ ] et sommons pour les diverses valeurs de j; le
premier membre s’écrit alors

1a

Eznﬂ sl ] = (e > : nﬂh 11

k

il se réduit simplement, en vertu des formules (1 4', a 'expression

U“E”ﬂ L li=1,2,3..m

On a donc bien démontré que les solutions éventuelles du sys-
teme (16) vérifient le systeme (17); l'inverse est vrai, en général,
et se démontre de la méme maniere.

Prenons la formule (17), soit

1,n

[A¢,] :2 [k 4]

k
On tire de la
1.n 1.n 1,n
2 (7 (A9, ] —_—2 2 Ly Py ]
i 12 k

ou encore, toujours par les mémes formules (14},

1.n

[A[E [hs9,) — uj]] =9 . a9
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Si donec on sait que I'équation homogene
f/_\. x —yely)dr =20

n’admet d’autre solution que ¢ (y) = 0, I'équation (19} montre que
(16) est une conséquence de (17).

Le cas des équations de seconde espéce se rameéne immédiate-
ment au précédent; pour le faire voir, posons un systeme tel que

ljl?l + l,z‘?z + + JILIIL + [lljl?ll + UJ_)?_)] + [/lju?n] — “j
(j=1..n) (20)

ou les Ay sont toujours les noyaux fonctions de la seule différence

x —y, etles [ des facteurs constants. Intégrons l'équation [20),
£

entre les limites 0 et & ; et rappelons que l'intégrale /a (z)dz est

0
égale a la quantité [a. 1]. Alors en posant

pe
b 1] = a; = [zj _Lf/lij dx

on obtient immédiatement le systeme de premiere espéce

[“jl‘?}l -+ [a’JQCF.ZJ 4+ [(ljn"f’n] :t/.”j(“"d"' ' (21)

0

l.es solutions du systéme (20) appartiennent a (21); réciproque-
ment les solutions de (21) vérifient (20} comme le montre une
simple dérivation. Une condition nécessaire pour que (20! soit
résoluble, quels que soient les seconds membres «; continus en x,
est que le déterminant intégral des quantités «; soit différent
de zéro.

Laissant de coté plusieurs remarques que suggere évidemment
la théorie des équations algébriques linéaires, jajoute quelques
mots encore sur le probleme auquel on sera finalement toujours
- conduit, celui d'une équation intégrale unique

X

[Ae] = u ou fA (X — yjo(y)dy = u(x) . (22)

1]

C’est celle de M. Levi-Civira; elle correspond, peut-on dire, au
probleme de la division intégrale.

L’Ensecignement mathém., 15¢ année ; 1913.

-~
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o~
B

Pour Te résoudre, on peut souvent adopter une méthode tres
simple adaptée a la forme des singularités du noyvau autour de
Iorigine; cette marche est naturelle, car pour la possibilité du
probleme, la donnée w2 doit ordinairement présenter a I'origine
une allure particulicre déterminée par celle de A.

Supposons, par exemple, que A soit tel que 'équation [AA"] =1,

c¢'est-a-dire

X
[Ain N @ — ydy =1 1231
0

admette une solution A’, continue, sauf peut-étre a l'origine. De
122)

J, on tire alors
[A[Ag]] = [[AN]g] = [¢. 1] = [u}]

ce qui équivaut a 'équation intégrale

pa &
/<9L)‘)(1_\‘ — /u(y;ﬁ'((r — y)dy
0 0
ou
¢ 3
d »
c(y) = — /z((HA'(Jc——)'}d}' A
b dx ‘ o

e
\]

Comme généralisation, supposons A tel que l'on puisse salis-

faire 7
AN = (AN e — dy = 2" |

0

[ ]
“~

n étant un nombre entier et positif. En raisonnant comme tout a
I’heure, nous amenons 22} a la forme

£ £
[oa’] = /.u — 'oiy)dy = [11 (x — viA (o dy
e e

0 0

d’ou 'on tire immédiatement

Py
,1 dll+l .
clr) = — ——— /.u( ViAo — ) dy L
' n' (/,xr'l+1:) o e

On agirait de la méme manicre sin cessait d’étre entier et positil’;

1 Bicn entendu, cetle solution, de méme que la précédente, doit étre vérifice a posteriori;

ce controle sera toujours facile.
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la détermination de la fonction A’ réduira toujours I'équation (22)
a une équation intégrale d’Abel, facilement résoluble comme on
sait.

11 est sans doute ordinairement tout aussi diflicile de dégager
Vinconnue A’ des formules (23) et (24) que ¢ de la proposée (22),
et le détour ne réalise aucun avantage signalé sur les formules de
M. Levi-Civita. Mais lorsque A est une fonction holomorphe au-
tour de 'origine, A’ I'est aussi et sa détermination n’offre pas de
difficultés ; la méthode esquissée ci-dessus devient alors tres pra-
tique et donne, d’'une mantere rapide et élégante. la solution cher-
chée. Je vais, en terminant, Pappliquer a un exemple ou A est
analytique, mais non pas holomorphe a 'origine.

Soit A(x) de la forme

Afx) = Pt (ay — arx — agx® — .1, (23)

Vexposant e étant compris entre 0 et | et le coellicient «, dillérent
de zéro. Prenons

Ax) = a7 % (b, + bix + baa? 4 ..oy, (26

et substituons ces valeurs (25) et (20] dans U'intégrale 23.. En opé-
rant formellement les calculs sur les séries du premier membre et
atilisant le résultat connu

15!

(Y + & 4+ 1}.

1
/“1'7(’1 — _'1'|'}(7)' —
0

on trouve, pour déterminer les inconnues b, b, ... b,,. 'équation

aybgta — 1)1 a)! =1

et la récurren ce

1,m
. (m—a—p)!{p4+a--1)! _ ) _
([/O])/n_. (]n_.a)!(r]__.’l“ ((p{)])z_p s (I)I,: J., l, ) (2/)
, 5 ;
Considérons les séries
1, » 1.
~ . ) 7 ] !
o(r) = a,(e — 1)! — N (p+2—hlaprt =« ——-> a, xf
s 0 e P
p P
et
t,w

! N
a) ! bpal = b, + X /);) xP

!

P



44 C. CAILLER

portons dans la récurrence (27} les valeurs

4 /

a b
)
ap:(p—{—oap——l)l {}P:F:[_zﬁ
elle devient
1,m
(')’” (L; —— E a;J { :N__p
I4

C’est celle méme que fournit la méthode des coefficients indéter-
minés appliquée a I'équation

3(a) ¥ () = |
Pour trouver les &, et A’, il suffira donc d’ordonner le quo-

' 1 . :
tient < suivant les puissances de @ en posant
O

S/

~

I
O] =

I
1/

on aura ensuite
d 0, m

b V ox
h = el ol = ./r'_“\j _i"i_

) = ,
mn (m — a) ! st (1 — )
m

C’est la regle de la réduite de Laplace que jai déja développée
dans le mémoire cité plus haut.

Si la série d(x) est convergente, la convergence de d'(x), et a
fortiori celle de A’ (), est assurée: on peut ajouter que méme si

d(z) est divergente, mais que « soit inférieur ou égal a 5. A () }l

est encore convergente. _

Pour faire voir ce point, reprenons la récurrence (27); nous ob-
tenons une majorante en remplacant tous les a, par leurs valeurs
absolues o, = |ap|, et le coefficient numérique

(m——a—'—p)fip—{—oc——l)f

(m — o)l (2 — 1)!

par son maximum. Ce maximum, on le montre aisément, s’'obtient
quand m est donné pour une des valeurs extrémes p —= 1 ou
p=m; les valeurs asymptotiques des termes correspondants se
déterminent par la formule de Stirling, ils valent respectivement

a ! 1 X (— a)!
__——-————-;——~’ e
(@ — 1) m (2 — 1i!'m

1—2a
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Ainsi, dans le cas mentionné a = 5, le coefficient numérique est

= o] =

borné supérieurement. Si A est la borne supérieure, la majorante

cherchée sera

1,m

%o S/;l = A ; Up Bm-—p ; (28)
P

si Ion prend 8, = |b,1, on tire de (28) des B, tels que pn = [ Om | .
Posons deés lors

1, 0, »

2: N

alx) = ay — apxp , et blx) =N gt
4 P

la détermination (28 des B est celle qui résulte de la condition

|
\

~

agb(x) 4+ Ab{x)(a(x) — o) = 2,73,

ou
9}
%o Po

%, + A(a(x)

b(x) =

%ol

Or, d’aprés notre hypothése, a(z) est convergent, donc b(x) le
sera dans un certain domaine et A’ (x) a fortiori. Le rayon de con-
vergence certaine de A'(x) est égal soit a celui de A{x), soit encore
au module de la plus petite racine de I'équation

Aa(r) 4+ 2,01 — A)=20.

Pour finir, appliquons ces généralités a un exemple analogue a
celui de M. Holmgren, en considérant ’'équation

/73‘“~1 R ()'irj) flr — »)dy = o(x) (29)

€

0

ou R(yP) désigne un polynome en y# ne s’annualant pas a Uorigine,
et 8 un exposant positif qu'on devrait supposer entier pour rester
dans le cadre des explications précédentes, mais qui peut étre en
réalité quelconque. Je ne résous d’ailleurs (29) que pour le seul cas
¢px) =1, ce qui suffit, comme on a vu plus haut.

Prenons les réduites de Laplace. Celle de y7~1R y?) est évi-
demment de la forme yo—1P-(y#) ou P désigne un nouveaun poly-
noéme possédant un terme constant; celle de A’(z), ou flx), sera
donc égale au rapport .o—«: P (2F),

Appliquons a ce rapport la décomposition en éléments simples ;
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la réduite de fiv, se présente alors comme la réunion d'un certain
nombre de termes des formes

R -
X x , )
A el A (p = enticr

5 - (j)
1l — axt (I — ax?)

Développées en séries, ces fonetions s’éerivent

0, 0.
Zﬁ on— . o p ..o qp n— 1) 5p_
A gt % ’ ot A\j ([’n/{_‘_]__*' , n‘[ . | on—a
e 1.2.8 ... n
L 124

ainsi, et telle est la solution, l'inconnue flr, se compose d'un
nombre fini de fonctions analyliques des formes

"
0, n N

X
[&.1'—“ NN
MJN == ¥ .

n

et
0, » n B
u‘_aﬁﬁp(p—}*l) otpFn—1 X
o 2 1.2.83 ... n (G — o).
Iz

£
Lles fonctions précédentes sont évidemment apparentées aux
fonctions de Bessel.
Posons, pour abréger,
0, =« z
‘ O T
¢ nla, a4y = ——
%y 2 e (511 ) !

n

on démontre immédiatement I'équation

x

(1——/)\/.3 (v, @)z, (v —1y, bdy =12, (x,a —<, (x, b,
( . ‘d’,\(-. IiJ)'\lr\ v . Iy"\j" / l’\i

0
ou bien

X
a—b f v—%5 a)o, (F—y bydi =73 =, @) =5, le—0, b
( 'b Py Y( )‘.‘g’Y(. Y. 0) Ay',‘,‘ , ) .7'\( Yy

Y

avec o' = o+ —y 4+ 1. Dans le cas particulier =8 =¢'—y — 1.
Iidentité précédente devient simplement

x

,, v — E__ 4 :
(a — [))L/""d.,a.-{—l‘-'z Z.a) P, gt 50 by ds
Y
)

(v — v, a) — (x —

to

-G

o
o, 241 T, a1
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MELANGES ET CORRLESPONDANCE

On y reconnait l'équation caractéristique des 1‘0501\ antes d'un
noyau donné, et on conclut que la fonction ¢, .\ 0 — Y, est
la résolvante du noyau

(x — v, 0) = ———— pour E -

Kz, y) =0 pour <

C. Caicrer  Genevel.

MELANGES ET CORRESPONDANCE

Une nouvelle définition des points d'inflexion des courbes planes.

1. La symétrie par rapport & un point nous fournit une défini-
tion facile des points d'inflexion des courbes planes, tandis que la
symétrie par rapport & un axe vend évidente la propriété du cercle
osculateur. '

Rappelons tout d'abord les principes suivants faciles a saisir.

2. Etant donnés deux axes rectangulaires quelconques :

a) Les deux points symétriques d'un point par rapport aux deux
axes sont aussi symétriques par rapport a Porigine. Il en est de
méme pour deux figures symétriques d une hom‘e tracée dans le
plan de deux axes.

b) Réciproquement : étant donnés un segment rectiligne quel-
conque et deux axes rectangulaires passant par son point milieu,
les points symétriques des extrémités par rapport a ces axes coin-
cideront entre eux.

¢) Les deux segments symétriques d’'un segment rectiligne pas-
sant par l'origine, contiennent ce point, sont égaux et en ligne
droite.

3. Tukoreme I. — Si l'on construit les deux courbes symé-
triques d’une courbe plane par rapport a deux axes orthogonaux
dont I'origine est un point quelconque de la courbe, et si l'on
groupe deux a deux, d’'une facon convenable, les segments sui-
vant lesquels ces diverses courbes (y compris la courbe donnée)
sont divisées par l'origine, on y discernera quatre courbes, deux
d’entre elles ayant a cette origine un point d'inflexion et les deux
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