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SUR DIVERS PROCEDES DE FACTORISATION!

Problema, numeros primnos a
compositis dignoscendi, hosque
in factores suos primos reso-
luendi. ad gravissima ac utilis-
sima arithmeticae pertinere.

(FAUSS.
Reconnaitre si un nombre donné quelconque « est divisible par
un autre nombre donné & est chose facile : on na qua ellfectuer
a division de « par 6. Me¢ i « nest pas donné expliciter
la division de a par b. Méme si « nest lonn licitement,
la chose est encore possible, en faisant appel a la théorie des
congruences®, d’apres un procédé dua en principe a Euler.
l.a question inverse : déterminer les nombres divisant un nombre
donne, ¢’est-a-dive résoudre l'équation wy == n, cst au contraire
) [ 4
d'une difficulté telle que, — saul pour les nombres qu’on peut
€ . > ” . .
mettre sous certaines formes spéciales, — elle n’est pratiquement
soluble que pour des nombres n'ayant guere plus de dix ou douze
chilfres: et encore les calculs qu’elle nécessite sont-ils alors d’une
elfrayvante prolixité. D’apres une assertion de Gauss, 1l ne faut
pas sc {latter de trouver une méthode dont la difliculté drapplica-
tion ne croisse pas beaucoup plus rapidement que le nombre des
chiffres a fuctoriser.

L Depuis une quinzaine d’années, on appelle ainsi, d’apres les arithmdéticiens anglais, la dé-
~composition d'un nombre entier en ses facleurs premiers.
2 Ainsi soit & trowver le reste de la division de =35 par 31867 : on a, suivant le module 31867,
216 15126 .32

32768 = 901 , 230 = 9012 = 15126 , 235 6027 .

i
il
i

On démontre de méme que 7190 4 | est divisible par 641 (Euler, voir Ens. math., 1907, p. 437,
Cque 31990 — 3 Uest par 13 (Gauss, id.), que 189%T1 — 1807 4 18970 I'est par 191 (Desmarvets,
id.), que 28 4 1 Lest par 2748779069 431 (Scelhof).

Certaines identités algébriques fournissent tres simplement une infinité de résultats de ce
genre. Ainsi on connait la factorisation algébrique des expressions @t — b, ¢21+1 4 p20+1
a* 4 4b%: tout nombre de cette dernicre forme est composcé et égal aw produii des dewx swi-
cwants a? == 2ab 4 2b% (Euler) ; d’oit trois théoremes dus & Goldbach, Sophie Gevmain et Auri-
feuille, en faisant

' a=1; b=1 : a=1, b=2"

Ed. Luecas et le lieut.~col. Cunningham entre autres, ont fait de nombreuses recherches sur
rce genre de formules algébriquement décomposables.

La connaissance d’expressions jouissant de celle propriété est du reste extrémement utile :
pour factoriser un nombre donné, on cherche d’abord a le diviser par les plus petits nombres
“premiers, 3,5, 7, 11, 13, ...; on s’assure, par le calcul ou au moyen de tables, qu'il n'est ni
-carré, ni cube, ni triangulaire; ct on essaie ensuite de le mettre sous la forme d'une de ces
-expressions décomposables, ce qui — si on rdéussit — évite de longs calculs.
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l.Les Anciens s’étaient probablement posé ce probleme, mais
-sans aboutir jusqu’a Kuclide, a d’autres résultats que la connais-
sance de certaines propriétés des nombres premiers. Peu apres
lui cependant, un pas important fut fait dans cette voie, 'inven-
tion du crible d’Eratosthene.

[.es Indiens et les Avabes ont di également s’en occuper; tou-
tefois ¢’est dans Fibonacei qu’on voit, pour la premiere fois (12021,
-cette regle toute théorvique d’essayer la division du nombre a fac-
toriser par tous les nombres premiers inférieurs « sa racine carrée’.

C'est seulement avee les Modernes qu'on est arvivé a reculer la
Timite des nombres qui peuvent étre factorisés. A Frénicle parait

! Les divisions & elfectuer peuvent ctre facilitées par les considérations qui snivent :

Ly @ avantage @ commencer les essais cn partant de la limite V u . En effet, soit n=pa+r;
~siun divisenr g de 7 e divise pas «, il sera inutile d’essaver la division par ¢ (E. Lebon).
Alnst 4171 = 68.61 + 23: il est donc inutile de diviser par 23,

Sile quotient n'w pas plus de’quatre ou cing chiffres, on peut, avec Ed. Lucas, se servir
~d’une table de logarithmes a sept décimales.

Si le nombre a factoviser se termine i droite. par exemple par 7, les deux fucteurs de ce
* nombre sont terminés P'un par 7 et lautre par 1, ou bien Pun par 3 et lautre par 9. On mettra
sur une ligne les nombres premiers déeroissants a partir de v'7 et sar une deuxiéme ligue,
les nombres croissants également a parvtir de ' 72 et qui, multipliés par leurs correspondants
de la premicre ligne, paraissent devoir produive le nombre 2. Ainsi soit le nombre 7 = 4171 :
-on considere les couples

GL.TL, 39.6) ou 39.79, B3.77 . 47.93, 43.87 ou 43.97, ...
La preave par 9 fait voir que n = 4 (mod 9); par Paddition des chiflres des différents couples,
on voit quon peul se borner a essayer seulement les produits 53.77, 43.97, ... dout le
deuxicme réussit. Ainsi n se tronve décomposé en ses facteurs 43 et 97.
St % et {j représentent les restes de la division de a ct de b par p, celui de a® 4 b divisé par p
. A R
sestrongru a AT 4= 3.

.. . . . ax +b . A
SSolt m= ¥ 4 b cherchons le nombre impair x tel que ——+—~ sort entier: n est divisible
a—X -
par a —x. Par exemple, falsant e = 14. b =1 et 2 = 1,3, 5, 7.0, 11 La formule qui pre-
~cede prend les valeurs
15 3 71 99 127 155
e

dont aucune n'est enticre : le nombre 142 4+ 1 est done premier.

.. N n—y9 n — 25 n — 44 n — 121
Sénest composé et p<EV i, Lun des nombres — ) - , = ) )
3 D [ 11
n — 1§Y n— p? ’ . . . 188 172
TR est entier: sinon n est premier, Ainsi aucun des nombres w0 S
: p : )

148 76 28
— - T, = nestentier; done 197 est premicr.

7 1 13

Voici un autre procédé da a M. E. Lebon: soif n = a2 4+ b; s¢ aucun des nombres
(@—324+Db (a—3524+D (a—T724Dh

3 ’ 5) ’ 7 o

an =124 1.

M. Barbette (Les pos puis., Liége, 1910), a remardgné que la question revient a rechercher le
p-g.c.d. de deux nombres des formes p—x et n—(p —x)% x prenant les valeurs 0, 1, 2, 3. ...

A signaler aussi: Jo cette remarque faite incidemment par Euler : soit p le plus petit nombre
prenmier qui divise n, el Solt N = pa: on trouvera les diviseurs de a en divisant ce nombre par les
nombres premiers compris entre V. a et V' d’oi il suit que, comme l'a observé Legendre,
sip>Va, a est premier ; 20 celle-ci: de Gauss : Le nombre n ne peut avoir plus d'un facteu)'
supérienr e Von .

. West entier, n est premier. On peut PVappliquer
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due I'idée de réduire le nombre des essais, en classant les divi-
seurs sous certaines formes nécessaires qui montrent a priori
I'inutilité de certains essais. l.’ouvrage qu’il avait écrit sur cette
(question est resté manuscrit (voir Divers ouvrages..., Paris, 1693,
préface de lLahire). ’

IFermat a beaucoup cultivé cette féconde théorvie de Vexclusion,
et semble avoir trouvé a ce sujet de nombreux théoremes dont la
plus grande partie est encore inconnue, malgré les recherches des.
érudits et des savants. On peut résumer ainsi qu’il suit ce quon
sait des découvertes du célebre géometre sur cetle (uestion.

Dans ses Cogitata (1644), Mersenne, probablement d’apres l're-
nicle, annonce que jusqu’a n =257, les seules valeurs de n qui font
de 2" 719" — 1) un nombre /)m'f'(//'l c’est-a-dire de 2" — 1 un nombre
])1'0/721'61' sont 1, L, 3,5, 7, 13, 17, 19, 31, 67, 127 et 257. On peut
voir dans le t. 1 de /1’('(/ math. de Rouse-Ball (seconde édition
francaise, 1909), quelques-unes des tentatives faites pour démon-
trer cette proposition.

Dans le Comm. epist. de \Wallis (1658}, on trouve, de lfermat,
les suivantes, qui ont été le point de départ de nombreux travaux
d’Euler: tout nombre premier 4 4+ 1 est, d’une seule maniere, une
somme de deux carrés. Towt nombre premier 3 + 1 divise y* 4 377

Dans les Varia Opera (lb/‘)) on voit celles-ci :

Une somme de deux carrés premiers entre eur n'a auwcun facteur:
de la forme 4 — 1, ainsi il est inutile d’ esga}01 la division de
101 4 1 par 3, par 7, pal L1, par 19, par 23, ...

Si, p étant premier, a‘est la, plus petite puissance de a qui soit =1
imod pl, t est un diviseur de p— 1 '; si t est impair, aucun nombre
de la forme a* 4 1 n'est multiple de p. St t est un nombre premier

. ¢ " RS W ¥ 2 l —_
pair 27, on a a* +1=0. Si p=4 — 1 et que "' = b2 on
pourra écrire 8 = 1 avec 'y impair, et par suite il sera possible de

trouver un nombre z tel que a” 4 1 = 0.

Awcun diviseur de a2 — 2 n’est de la forme x* 4 2.

Si p est premier, les diviseurs de 2° — 2 sont de la forme 2px,
et cenr de 2 — 1, de la forme 2px + 1. Ainsi les diviscurs de-
237 — 1 sont de la forme 74 4 1. Essayant la division par les
nombres premiers de cette forme, 149, 233, ... l'opération réussit
au deuxieme essai? Awucun /mml)/'e 22— 1 nlest premier

Tout nombre premier 3 4+ U est de la forme x* 4 3y*. Tout
nombre premicr 8 4+ 1 ou 8 4 3 est de la forme x* 4 2y*.

1 (’est la le Lhéoreme de Fermat.

L'exposant ¢ s’appelle, d’apres Ed. Lucas, le gaussien de p 11 serait, dapres ce qui préecde,
plus équitable de le désigner par un mot rappelant le nom de I*ennmt qui I'a considérd le-
premier.

2 On démontrera de méme que 211 — 1 est divisible par 23 (Fermat); que 128 — 1, 2% — 1,
243 — 1, 278 — |, sont respectivement divisibles par 47, 1103, 431, 439 (Euler): et autres facto--
risations analogues. (Voir Rouse-Ball, op. cit., p. 311, ¢t Ed. Lucas, Th. des w., p. 51.)
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Depuis, on a retrouvé et publié en 1880 et 1883 quelques lettres
de F'ermat, dont on citera ce qui suit:

Tout impair non carré est autant de fois de la forme x* —y
qu’il est de fors le produit de deux facteurs'. Soit & trouver les
facteurs de n = 2027651281 ; l'extraction de la racine carrée don-
nera n = 45029% 4 40440. [.e carré immédiatement supérieur a n
le surpasse de 2.45029 + 1 — 40440 = 49619, nombre non carré,
ce qu'indiquent suffisamment ses deux derniers chiffres a droite.
lLe carré qui suit surpasse n de 49619 4 2.45029 -+ 3 = 139680,
nombre non carré. Continuaut ainsi, on trouve a la dixieme opéra-
tion, 45041% == n 4 1020?%; de la la décomposition n == 46061.44021°.

9

b

1 A citer ces deux théorémes analogues :
St on peut écrire a? 4 4n = {% et a2 — 4n = g2, le nombre n est de la forme xy (x2 ~ y%j. En
-ettet, des deux relations données, on tire

o\ 2 _— 2
() 4 (5 =
ce ui conduit a poser
r—s

*__f-t-g: 23 — 42 et %

- &

=2y , d’out n=xy(xt — % . (Aurifeuille)

Pour u premier, v 4 8u ne peut donner un carré que si v =2n —1 ou v=n — 2. En effet,
) xlx—1
— 9. by 112 .

tout entier n peut se mettre sous la forme xy —
done, en posant 2y +1=u, u?—8n doit étre un carré o%, qui doit étre impair, car les nombres
«—+ v et w— v sont de méme parité et par suite tous les deux pairs puisque leur produit 8n
est pair. Si n est premier, on a les deux solutions uniques

utv=4n , w—p=2, d’ou v="2n —1

wtv=2n, u—v=—=st, d’ol v=rn=—2 .

Sinest composé, on a au moins les deux relations distinctes w2 — o2 = 8n, /% — (/3 = 8y 5
d’oii, au moins, quatre solutions de I'équation u? — v2 = 8n (Barbette, op. cit.).

2

: _ x 4 yz\2 xr — ys\? . x ;
Posons n = xy; 'identité nz = 5 7 ) — ( g ) montre que si z est impair le

. . x ¥ e 5 . : y
plus voisin de —, zn sera une différence de deux carrés dont le plus petit sera aussi petit
1 .

ue possible : on pourra ainsi appliquer & zn la méthode de Fermat. La recherche des divi-
seurs de n est done ramenée a celle de la valeur de z. Le plus souvent, z n'est pas trés grand
et il suffira d'appliquer la méthode aux nombres n, 3n, 5n. Tn.
Z On sait qu’un carré est toujours terminé par l'un des vingt-deux groupes suivants :
00, 01, 04, 09, 16, 21, 24, 25, 29, 36, 41, 4%, 49, 56, 61, 64, 69, 76, 81, 84, 89, 96.

% Dans cc cas particulier, les opérations sont peu nombreuses, les deux facteurs différant
peu un de Pautre. Toutefois, on pourrait abréger et exclure souvent dix nombres d’un coup.
Dans le méme ordre d’idées, pour n = 4171, nombre examiné déja plus haut, on a les deux
relations
4n = 1292 4 43 = (3.43)2 1 43

13n — 120 = (2322 + 399) — (2412 + 313) = 473.9 — 86 ,

dont chacune donne la solution.
Plus généralement, la décomposition se trouvera de la méme manicére, si on peut derire :

An = fat 4 g2 + ha - jb + ¢ , Bn=f?4 ga?+ hb 4 ja + ¢ .

On pourrait assigner d’autres formules plus faciles a imaginer qu’a appliquer. Par exemple,
en combinant, par voie d’addition, les deux suivantes

An=afcHf)+b(d+f), Br=blct+g +ald+g .

Mais souvent I'habitude du calcul suggérera des exclusions évidentes ; ainsi pour n = 4171,
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[l convient de mentionner que ce procédé a été publié avant la
lettre de Fermat, dans le Dict. de math. de Montfervier Paris,
1835}, et réinventé également par Landry et Aurifeuille.
» | N L

p designant un nombre premier, Uentier
2px 4 1.

Saufle cas oic ab ... est de la forme 2%, le nombre 2 4 1 ext
composé.

Aucun facteur de a* 4 3b* n'est de la forme 3 — 1.

Enfin on citera la décomposition du nombre 100895598169 pro-
posée par Mersenne a Fermat, qui la donna sans d’ailleurs indiquer
la méthode u’il avait employee'.

—— est de la [forme
J

ona:
n=100.41 4+ 71 | 1007 = 2042 - 2.47 | 3n = 112 — 31

ce (ui fait immédiatement voir qu’il est inutile d’essaver la division par 41, par 47 et par 31.

Soit n = a? 4 b; posons n = (a + x)% — (x¥ 4 2ax — b) : la queslion est rédunite a amener,
par diverses substitutions, l'expression a2 + 2ax — b a étre un carré. Supposons qu’on cherche
seulement les facteurs premiers X 173 on posera

n 4 256
32

a+x—Vrax+ 2a) —b>16 , d'oit x <

€
Soit, par exemple, n = 4171, Par 'extraction de la racine carrée. on trouve n = 64% 4 75
x (x + 128) — 75 doit done &tre un carré. 1l faut ¢liminer toutes les valears de x inléricures-
A 6% et terminées a droite par I'un des chiffres 3, 4, 8, 9, car autrement le premier membre ne
serait pas un carré. Pour le méme motif, x ne peut étreni 3+2, ni 741.2,3,4. ni8 4 0. 1.3, .5,
Les nombres inférieurs a 74 et répondant a toutes ces conditions sont 6, 42 ¢t 70, dont le pre-
mier donne le carré 272 ; en le mettant a la place de x dans 22 + 2ax — &: on a ainsi

n = (64 + 63 — 272 = (70 4 27) (T0 — 27) = 97 . 43

Siavcun de ces trois nombres n'avait donné de carré, le nombre 2 n'aurait aneun diviscur
premicr plus grand que 16, ct, en divisant par 3,5, 7, 11 ct 13, il aurait été aisé de voir s'il
était premier.

Souvent, comme on I'a va plus haut, lIa décomposition se voit plus aisément sur un multiple
que sur le nombre proposé lui-méme. Ainsi. pour 2 = 4171, on a: 8n =152 — 113 doi
n=97.43, Pour n = 118017, on a: 31 = 595% — 22 == 597.593, d'out n = 199.593.

On arriverait aussi a la solution si on pouvait trouver deux égalités de la forme An=a? 4 «,
Bn = b2 =+ ¢, car il s'ensuivrait (A = Bjn = (¢ 4 b) (¢ — b). Ainsi soit n = 4171, il viendra:

-+ ’
1on = 2742 4 2 3Bn = 3712 42 | d’ou 15n = 645.97 .
En général, si Az peut se représenter par la différence de deux valeurs de la fonction enticre
h g . - < . . , c
Flx) = Ax"" + Bx® + ... la décomposilion est immédiate, car Fia) — Fib) est divisible par
a — b ; par exemple, on pent prendre pour F les carrés, les cubes, les bicarrés, les triangu-
laires, cte., dont on posscde des tables étendues.

1 On a émis diverses conjectures sur le principe dont s'était servi Fermat pour obtenir celle
factorisation. Ne serait-ce pas simplement la considération des triangulaires, telle que l'in-
dique M. Barbette (op. cit.) et qu'on peut exposer ainsi:

La factorisation est facile si n est un triangulaire, ¢’est-a-dire si on peut éerire 2n = x(x + 1)
ou bien 2x = — 1 4 ¥'32 + 1. Ainsi la condition pour n d'é¢tre un triangulaire ¢quivaut &
celle, pour 82 4 1, d’étre un carré. Essavant cette formule avee le nombre de Mersenne, on
voit, en extrayant la racine de 82 4 1, que ce nombre nest pas carré, et que

8n = 89423% + 898453 |

d’ou la décomposition demanddée. Cette égalité avait du reste été signalée antéricurement par
M. Petersen (I. M., 1908).
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Euler a beaucoup étendu ces procédés de Fermat'.

Contrairement i ce que pensait celui-ci, il reconnait que 22" o f
n’est pas toujours premier, méme si n l'est, car 22 4 1 est divi--
sible par 641. 11 donne les diviseurs de 2% — I, pour @ == 29,43
et 73; et diverses extensions ou conséquences du théoreme de-
Fermat. (1732.)

11 donne les formes linéaires des diviseurs de 2* 4 py?, pour
les premicres valeurs de p, et celles de aa? + by?, pour diffé-
rentes valeurs de «ab. Il observe que les formes ax? 4 by* et’
x? -+ aby? ont les mémes diviseurs, de méme que x* + ay? el X* + a..
(1744.) . ’ |

Tout divisenr de a2 - b2" est de la forme 2"ty -+ 1. De la, la
démonstration de la divisibilité de 272 4 | par 641. 11748.]

Le produit de dewx sommes de deux carrés est une somme de
deux carrés®. Sia et b sont premiers entre eux, les diviseurs de
a® 4+ b? sont des sommes de deux carrés. Un nombre & + 1, qui
ne peut se décomposer que d'une seille maniere en une somme de
dewx carrés est premier; dans le cas contraire, il est compose et
on trouvera aisément sa décomposition?. (1752.]

St un diviseur de a* 4+ 2b? on a® ++ 3b? est de méme forme, il en
est de méme du quotient. Tout nombre prenier 6 4+ 1 divise 3x* 4 v*
et i/l est de la méme forme. 1759.)

Il montre comment on détermine des nombres de la forme 22 4 1
qui soient multiples du nombre premier p de la forme 4 + I, ce-
qui facilite la recherche des conditions de divisibilité d’'un nombre
donné par p, et permet de trouver de trés grands nombres imme--
diatement décomposables. (1760.)

On sait, d’apres Fermat, qu'un nombre n, de la forme 4 + 1,
est premier s’il est, d’'une seule maniere, une somme 2? 4+ y* de-
‘deux carrés; mais, pour peu que n soil considérable, on avait
ainsi a calculer un grand nombre de carrés. Euler montre com-
ment on peut réduire le nombre de ces opérations, en détermi--
nant les formes linéaires de y d’apres celles de n. Ainsi si
n =162 + 1L ou 162 + 5, » est de la forme 8 4= 1 : le nombre des.
carrés a calculer est ainsi réduit au quart. On comprend combien,
avec des coeflicients plus élevés, comme 60v -+ 1, 2400 - 1,

1 Pour les détails et les démonstrations de ce qui a rapport a Euler, voir Ens. math.. 1909,
p- 330 et seq.

2 Théoréme déja connu de Fibonacei et de Fermat, et peut-dtre de Diophante.

8 Soit, par exemple, n = a? 4+ b2 = «2 4 [2: si L désigne la valeur de la fraction
67‘

at+a S5—0
ﬁ+b_a~q

réduite a sa plus simple expression, u est divisible par f2 4+ g2
Cette méthode parait avoir été connue de Frenicle.
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144000 + 1, ... on augmenterait le nombre des exclusions, et par

'suite la rapidité de la vérification de la divisibilité des grands
nombres. (1765.)

Il vérifie ainsi que, comme 'avait annoncé Fermat, le nombre
n =2 —1 est premier: 31 étant premier, tout facteur de n est
de la forme 62 + 1 et, d’autre part, n divisant 232 — 2, il est des
deux formes 8 4 1; il est donc de l'une ou de l'autre forme
‘248 + 1, 63. Essayant la division de n par les nombres premiers
compris dans ces deux formes, Euler s’est assuré que ce nombre
-est premier?t. (1772.) ~

[l propose, pour la construction des tables de nombres pre-
miers, la méthode suivante : soit considérée 'expression 30a +- «,
-ou a représente un entier quelconque, et o, 'un des ¢(30) nombres
I, 7, 11, 13, 17, 19, 23, 29, inférieurs a 30 et premiers avec lui.
[.es valeurs de cette expression comprennent entre autres, tous
‘les nombres premiers avec 30; il faut en éliminer tous les mul-
tiples de nombres premiers. Pour cela, on résoudra, dans chaque
.cas, 'équation 30a -+ « = By, B désignant 'un quelconque des
nombres a?: la formule 30(x ++ AB) 4+ «, ou £ varie de 0 a =,
donne la suite des nombres divisibles par . Classant toutes ces
‘suites en une méme table, les nombres absents de celle-ci sont
premiers®. (1774.)

Fuler montre que s/ x étant premier avec k, tous les nombres de

1 Landry et Ed. Lucas, comme on le verra plus loin, ont également vérifié cette assertion
-de Fermat, a 'aide de méthodes particuliéres. Legendre I'a fait par une méthode tout a fait
sgénérale.

2 Par exemple, soit 30x + 1 = Ty; on a

2 1
y=4hx 4 x-: 3

.ainsi les valeurs de x qui rendent 30x - 1 divisible par 7 sont les termes de la progression
- 3.10.17.24%...
3 Cette méthode a été retrouvée et perfectionnée récemment par MM. Lebon et G. Tarry.
Le premier prend 2310 = 2.3.5.7.11, au lieu de 30, ce qui lui donne P (2310) = 480 types de
Vexpression 2310z 4+ a. Si on résout 'équation [z — 2310y = & et qu'on pose y = a — b,
Al viendra :
2310a + o = (23106 + Bz .

Le nombre 2310¢ + « sera done divisible par le nombre 23106 + @ En déterminant toutes les

-solutions, on obtiendra de méme tous les multiples de 23106 + 3.
M. Lebon a depuis perfectionné sa méthode et s’occupe de la construction de tables qui
:permettent de factoriser un nombre quelconque inférieur a cent millions.
M, Tarry pose
n = 20580a + o , o =2100+03 ,

-d’on n = 20580a + 2106 4 3 .

Soit le nombre premier p > 7, c’est-a-dire non divisear de 20580, et soit & 'associé de 20580,
~c’est-a-dire le nombre tel que 20580k = 1; on aura hn = a + 210hb 4 [k, de sorte que, si &'
et (3’ sont les restes de la division de 21046 et de Bh par p, on pourra écrire

hn=a+a + ' .
at a4+ =0 .

_Ainsi p divise 2 si on a:
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Jorme x2 - k et moindres que 4k sont premiers, ou des carrés de-
premiers, ou des puissances de 2, un nombre quelconque qur ne
peut étre représenté que d’une seule maniere par la formule y* 4 kz?*
-est premier. 11 donne la liste des soixante-cing valeurs de %, qu'il
appelle numeri idonei, et qui sont: 1, 2, 3, 4,5, 6, 8, 9, 10, 12,
1365, 1848. (1776.)

Il enseigne, sur des exemples, différents procédés d’exclusion
.dans la recherche des solutions de ’équation n=a*- b?—=2*+ 3,
par la considération des formes linéaires possibles des inconnues;
et il étend sa théorie au cas ot n est de la forme 2* -+ ky?. (1778.)

Lagrange ne s’est pas spécialement occupé de la factorisation
-des nombres, mais il a démontré cette réciproque d’un théoreme
&’Euler: si k est positif, le nombre premier p ne peut élre que
d’une seule maniere, de la forme x* ++ ky®. En effet, soit

]7 :/2 + A.gﬁzflz + /x'g,z -
on aura
(] » (" — kgg') + kifs’ + '8 = p* -
Or .
fzglz . /vzgz — p(grz L gz) ;
p diviserait donc 'un des deux nombres f2’ + f'g, ce qui est im-
possible, puisque, d’apres (¢}, on a

fe' +1'g<p. (Misc. Taurin, 1766-69.)

Il a démontré le théoreme de Wilson (Mém. de Berlin, 1771)
qui, comme on sait, fournit un moyen, malheureusement impra-
ticable, de caractériser et vérifier les nombres premiers®.

Enfin il a donné le moyen de trouver les formes linédaires des
«diviseurs d’un nombre quelconque qu’on a pu mettre sous la

forme ax® 4 bxy 4 cy. (Id., 1775.)

Legendre, dans sa T%. des n. dont la premiére édition est de
1798, — outre une table des formes des diviseurs numériques des
nombres de la forme 2? - £y?, jusqu’a £ =103, — a indiqué plu-
sleurs voies qu'il serait bon de soumettre a de nouvelles explo-
rations. |

1 Ainsi 37 étant de la forme 4 4 1, on calculera ainsi:

11=1, 212, 31526, 41==2, 51=29, 6!=6.9=17, TI=T.17=S5,
81=8.8==27, 91==9.27==21, 10!=10.21=25, ... 1§1==6.12==6 , (mod 37)
(1802 4+ 1==62 4 1=0

-done 37 est premier.

LI’Enseignement mathém., 15¢ annde ; 1913. ” 15
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Soit n = af? + 2bfg + c¢g*, a, b, ¢ étant premiers deux a deux..
Posons
n = ax® 4+ 2bxy 4+ c)* et ac — b* = A
i1l viendra

(a) an = (af + bgP + Ag® = (ax + by)* + Ay* .

Donc n peut se mettre de deux manieres différentes sous la forme-
&2 + Ap%, et par suite, il est composé.

A4 est premier avec a et b, donc 'un des deux nombres (af+ bg-
=+ (ax + by) doit étre divisible par 4. ce qui donne 'équation de-
condition

af + bg 72 (ax + by — Az) = 0 ;
(]

d’ou, en substituant dans (¢}, la valeur de ax + by,

(#) g+ 2(af + bg)z — Az* = »*
et on aurait de méme
(7) 124 2(0f + bg)w — Anw? = 2* .

Si on peut trouver des valeurs de z et de w qui rendent les pre--
miers membres de (8) et de (y) des carrés parfaits, n est composé.

Inversement si on ne trouve aucune de ces valeurs de z et de o,
il y a présomption que n est premier, mais il faut s’en assurer au-
trement. Ainsi considérons la formule F = f? 4+ f 4 41; comme.
I'expression 1 + (4 + 2)z — 163z* ne peut représenter un carré.
positif que pour z = 0 et qu’elle est négative pour 47 4 2 < 163,
ou f< 40, pour les trente-neuf premieres valeurs entieres de f,
Uexpression ¥ donne un nombre premier, comme l'avait annoncé-
Euler. \

Pour voir si le premier membre de (8) ne peut devenir un carré,
on essaiera toutes les valeurs entieres de z comprises entre les

" . . . . 2
racines de I’équation g4 ...=0: le nombre des essais est 0 Van

et pourra encore étre réduit par 'examen des formes linéaires
possibles de z. Legendre tire de ces remarques un moyen ingé-
nieux — mais souvent illusoire — de trouver un nombre premier
d’une forme assignée et supérieur a une limite donnée.

Un autre procédé de Legendre fournissant des résultats certains,
sans nécessiter aucune connaissance préalable de la composition
quadratique du nombre n a factoriser, consiste a utiliser les pro--
priétés des fractions continues pour la recherche de ces mémes
formes, en développant par ce moyen le nombre n ou un de ses.
multiples.

Soient
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, . . ’ o . A
les deux séries auxquelles conduisent la décomposition de ' n .
On sait qu’on a
n—=["g" + g*=g" "+ I*,

Lol

ce qui fait que (g’2’}2 — ["'¢"* est un multiple de 7. On trouvera
ainsi plusieurs expressions de la forme 2? — Ny?* dont n doit étre
diviseur. |

Appliquant ce procédé au nombre n = 10091401 traité autre-
ment par Euler, Legendre trouve qu’il est diviseur des formes

a4 3 a3y, at 4 6)%, 2t + 5t az 4 38y

a — 46y% AP — 55)%, At — 97

%

cherchant les nombres premiers inférieurs a {/n et appartenant
a la forme 1320 - 1, 7, 49, 103, ... combinaison des formes

64 1: 2441,51925; 2041,3,7,9;
44 - 1,5,7,9,19, 25, 35, 37, 39, 43 ;
des diviseurs des formes quadratiques
2t 4 3},2, 2t - 6)‘2, xt 53,.2 . oat— 55),.2 ’
et retranchant de ces nombres ceux (ui ne peuvent diviser
224 31, ni a* 4 38)%, ni a® — 46y*
il reste, comme diviseurs possibles, les seuls nombres 727, 1423,

2281, dont aucun ne divise n: ce nombre est donc premier*.

Gauss, dans ses Disq. arith., a donné, sur le méme sujet, plu-
sieurs méthodes trés ingénieuses, dont on donnera seulement le
précis. La premieére (voir fins. math., 1907, p. 36) s’appuie sur les
propriétés des résidus, qu'on déterminera en remarquant que si
kn = fo* 4 gB*, — fgo*B* est résidu en méme temps que — fg.

1 Tchebichef, dans son traité des congruences, publié¢ en 1849, trouve par les mémes movens,
que le nombre 8520191, également considéré par Legendre, divise les formes

2t —5by?, x®—2y%, x?—13y%, x?—3Ty?, xf—101y% .
De la les formules
260 +1,7,9,29,33, ... 2041,9,11, 19... 520 + 1,9, 29, 49, 51,
Les nombres premiers de ces formes et inférieurs a 18520191 sont
521, 601, 1231, 1249, 1999, 2441, 2729, 2791.

Aucun d’cux ne divisant le nombre proposé, il est premier.

Soit n = 4171 = 64% + 3.5% = 65% — 6.3% Ses diviseurs sont de la forme 6 + 1 et de l'unc
des formes 24 == 1, = 5. Il s’ensuit que les diviseurs de n sont de I'une des formes 24 + 1, 19.
On essaiera donc la division par 25, 43, 49, dont le second seul est premier.
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Ainsi, on a:

-

997381 = 992 — 2.5.67 = 994 4 5.11.13% = 2.706% - 3.17.3°
— 3.575° 4 11.31.2* ; |

donc les nombres —2.5.67, 5.11, 2.3.17, 3.11.31 sont résidus,
ainsi que 3.5.11%.31 ou 3.5.31, ete. D’ailleurs, de ces résidus,
on déduit de nouvelles conditions qui permettent d’exclure cer-
taines formes de facteurs, a la maniere d'Euler.

La seconde méthode de Gauss demande la résolution de deux
équations importantes, qu’il montre a résoudre d’abord directe-
ment et ensuite par des procédés indirects tout a fait élémentairves
quoique beaucoup plus rapides.

Soit d’abord a résoudre 'équation

RN 2
(%) a 4+ ny = a* ;

. . n .
il est permis de supposer quon a 0 < = 5 o carsl v = f est

une solution, x == n — # en est une autre. La valeur de y est

a

’ . . a 4
ainsi comprise entre — — et - — — .
‘ n e n

Soit ¢ un non-résidu du nombre premier p et soit y = o une
valeur qui donne a + ny = ¢; tout nombre congru a « donne a
la formule @ 4 ny une valeur qui est un non-résidu et a fortiori
un non-carré. On peut done exclure, des solutions de (¢, les va-
leurs de y comprises dans la formule a 4 pz.

I.a considération d'un autre nombre p’ fournirait des exclusions

analogues.
Ainsi, soit 2? == 22 -} 97y :
pour p=3, s =2; a="1u on exclura les nombres 3z +1;
» p:4,9:2,3;a:0,1: » » hz et 4z 1
» p=3, 0=2,3; a=0,3: » » 5z et 9z -+ 3 ;
» p:?,p:3,5,6:a—2,3,5 » » 724-2,3,5.
— . . 22
Eliminant des valeurs entieres de y comprises entre — = et
97
97 . : . .
—- — =, celles qui sont comprises dans les formules qui pré-
% /
cedent, il ne reste que les nombres 6, 11 et 14, dont le second
seul donne un carré. On a ainsi la solution y — 11, » = 33.

On arrive ainsi, de la maniere suivante, a la connaissance des
non-résidus a, o', &' ... de p :soient £, /', /... les solutions des
congruences

(8) ny

il
it
Il
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g, celle de la congruence ny = a; on aura a = [+ g Sinest
vésidu de p, £, /', /" ... sont non-résidus d’apres () et se con-
fondent avec les nombres «, &, ¢’ ... Si n est non-résidu, £ /", ...
forment ’ensemble des résidus: de 14, les non-résidus. ’

Soit en second lieu a mettre n sous la forme ax? 4 by*. On
cherchera les valeurs de z qui rendent n — az divisible par 0, et
on posera x = bw == 3, w prenant les valeurs 0, 1, 2, 3, 4, ...;

— ax? . s
“Z sera un carré parfait
)

et ¢

. . . n
a sera une solution quand l'entier

positif. Cette dernicre condition montre qu’il n'y a pas lieu d exa-

. o : n
miner les valeurs de & supérieures a y / — .
«
On peut encore réduire le nombre des essais, en remarquant
que z doit étre un résidu de b, puisqu’autrement on ne pourrait

éerire

T

Hl

ni par suite n— axt=n—az =0 (mod b)

De méme que plus haut, on limitera le nombre des essais. au-
tant qu’on le voudra, en remarquant que si ¢ esf un non-résidu
de p et qu’on détermine z tel que az = n -— bp, si on a en outre

2

9 H -— X

W=, e sera = g, c¢’est-a-dire sera un non-résidu de p.
)

i

lLa vésolution de I'équation ax* 4 202y + cy? = n se ramcene-
rait a la précédente, en remarquant qu’on peut ’écrire av + by *
+ lac — b*y? = an.

Maintenant remarquons dabord que tout résidu de n est en
méme temps residu des diviseurs de n. Soit kn —= A? — aa: si «
est non-résidu des nombres premiers p, ¢, r ... n n'est divisible
par aucun de ces nombres; la question revient done a trouver les
résidus de 7, comme on l'a dit tout & I’heure.

Sin est résidu de p, il 'est de p?, car, en posant A*> = n — ph
et résolvant I'équation 2Aw — py =4, il vient (A + pr*=n
(mod p*. De la le moyen de mettre n sous la forme B — Cp?2,
quon rendra d’autant plus utile que n — B? sera plus petit.

Soit — « un résidu de n; cherchons les racines de I'équation
WP 4w = ny et soient f? + a = ng', f'* + a = ng’; il viendura,
en soustrayant, puis en multipliant,

f+ [ — )= nh, wWeg = 1fff — a + aif P
D’un autre ¢oté, soit
= ax® 4 bt = ax 4+ 0y"* ;
il viendra d’abord la relation
afx®y™ — x*y = iyt — yY

’
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laquelle fait voir que 2 divise I'un ou 'autre des deux nombres
2y’ 4= 2"y, ou qu’il a avec chacun d’eux un facteur commun. Kn-
suite on a cette autre

(axx’ — byy' 2 4 ab(ry” 4 a'y)* = n* |

qui donne xy" ++ 2’y < n. On n’a donc qu’a chercher le p. ¢. c. d.
de n et de vy’ + 2'y.

Tchebichef a donné en 1851, dans le J. L., une ingénieuse mé-
thode de vérification des nombres premiers, dont voici le résumé :
a designant la plus petite valeur de x qui satisfait a Ueéquation

. 3 . & Bl o N o+ 1n
X* — ky?=1, si les nombres positifs aeta', inférieurs a \/(_— R

9
sont des valeurs de x satisfaisant a Uéquation x* — ky* = == n, et
gue b et b’ soient les valeurs correspondantes de v, le nombre n est
compose, et on en trouvera deux diviseurs en cherchant le p.g.c.d.
de n et de chacun des deux nombres ab’” 4 a’b '

Le nombre n ne peut étre premier que dans le cas on il n’est
qu'une fois représentable par la forme x* — ky? = -4=n, x élant
inferieur a la limite donnée plus haut. Si en ouire les diviseurs de
x? — ky? sonit tous de la forme 1x* — my?, el si n est premier
avec K, et de la forme des diviseurs de x* — ky?, la condition est
en meme temps suffisante?.

1l applique ce théoreme au nombre 7 — 8520191, de Legendvre;
ce nombre, qui est 12 — 1, est donc de la forme quadratique

. [ i n .

, ce qui conduit a chercher y entre 5 et — . Les
>

7

3!/2 _ .’Z'Q
hypotheses faites sur y relativement aux modules 2, 5, 7... font
voir que y est de l'une des formes de chacun des groupes suivants:

h: 16+1; 540, +2; 7+1,+2; MM+1,+2, +L5:
13440, +1,+3,+6; 47+1,+2, 43, +4, +7

La valeur y = 1937 rvépond seule a toutes ces conditions, ce
(qui montre que n est premier.

Landry (Procédés nouveaunx..., Paris, 1859} a posé les premiers
jalons d’une voie nouvelle aussi féconde qu’élémentaire, celle de
I’assimilation du nombre a factoriser au produit de deux fonctions
linéaires convenablement choisies.

1 Voir, pour la démonstration de ce théoréme, Ens. math., 1912, p. 201,

2 Pour la démonstration de ce second théoréme, trop longue pour pouvoir étre reproduite
ici, voir loc. cit.

3 Cette deuxicme limite résulte de ce que 3y%2 — x2=n et x > 0.
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Les facteurs, s’ils existent, du nombre n =2 —1 appar-
‘tiennent aux formec. 248 + 1, 63 *. Posons en conséquence

n = (62x -+ 1)(62y + 1) = 3844ay + 62(x 4 1) + 1
3844.558658 - 62.37 41
3844(558658 — h) + 62(62h 4 37) + 1,

I

I

-d’ou les formules
(1) xy == 558658 — & (f) x 4y = 62h 4+ 37 ,

ou, ¢ désignant collectivement les nombres « et y,

() t = 62h 4 37 =4 {/38hLA* - 4592h — 2233263 .

Le plus petit, y, des deux nombres x et y diminue a mesure
‘que & augmente, puisque xy diminue et que l'autre nombre « ne
cesse d'augmenter.

D apres (a) et (8], /& est pair, et d’'un autre cdté, le nombre sous
le radical dans (y) est = A* 4+ 2h — 3 (mod 9); de la, on conclut
«que 2 est de l'une des formes 18 4 2, 6, 8, 10, 14. Or d’apres o
et gion a:

=1—h et x4y =2+ 1 (mod3

d'ou, pour A =13 + 2,

LT = 2 x4y

Il

(id.)

congruences auxquelles on ne peut satisfaire, caril faudrait, pour
la pl(,nllele r=1let y=2,ouarx=2et y=1, dou x4+y=0
‘mod 3). Ainsi 7 ne peut étre 3 4 2; il doit donc appartenir &
l'une des formes 418 4 6, 10.
De méme (a et (8 font voir que 2 ne peut étre 5 4+ 0, 1, 2, car
autrement on aurait

x+r=8—h, x4y =2h 4+ 2 (mod 5
dou, pour
h=25, xy =3 =2 (id.)
54+ 1, xy =2, -x—}-g'E/t (id.)
542, ay=1, x4y =1 (id.)

résultats qui conduisent & des contradictions. Les seules formes
admissibles sont donc 5 + 3, 4, ou, comme £ est pair, 10 4 4, 8.
Eerivant les formes possﬂales 1clat1\ es aux deux modules 18 et 10,

1 Voir plus haut.
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et ne conservant que celles qui sont communes aux deux suites,
on verra que & ne peut étre que de l'une des formes 90 + 24, 28,
64, 78. |

Remplacant successivement % par 90k -+ 24, 28, 64, 78, dans
Pexpression sous le radical; les suppositions A=0,1, 2,3, 4,5.6
fourniront — en calculant a l'aide des différences premiéres et
secondes — vingt-huit nombres dont aucun n’est un carré : ainsi,
jusqua 2 =90.6 + 78 = 618, il n'y a aucune valeur de 2 propre
a conduire a la connaissance d’un facteur de 7.

La valeur de ¢ correspondant & 2 == 168 est inférieure a 16 et
diminue quand % augmente; d’autre part, les nombres premiers
de la forme 62 + 1 et plus petits que 62.16 4+ 1 sont 311, 373,
683, dont il y a lieu d’éliminer les deux derniers, ui ne sont pas
de la forme 8 == 1; il reste donc seulement a4 essayer le nombre:
311, auquel correspond la valeur 5. Or dans ce cas, la formule

558658 — ¢(37 — ¢

(9) b= -
62¢ - 1

558498
511
done premier.

Autrement. Remplacons dans (0}, £ successivement par 904 -+ 24..
28, 64, 78, ce qui donne

donne /. = , valeur non entiére: le nombre proposé est

(55801 -+ 90) & = 558634 — ((1525 — 1
558630 — ¢(1773 — ¢)

l

I

958594 — (4005 — 1)

358580 — ¢(4873 — ) .

I

Comme ¢{a — ¢) augmente, quand ¢ varie de 0 & £ et que
, 2
d’autre part, dans les seconds nombres des quatre égalités qui
précedent, les nombres 1525, 1773, 4005 et 4873 sont supdricurs a
la limite de ¢ déterminée par la relation 62/ 4 1 <Z 4/, limite
qu’on trouve étre égale a Z—'}(—c)——[ — 748, on voit que £ diminue
D4

quand ¢ augmente; donc, comme pour ¢=60, A <2, et quc
pour ¢ =80, £ <1, il est inutile d'essayer des valeurs de /4 su-
périeures a 80. Faisant &/ —=1 et = 2, dans ces mémes c¢galités.
on n’aboutit a aucun résultat utile. On essaiera done les valeurs.
de ¢ inférieures a 60, mais seulement celles qui, mises dans la
formule 62¢ 4- 1, donnent des nombres premiers de 'une des
deux formes 8 + 1. Le calcul est, comme on le voit, tres réduit
d’autres remarques de Landry permettraient de le réduire encore,.
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mais ce qui précede suffit pour faire sentir 'importance des idées
nouvelles qu’il a introduites dans la théorie de la factorisation.

Genocchi (Anali di Matematica, 1868), dans un mémoire sur
certaines formes de nombres premiers, s’appuie sur les proposi-
tlons suivantes.

Posons (¢ + Vb) = A, + B, V%, on aura, daprés Euler,
(@ — Vb6)"=A,—B.Vn, dou

(0) 28n=1ta -+ b0\  +la—y0)", 2/ 0Bu=(a+yb)" —(a—y D)".

Si n est multiple de k, Bn sera multiple de Br*. On a aussi:
B;zn - 2An Bn . '

Soit p un diviseur-premier de By, et k, la plus petite valeur de x
qui rende By divisible par p; k divise n2.

St Br=By=0, { et g sont multiples de k, ainsi que leur p.g.c.d.

; . b BB
Si p est premier, A, =a et B, = (- , ce symbole désignant

le caractere quadratigue de b.
On a: Bpx1 = 0, selon que b est résidu ou non-résidu®.

I
Ol’l .l Akl) P— L\]{ et ka — <—}3> B]\ .

Ed. Lucas a exposé, de 1875 4 1878, une méthode de vérifica-
tion des nombres premiers aussi originale que féconde en théo-
rémes particuliers simples; elle s’applique surtout quand on con-
nait la composition d’'un des deux nombres voisins du nombre
considéré. On peut la présenter ainsi :

! Car les termes du quotient algébrique de ces deax nombres peuvent s'éerire deux & deux, .
ainsi:

(@ + I/—(J—)f(a — l/f)f—*—h + (@ + l/—b‘)f_*_h'(a — L/—(;)f = 2 (a2 — b)fA

h’

ce qui montre que le quotient est un nombre rationnel et méme entier.
2 Supposons n = kg + r, on aura:

B/z =0 et B.=0 d’olt qu =0 .

Or si dans Pidentité

(mr _ rjl‘) ukq + (d.k(] + ;31{(]) irj/' — li'—*——/{g _ irjl’—-}—/f[[ ’

onfait a =« -4 7§ et 3=a— /7, il viendra:
2 kqon kg , )
(@* —b)" "B, ={a—V b) B”,—(a—l/b) B/fg'

Le premier membre étant entier, on a B,. = 0. Par suite k ne serait pas la plus petite valeur-
de x qui rende B, =0, ce qui contredit ’hypotheése.

8 Cette proposition est de Lagrange. On la démontre, ainsi que la précédente, en dévelop-
pant les relations () a I'aide de la formule du bindme.
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1. Lemme. Selon que a est résidu ou non-résidu de p, p divise
‘anl 1 1 «1.
. s g ol , _ .
2. Tout diviseur de 2" 4 1 est de la forme 16h + 1. (Voir
Ens. math., 1907, p. 446.)
3. P et Q représentant des entiers positifs on négatifs premiers
.entre eux, st on pose:

a+b="P ., ab=0Q , a——b:?):{/:\-,
Suy, = ab — ¥ o = a® + bE
et v sont des nombres entiers, qu’on peut calculer de proche en
proche, par exemple « Uaide des formules de recurrence suivantes :

g =1, @,=PF, Uppy = Pu, — Qu;_,

(1) 5 :
? ¢y =P, v, =P —2Q, Pppr = Py, — Qv

4. u,_ est algébriguement, et a fortiori arithmétiquement, divi-
-sible par un, d’apres la définition de du, .

Cor. Sinestle p.g.c.d. de f, g, h, ... uy est le p.g.c.d. des
lermes ug, 4ug, a, ...

5. Soit £> g; tout diviseur de u; et de ug divise u;_,°.

6. Les termes de la série des u comprennent tous les fucleurs
premiers contenus dans celle des v. En effet, on a visiblement

(2) ) Ile ja— llk"k .
Cette formule et la suivante

2 ok
o = v — 2Q° ,

3]

‘permettent de calculer rapidement les termes de la sévie u,. u,,
Uy, Ugy Uy s ... dont il sera fait grand usage plus loin.

1 Par exemple 2 est résidu des nombres premiers 8 == 1 et non résidu des nombres pre-
-miers 8 == 3. Donc si k est plus grand que 2, et sile nombre p = 2k 1 est premier, il di-
p—1

“vise 2" — 1;s8i p = 2% - 3 est premier, il divise 27 4 1. La lettre m est mise pour

Ainsi 24+ 1 =17 est un nombre premier 8 + 1, done 17 divise 25 — 1. De mcéme, 20 — 3 = 6t
-est un nombre premier 8 — 3; donc 61 divise 2% 4 1, ce qu'on vérifie aiusi:

26 =13, 2129, 22U =—8| == 20, 230 = 20,324 = (0 {mod. 61).

-2 Cela résulte de I'identité suivante

(a8 + 65) (ol 8 — bI™8) 1 (a8 — 8) (ol 8 L /78) = 2(a/ — aB)
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7. Les nombres u,_ et vy n‘ont d’autres facteurs communs que

.cenr de (), car on a:

- 2 A — LOk
(%) , v Auk__i() ,

ce qui prouve en outre que uy, divise a? — Qy*.
. k
8. u, el v, sont premiers entre eux. Autrement, comme Pt — ¢,
est divisible par Q, tout diviseur de ¢, et de Q diviserait P, qui

‘est, par hypothese, premier avec Q.

9. Soit Q =2¢*; a cause de (3], v, peu, dans ce cas, se dé-

composer en deux facteurs assignables: ¢’est une généralisation

de I'identité d’Aurifeuille.
10. 1/ en est de méme pour v, si 4= — 2, ou si QA — — 2[*
k42
A . . g . e s = L2, L
11. De méme v¢,, divise x* 4~ Ay* el v, divise x? 4+ Qdy?: d'ou
les formules linéaires de ¢,,.

Ed. Lucas considére particulierement les quatre cas suivants:
—3, Q=2, a=2, b=1, 4d=1, d’ou les séries de Fermat

=28 — 1, o =2F 4 1.

12

P—=1,Q=—1,2a=1+45,20=1—+V5, d=5, dou
la série de Fibonacer 1, 1, 2, 3, 5,“8, e Uy T 1(_/&-1— “e_, -
P=2,Q=—1,a=1+V2,b=1—12, 4=28, d'olu la

-série 1, 2, 5, 12, 29, 70, 167, ... Uy = 20 + 1y, qu'il nomme

tres improprement série de Pell, car d’'une part Pell ne s’en est

pas occupé, et d’autre part elle était connue bien avant lui. (Voir,

par exemple, Théon de Smyrne.) :
P=4 Q=1, a=2-4+ VY3, b=2— 13, 4=12, dou la

série 2, 6, 14, 34, 82, 198, ... Crpr = 2V, 0, quon pourrait

appeler série d’lid. Lucas.

Ainsi, d’apres 14, les termes Uspeyy des suites de Fibonacel et
de Théon, et les termes ¢,, de celle de IFermat n’ont que des divi-
seurs premiers de la forme 4 4+ 1; ceux des termes Uspiy > de la

suite de Fermat, et Vapeg de celle de Théon sont de la forme

-8 4 1; ete.

12. D’apres le théoréme de Fermat, si a et b sont entiers, ¢’est-
a-dire si 4 est un carré, ay—y est dipisible par n quand n est pre-
mier et s’il ne divise ni a ni b. Donc si uy est divisible par p, n est
egal a p—1 ou a un diviseur de p — 1. Réciproquement /es
nombres premiers qui divisent un, sans diviser aucun des termes
precedents, sont de la forme nx + 1.

De méme si vy est le premier terme divisible par p, p est de la
Jorme 2nx -+ 1.

) %
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13. Si:a et b sont irrationnels et réels, up=1 est divisible par p
selon que A est un non-résidu ouw un résidu’

Donc si ua est divisible par p, n est divisible par p 4+ 1 ou par
p — 1 suivant les cas.

14. Le nombre n est premier si u,., est divisible par ce nombre,
sans qu’auwcun des termes dont le rang est un diviseur de n =+ 1,
soit divisible par n. Supposons n égal au produit des deux nomln es
premiers p et ¢; p divise w«, et ¢ divise «,, & et [ désignant respec-
tivement des multiples quelconques de p 4= 1 et de ¢ == 1. Donc
n divise i, gery- Or il divise w0 ¢ l'apr‘es I’'énoncé; done, en
appelant fle plus grand des deux nombres (p =1 g4 1}, (pg=1
et g le plus petit, n divise Up_gt O [—ag<n Conclustou contra-
dictoire avec 'hypothese; n est donc premier.

Cor. 1. Nombres de Mersenne. Soit p — oM 1 les diviseurs.
de p + 1 sont les puissances de 2, de la premiére ala Al - 1.0
Mais p = 27" 4 1) —2=38 4 1. Or p est en méme temps 4 —1.
de méme que 3; donc on peut écrire

--6)--B—

et 3 est non-résidu de p de méme, en général, que 3.2
Prenons la série d’Ed. Lucas, qui fournit 4 —= 3. 2‘*’, on aura

2 :
Vg =V, — 2,
et la série se calculera ainsi :
, = 1 g == 4
Uy — Ay g == 1%
Uy — 1hu, vy — 194%
Ug —— 19,1114 Vg = 37631
—1 .
1 Posons :3—.)4 , On aura:

, p—2 = : A
Py = Cppr 1 PP+ Cpp 3PP T A €y s PPTHAT 4 € P

mn

=(p+ PP+ PA"y = 1P + PA" =P 4 PA

—1 S —1 ) —3 5 —5 .9
P, =€, PP 4 € PP TV A € s PPTUAY 4 A
= AIII,
Ainsi, 51 A est non-résidu, «, = —1 et Up 1 = 0. Comme on a:

Q"p—i = Pup — Upt

on peut dire que si A est résidau, up=1 et up | =0.
La premicre partie de ce théoréeme est de Lagrange, la sceonde de Genoechi.
Considérons, par exemple, la série de Théon. Comme A =8, on peut dire que A est résidu
2

ou non-résidu selon que p est de I'une des formes § £ 1 ou de l'une des formes § = =3 done:
dans les mémes cas, p divise « Uy OW Upy -
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Comme A est un non résidu, u,, est divisible par p. De 14, cette
regle : calculer la suite de nombres 1, 4, 14, 194, 37634, ... dont
chacun est égal au carré du précédent diminué de 2; le nombre n
est premier si le (hh + 1)*™ terme de cette suile est le premier qui
soit divisible par n = gy,

Au licu de cette suite, on peut, puisque n est impair, employer
la suivante 1, 2, 7, 97, 18817, ... dont chaque terme est égal au
double du carré du précédent diminué de 1.

[1. Nombres de Fermat. Soil p:2”’—f— 1, A désignant une
puissance de 2. Si /1 est > 2, p est de la forme 8 4 1 et 2 est
résidu. Prenons la série de Théon: 4 =8 est résidu de p, et la
série est

uy = 1 7 = 2

iy = 2ny g — 6

Uy == buy vy, — 34

Us — 341/4 o o 1154 .

On a ainsi cette regle: le nombre n est premier si le h™° terme de
la série 1, 3, 17,577, ... dont chacun est égal au double du carre
du précédent — 1 est le premier qui soit divisible par n .

1. Réciprogue du théoreme de Fermat®. Si a* — 1 est divisible
par n pour x =n — 1 et non pour x <n — 1, n est premier.

Soit @ = 3, n = 2'" 4+ 1; les diviseurs de n — 1 sont 1, 2, 4,
8, 16, ... et chaque reste s’obtient en divisant par n le carré du
précédent, ce qui donne 3, 9, 81, 6564, — 11088, ... 1. Il n’y a au-
cun reste égal a 1 avant le dernier terme de cette suite : le nombre
218 1 1 est donc premier.

Comme le remarque Ed. Lucas, cette méthode se distingue des
autres en ce qu’elle ne demande pas la construction préalable
d’'une table de nombres premiers, et qu’au lieu d’effectuer des di-
visions par des nombres différents, on divise, par un nombre fixe,
différents nombres se déduisant les uns des autres par une loi
tres simple.

1 Par exemple, soit 2 =1, n = 31; on aura:
1=1, 2==2, 7=17, 97 =4 242 —1=0 (mod 31)
done 31 est premier.
? Ainsi soit A = 3, n == 257; on aura:

1=1, 3=3, 1T=1T7, BTT =63, 2.65%2 — 1 =227 = — 30, 2.302 — 1 =0 (mod 257)

on a ainsi u, == 0: la question reste indécise,

3 Trouvée presque en méme temps par Proth (€. R., t. 57).
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15. Pour n impair, on a:

sn—1 n ke gn . 2k
9 ”k — U + Q (‘n,lu(n——z}k =+ (‘/1,‘2 Q u(n-é)k +

n—1
—k
+ ... -+ C ,,_1Q" w,
/1‘——

Comme u;, est divisible par u, et que Cpg“‘O on voit, en
l‘emplacant n par le nombre premler p, que si uy est dlwszble'
par pY, upk est divisible par pt! et non par une puissance supé-
rieure.

16. La série de Fibonacci étant celle dont les termes croissent
le moins lapldement Ed. Lucas I'a étudiée d’'une facon particu-
liere. Voici en résumé son étude.

St p=>5=+1, le terme up—1 de la série de Fibonacci est = 0,
etsi p==5-=+2, ona: upr1 = 0. En effet:

1° Soit p=541, ona: p>=5§ 4+ 1 ou p2Z =1 (mod 5 ou

) b \ 5
bien (£) =1, dou (2) = 1, ouencore 5" — 1=0. Or on a:
o P

p—2 . S zm—I1
2, =Cp 1 +5C, 43+ .+ 5

= — (14545 + ... + 5"

puisque Cp_i + (Jp Akt = Cp,k =0, d'ott Cpg p = — Cpr iy
=Cptha= ... = Cp_l 1 = — 1. On peut donc écrire
Wy, =1—5"=0.
20 Soit p=54+2; on a: p*=>5—1 ou <%}) = —1 dou
(;) — — 1. Ainsi p divise 3" 4 1. Or on a:

i

2 Wppy = Cppy +9C, s+ + Fre=1 4 B

Cor. I. Tout nombre premier p —>5 4= 1 divise et divise seule-
ment les termes wy, k désignant un certain diviseur de p — 1.
Tout nombre premier p —=>5 42 divise et divise seulement les
termes Uy, k dész'g‘nant wun certain diviseur de p + 1. Par exemple,
1,y == 514229 n’est divisible — puisque 29 est premier — par au-
cun des facteurs premiers contenus dans les termes précédents,
et tous ses diviseurs sont de la forme 29 4+ 1; d’ailleurs 29 étant
un nombre impair, ces mémes diviseurs sont 4 -~ 1 et par suite
il faut les chercher dans les deux formules 146 + 1, 57; on ar-
rive ainsi a conclure que ce terme est un nombre premier.
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Réciproquement, si n divise u,—y sans qu’on ait uy divisible par n
pour aucune valeur de k diviseur de n 5= 1, n est un nombre pre--
mier, qui est de la forme 5 %=1 ou de la forme 3 4= 2, suivant
le cas.

Il. La série u,, u,, ug, ... sert comme au n° 14, dans la vérifi-
cation des nombres premiers de Mersenne. Soit 7 = 127; on a:

e~
R |

5

|l
*\
A |
[S)

I

[N}

il
W~
oo

(mod 127}
Donc le nombre 127 est premier.

De méme on trouve, suivant le module 23! — 1,

, V4 — 7 , g = *{17 sy Y16 f— 220

A

O
9

Il

g y s
le reste zéro arrive a la trentiéme opération et pas avant: 2% — |
est donc premier.

Soit 7 — 227 — 1. Ce nombre est terminé par 7: s’il est pre--
mier, il doit diviser u«,, et un de ses facteurs doit diviser u, % dé-
signant un facteur de n 4+ 1, c’est-a-dire un nombre de la forme
2%, Ce facteur serait un nombre premier 2/ + 1 diviseur de n, ce
qui est impossible puisque 127 est premier. Ed. Lucas a vérifié
que n ne divise wyr que pour £ =127 : done, s’il ne s’est pas
trompé dans ses calculs, n est premier.

17. On terminera par ces deux théoremes analogues a ceux

d’Ed. Lucas.

1° h designant une puissance de 2, pour que le nombre n—2" + |

n—1
soit premier, il faut et il suffit que 5 * 4 1 soit dipisible par n.
5—1
En effet, pour 2>2, ona n=5=2"* dou n? =5 —1;
n B . 5]
donc <5> — — 1, et, s1 n est premier, <-’—2> — — 1, c’est-a-dire

n—1

que n divise 5 2 4 1.
Cette condition est suffisante: admettons en effet que n n'est
pas premier et que p est un de ses diviseurs premiers; on aura

n—1

(a) B ¥ gal=g d’ou 5l =

?

or 7' =1. Le p.g.c.d. de n — 1 et de p — 1 est une puis-

&
1 ; ! . . ;
En effet si on remplace la puissance A par la suivante, n devient (n — 1,2 4 1; ce qui fait

voiwr que si =52, il en est de méme de la nouvelle valeur de n. Or pour h =4,
n=17=5+ 2. Il en est donc de méme en général.
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. _ n—1 .
sance A& de 2, done 5F =11, et comme —5— est un multiple
n—1
de /%, on peut écrire 5 * =1, ce qui est en contradiction avec o).

Le p.g.c.d. est donc n, et n est premier.

De la cette regle plus précise que celle d’Ed. Lucas : pour véri-
fier la nature du nombre n, on formera la suite 5, 5*, 5%, 58, 51°,
dont chacun est le carré du précédent, en négligeant « mesure, les

i . n — 1\éme . 1

multiples de n : si le | —5— terme divisé par n donne le reste
— 1, n est premier?. (Pépin, C. R., t. 85.)

2° Pour que le nombre n = 20 L 1 o h désigne une puissance

‘ : . . . . - oh—1 \
de 2, soit premier, il faut et il suffit qu’il divise 3* 4 1 (Prothj.
Démonstration de M. Hurwitz. Supposons n un nombre premier p;
comme p =4 -+ 1, ona:
> g

(5)=(5)=(

« r e 4 . o —
3 est donc non-résidu? et p divise 32" Y,

ol b2

Supposons maintenant que 32*7' 4 1 soit divisible par le

n—1

2

\

‘ ‘
nombre n; on aura 3 * = — 1 (mod n}; donc n — 1 est le plus

petit exposant 7 pour lequel on ait 3" =1 (mod n). Donc, d’aprés le
théoreme d’Euler, n — 1 divise ¢ (n), ce qui ne peut avoir lieu que
si ¢(n) = n — 1, c’est-a-dire si n est premier.

Landry a fait connaitre sa méthode définitive dans le vol. de
I'd. F. de 1880. Elle est tres élémentaire, tres générale et a été le
point de départ de tout ce qui a été fait depuis sur ce sujet.

Un nombre premier avec 6 est de I'une des formes 6 4= 1 et on
peut le supposer pouvoir se décomposer ainsi :

(6 &= 1) (6)y = 1) ou (6 = 1) (6y I 1) .

1 En effet, soit e = Agd:_z- 1, et soit d le p.g.c.d. de fd et de gd; [ et g sont premiers
entre eux ; on peut donc éerire fx — gy = 1, d’olt, en posant Al = o,

af*=al =1= a8 = a8Y = al+/* ;
done AY=u =1.
2 Ainsisoit h = 8, n = 257, on a:
5=5, 52==25, 262= 111, 1112=— 15, 152 = — 32, 3= —4

(mod 257)
42 =16, 162=—1

Done 257 est premier.

39 Loy 1=3—1.

4 Tchebichef avait fait voir ainsi auparavant que, plus généralement, 3 est non-résidu de
p=2% 4 1.
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Soit, par exemple,
n—6a +1 rt @ == o 4+ P ;

posons :

fa) n — (6x 4+ 1)(6y + 1) (x > ¥
il viendra

() baxy + x 4+ =«

() x4+ yr—==6z-+r (6) Xy = ¢ — 3
d’ou, en éliminant .,

g ==

6y + 1

Quand z augmente, le plus petit y des deux nombres 2 et y
diminue et le plus grand augmente!. La valeur supérieure de y
, n—1
etant — cette valeur, mise dans (¢, donnera une limite su-

\

périeure de z. On essaie les valeurs entiéres de z jusqua cette
limite; le nombre des essais est trente-six fois moindre que celui
qu’exigerait la méthode classique, puisque n > 36¢. On réduit
encore ce nombre par diflérentes considérations sur les formes
linéaires de x, y, =, r par rapport a différents nombres premiers.

Cette méthode a été grandement perfectionnée par MM. Bar-
bette et Gérardin, comme on le verra plus loin.

Le P. Pépin (Mem. acad. nuovi lincei, 1880) a voulu faire pro-
fiter la méthode d’Euler des perfectionnements que Gauss a ap-
portés a la théorie des formes; mais la moindre simplicité théo-
rique et pratique ¢ui en résulte rend ses procédés peu avantageux.

Il a aussi utilisé la théorie des racines primitives, pour le cas
de n —=a*k—1: considérons le nombre premierp et soit af =a;
$1 g est une racine primitive de p, on peut toujours poser
et A est donné par le Cunon mathematicus de Jacobi. Si
un multiple de 4, on peut ainsi écrire

G

' A mesure que s augmente, xy diminue d’aprés (J) et x + y augmente, d’aprés (7). Si

' et y' sont les nouvelles valeurs de x et de y correspondant a une valem plus grande de z,
on aura

A —
o
&g —

© xy > &'y 2 xty<z' +y

Elevant au carré (%) et ajoutant a l'inégalité — 4ay < — 4x/y!, il vient cette autre relation
x—y <z -y, laquelle ajoutée a (W), donne =’ > x, et, en comparant avec (), xyx' > x'y'x,
d'ott y > y'. ‘

L’Enseignement mathém., 15¢ annde; 1913. ' 16
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et cette congruence indique par conséquent que n est divisible
par p.

Il a montré comment on peut resserrer les limites des essais en
mettant n sous la forme 2y, « >> y, et cherchant les valeurs de i
inférieures a différentes limites /, /', ... ce qui renferme les valeurs.

’ . s 1
a -+ y entre les limites 2V n et [ + TT .

Lawrence (Mes. of math., 1894, Quart. J., 1896, et Proceed., 1897,
a donné, pour préciser les régions ou peuvent se trouver des fac-
teurs du nombre n, une méthode d’exclusion aussi simple qu’in-
aénieuse, et consistant dans I'examen des h‘ypothéses faites sur la

valeur de la somme des deux facteurs supposés de » ou d’un mul-
tlple de n. On peut 'exposer ainsi.

Posons n =xy, 2X =x+vy, x>vy. Ston a: X>a > v,

on « egalement celte autre relation
x>(l+ ‘/az—'—'n> ‘/;l—> ((,-——-‘/((/2___”>“).1

Cor. 1. Si aucune valeur de X n’est possible entre a et \V'n, il
n'y a awcun facteur de n entre V n et a— Va a? — n.?

I1. Posons kn = x"y’" et 2X' = x" 4+ y': si aucune valeur de X"
n’est posszble entre b et Vkn, il i’y a aucun facteur de kn entre
b 4+ Vb <kn et b — yb* — kn, et par conséquent aucun fac-
teur de n entre

b 4+ /b — kn ; b — ¢/b? — kn
k k

Par exemple sinest 944, et y sont, 'un d’'une des formes.
911,25, 7 et autre 9 + 4, 2,8,7, dou 2X =9 + 5, 4,13, 14
ou 94 14,4, 4,14 et X =9 4 2,7. Agissant de méme avec
d’autres modules, on connaitra de nouvelles conditions que doit

1 Cette relation cst une cons‘éqnence de ce que : en premicr lieu, on peut éerire
V’;TJ:?:\/a”——x; =a,
comme on s’en assurera en ¢levant les deux membres au carvé; en second licu, on a
x>X">a> \/n >y ;

et enfin, que de I'inégalité x + y > 2X, on tire, en multipliant par x, puis par y, et ajoutant o
aux deux membres de chacune des deux inégalités ainsi produites, les deux suivantes

fx—af>at—ay , (@ —y2>at—uxy .

2 Ce corollaire peut s’énoncer ainsi: posons x — y = 2Y; si, jusqu'a la limite X = a > V'n
Uéquation X2 —Y2=n ne peut avoir licu, on a y < a— a% — n . Par exemple, soit n = 118007 ;
on peut rechercher directement ainsi la limite de X : on a 34i% — n = 329 et 2.344 4 1 = 689
ajoutons successivement a 329 les termes de la progression 689, 691, 693, ... on obtiendra les
valeurs des termes de la suite 3442 — i, 3452 — n, 3462 — n, ... 3802 — 1, dont aucun n’est un
carré. On peut écrire par conséquent a = 380, d’oit X > 380 et y < 380 — V3802 — n = 218;
on essaiera done la division de n par les nombres premiers 213, 211, 219, ... dont le troisicmes
réussit.

On a ainsi un perfectionnement notable de la méthode de Fermat.
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remplir le nombre X, lesquelles serviront a déterminer, peu a peu,
la limite a de ses valeurs possibles!.

On comprend dés lors la construction et 'usage du tableau sui-
vant, qu'on pourrait étendre autant qu’on voudrait.

Formes de n. Formes de X. Formes de n. Formes de X. i
341 34+1,2 13 + 1 13—}—0,'1,2,6,7,11,12!
2 3 : ) 1,4,5,8,9, 12 |
b4+1 | 241 3 0,2, 4 5, 8,9 11 |
3 2 A 0,1,2, 4,9, 11, 12
51 | 540,14 5 1, 2,8, 10, 11,12 |
2 1, 4 6 3,4,6,7,9, 10
3 2,3 7 2,4,6,7,9 11 |
A 0,1,3 8 2,3,5,8,10, 11 |
741 7+1, 3.4, 6 ! 9 0,8,56,7,8 10 |
2 2,3,4,5 10 0,1,3,6,7,10, 12
3 0,2, 5 11 1,5,6,7,8 12 |
4 1,2,5, 6 12 0,3, 4%, 5, 8,9, 10 |
5 0,3, 4 8 +3 | 442
6 0,1, 6, | 7 4
11 +1 |44 +1,2 4 7,9, 10 9 4+ 1 9+ 1,8
2 0, 4 5.6, 7 4 2, 7 _
3 1,2,5 6,9, 10 7 4, 5
4 2,3,4,7,8,9 || 1245 | 6 - 3 |
5 3, % 5,6,7,8 7 4
6 0,23, 8,9 11 | 0 |
7 0,1, 4, 7,10 15 -2 115 4+ 6. 9 :
8 0,1,3,8, 10 8 3, 12
9 1,3, 5,6, 8,10 11 0,6,9
10 0,2 56,9 14 0, 3, 12

! Soit le nombre déja plusieurs fois traité n = 4171, qui est des formes 3 + 1,541 ct
7 4 6: X doit étre de l'une des .formes 3 + 1, 2, .de Vune de .celles-ci § + 0,4, 4 et de 'une
de celles-ci 740, 1, 6. Le plus petit nombre a la fois de ces formes: et supdrienr a V' n est 70,
ce qui donne-la limite 70 — V702 — 5 = 43. Essayant la division de n pour les nombres pre-
miers 43, 41, 37, ... elle réussit avec le premier de ces nombres.

Soit n=41TT=8+1=4+1=85+2="7-5. Le plus petit nombre > V7 et apparte-
nant a chacun des groupes de formes 8 +1,2: 2+ 1; 54+1,4; 7 -+ 0,3, 4; est 91. Ainsi il
n’y a aueun facteur de n entre Vet 91 — V91Z Z p , ou entre 64 et 20. De méme 117 est des
formes 3+2, 443, 542, 74 4; donc X’ est 3, 2. de l'une des formes 5+1, 4 et de Vune des
suivantes 7 4 1, 2, 5. 6. Le plus petit nombre > V111 des formes possibles pour X/ eslt 246 :
il 0’y a pas par conséquent de facteurs de 2 entre les deux nombres ‘

V1 =+ V2562 — 11n

11

ou entre 30 et 9. Il reste done les seuls nombres 7, 5 et 3 a essayer.

Voici un autre procédé assez pratique. Si n = 24 + 23, ona X = 12. Si 2 n'est pas de cette
forme, on la multipliera par 23, 19, 17, 13, 11, 7 ou 5, suivant qu’il sera de Pune ou de lautre
des formes 24 4 1, 5, 7, 11, 13, 17 ou 19, et on agira de méme sur le produit, ce qui exclura
pour X tous les nombres non multiples de 12. D’autres modules 5, 7, ... donneront de nou-
velles exclusions. - '
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Dans certains cas, on connait une forme linéaire des facteurs,
ce qui'peut donner des moyens d’exclusion plus rapides. Ainsi,
si on sait que a et y sont tous les deux = « (mod A}, en posant
2 — y = 2Y, il viendra

2X = 2« d’ou N=ua et Y=0 (mod /)

par suite, comme X* — Y2 = n, X? = n (mod A?.

Soit n = 22k+' L 1 n est de la forme 202 + ¢2, et ses diviseurs
sont donc de la forme 8 + 1, ou de la forme 8 4 3. l.es deux
facteurs & et y sont tous deux 8 -+ 1 ou tous deux 8 + 3; de la,

la relation '
=64 +n =264+ 1

si &> 2, et par suite
XN=32+1"1

Soit n = 2*+' — 1 n est de la forme 2u* — ¢? et n’a par suite
que des diviseurs de la forme 8 4= 1: les diviseurs 2 et y sont
done 'un 8¢ 4 1 et Pautre 87 — 1, d'ou

n -+ 1 =064y + 8( — n) ;
. 1
£ + 7 est de la parité de & — » et par suite de celle de ’-l-—jS———;
done 2X =2 4+ y = 8(3 + 7) est de la forme n + 1 + 16 —= 16
et- X —8.

Ainsi les diviseurs de n=2"" — 1 étant de la forme 71 4+ 1,

ona 2X=T1+4+2 et X=T1+ 1. En outre, on a:

X=n=1+4+14

(mod 71%
X =+14+2.71 '
Il faut prendre + 1, d’aprés ce qui précede, c¢’est-a-dire que X
est = 143 mod 0041)

De plus, comme X est divisible par 8 et que n est des deux
formes 9 + 4 et 5+ 2, X est également des deux formes 9 —+ 2
et 5+ 1.

Lawrence a en outre proposé la solution mécanique suivante :
on représentera, a une méme échelle, les valeurs de X sur des

1 Sile nombre H = ah3 4 2bch 4 ¢% est un carré parfait, avec b et ¢ <k, la racine V' H est
de la forme zh2 == bh -4 c. Posons, en effet,

(o) H = (sh?  sh - )2

s et ¢t étant supposés <k, ce qui est toujours possible. On verra, en développant, que 2 — 2
doit étre multiple de k&, ce qui, a cause de ¢ et t < h, demande qu’on ait ¢t = == ¢.
Introduisant cette valeur de ¢ dans (@) et simplifiant, il s’ensuivra que bc — ¢n doit dtre
divisible par &, ce qui conduit a la relation s = == b.
En particulier, si ak 4 52 est un carré parfait, avec & < h, sa racine est de la forme zh 3= b.
2 216 = 3.13 4 712, d'ott 2% = 72 (mod T1%), 20 =1 4 2.71 (id.), 27 — 1 =1 + 471 (id.).
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bandes de papier quadrillé faites une fois pour toutes; .soit deux
bandes pour le module 3, quatre pour le ‘module 5, dix pour le
module 11, etc. On indiquera, par exemple, pour X =9 + 4, les
lonoueurs 0,2, 3,5, 7,8, 10, 12, 13, ... Pour Vapplication, on
n'aura qu’a aligner convenablement cote a cote les bandes corres-
pondant aux diverses expressions demandées pour X, et a noter
la premiere division se trouvant a la fois dans toutes les bandes;
le nombre ainsi déterminé donnera aisément la limite cherchée «.

MM. Kraitchik et Gérardin ont réalisé et montré comme elle est
pratique. (Voir §. (K., 1912, p. 62, ainsi que le compte rendu du
Congres de AL IF. & lees.)

Ce qu'on vient de dire de 'important travail de Lawrence n’en
contient que le principe théovique. Pour les détails et les applica-
tions pratiques, voir les recueils cités ou la traduction francaise
publiée en 1910, dans le S. (ZZ. de M. Gérardin.

M. Barbette (.I/., 1899) met le nombre a factoriser sous la forme
100a 4 106 + ¢. Pour trouver les facteurs de forme 10x =+ 1, il
pose

100x® = 4(50 4 c)x + (b* — hac) = )*

et pour trouver ceux de la forme 102 =+ 3,
100x* 2 4150 — 4cje + (0 4 ¢ 4+ 2be + 36ac) = »* .

[La uestion est ramenée a résoudre des équations de la forme
A%x? 4 Br 4+ C=y* Cette équation se résout, soit par la mé-
thode de Gauss donnée plus haut, soit par titonnements, en éli-
minant en bloc les formes linéaires de & qui donnent, an premier
membre, des valeurs pouvant se mettr e sous 'une des formes in-
applicablesauncarré, 34+2;8 — 1, 42, +=3; 54+2: T+ 3,5, 6;
etc.; ce qui se trouve ﬂisément, en falsant succcb:we.uent =3

+0,1,2; 540, 1,2, 3, 4; ete.

M. Gérardin (S. (J5., 1906) a d’abord proposé d’écrire, suivant
que nest 40 41, 3, 7, 91,

n= (10x == 1) (10y + 1) ou (10 4 3)(10y — 3)
n= (10x 4= 1) (10y =+ 3)
no= (10x == 1)(10y £ 3)

n= (10x 4 1)(10y — 1) ou (10x == 3) (10y =+ 3)

1
On pourrait considérer les formes 12 == I, 7= 5, également au nombre de quatre et qui
réduiraient encore e nombre des diviseurs a cssayer.
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soit n = 100a 4 100 + 1 = (102 4 1) (105 4~ 1), ce qui donne

W0xy + x 4+ y = 10a + b
x+y =104 10z, Xy = a —— z
(2) a*— (b4 10z)x +a—2z=20.

LLe minimum de z et, en méme temps, celui de 2 + y, sont dé-
terminés par la relation connue x 4+ y > 2Vxy, dont le second
membre est sensiblement égal & 2/ « et qu'on représentera ainsi
10 4 8. On posera done :

b+ 10z = 10a + 5 .

l.e minimum de z est donc égal a a puisque & et g sont des
nombres <7 10.

D’apres cela, on résoudra I'équation [« et on agira de méme
sur les formes (10x — 1) (10y — 1) et (10x + 3) (10y — 3.

Pour des nombres tres grands, on décomposerait ainsi le
nombre donné :

n = 120°a 4 1206 + ¢ = (120x + [) (120 + g1 ,

£
¢ désignant 'un des trente-deux nombres inférieurs a 120 et pre-
miers avec lui; /et ¢ deux nombres dont le produit est =¢
(mod 120)*. On trouvera la liste des nombres ¢, f, g dans le t. 111

de §. (F.

Ansi, par exemple, pour le nombre n = 289524791, on posera:

n = 20105.120° -+ 106.120 + 71 = (1202 —+ 7) {120y -+ 113

— (120 - 11) 120y + 61)
— (1202 ++ 13) (120y -+ 107,

ce (qui amenera autant d'équations de la forme A*2? + Box 4 C=y*
a résoudre. ['examen des formes linéaires des coeflicients ame-
nera d'ailleurs de nombreuses exclusions dans ces équations. On
réduira également le nombre des essais en cherchant, par divers
moyens, les limites supérieures ou inférieures de ., soit fixes,

1 En général, posons

n=lax + &) (ay + %) = a?xy + afy + 0x) + 50
@A 4 aB + C .

i

a, B, C sont donnés. Le nombre C est congru i un des ¢(a
miers avec lui. Faisons 51 = n — C (mod a), prenons pour
nombres; 4 en sera un autre g, et on pourra poser:

cA +B=axy+fy+gx , fyu+gr=20D d’ott xety .

On aura a résoudre P(a) équations de ce genre.

nombres inférieurs a a et pre-
un quelconque f de ces mémes

Y
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soit obtenues en resserrant de plus en plus I'intervalle a examiner.
Ainsi, soit & déterminer les valeurs de x superieures a BetaC;
on a, comme on peut le vérifier aisément,

B41_ B
Ty

Or y est de la forme A 4+ D, D étant <x. On a donc de la sorte
circonscrit une région dans laquelle doit se trouver D; de la @,
en égalant A%x? 4 Ba 4 C au carré de Ax -+ D. o

On trouvera du reste dans ce recueil de nombreux et 1nteres-
sants exemples de cette méthode, ainsi que des apercus de toutes
sortes sur la conduite des calculs auxquels conduit le difficile
probleme qui fait I'objet de la présente étude, laquelle a été en-
treprise comme une application de la théorie élémentaire des
nombres, et comme suite aux articles de I'fins. math. sur le méme
sujet publiés en 1907 (p. 24, 286 et 417), en 1909 (p. 329 et 4301,
en 1910 (p. 457) et 1911 (p. 187).

A. Ausry (Dijon).

SUR QUELQUES PROBLEMES
CONCERNANT LE JEU DE TRENTE ET QUARANTE

[.es problemes fondamentaux concernant le jeu de trente et
quarante ont été traités pour la premiére fois, a ma connaissance
du moins, par Poisson en 1820, dans un beau mémoire inséré
dans le t. 16 des Annales math. de Gergonne. Quarante-sept ans
plus tard le géometre allemand (Jirringer retrouvait en les com-
plétant en plusieurs points la plupart des résultats donnés par
Poissox; mais son travail, inséré dans le t. 67 du Journalde Crelle
et cité par H. Lavrexrt dans son traité du Calcul des Probabilites,
semble avoir passé inapercu.

Bien que les déductions de Poisson et d’(Jittinger présentent
des lacunes, je n’aurais pas cru utile de rvevenir sur ce sujet, si
Bertranp, en traitant dans son Calcul des Probabilités 'un des
problemes déja résolus dans les mémoires cités, n’était arrivé a
des résultats ne concordant pas entiécrement avec ceux d’(Ittinger
et de Poisson; le désaccord n’est pas grand, il est vrai, mais il
existe, et cela suflirait pour justifier une étude nouvelle.

Il était facile de refaire les calculs, dans le cas particulierement
simple envisagé par Bertrand. Je dirai tout de suite qu’un certain
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