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LES SOMMES DE p*= PUISSANCES DISTINCTES
DE NOMBRES POLYGONAUX DE n COTES
EGALES A UNE p* PUISSANCE
D'UN NOMBRE POLYGONAL DE n COTES

Soit n, le * nombre polygonal de n cotés, en sorte que

A, = ;-x[(n — 2)x 4+ & — n]

: ol , i
et par suite 2, =x; si S, représente la somme des p*=
puissances des x premiers nombres polygonam de n cotés

et S, »la somme des premes pmssan( es des x premiers nombres
ntlers on trouve

1
s n =8, ,lln—2)S
Py = 9p p,x

+- (& —n))?

0,p

égalité dans laquelle S( « estdu (2p 4 1)*** degré en x. Nous
passons du signe 2 au signe —, aprés développement,
en convenant d’ajouter les exposants de S, a son pre-
mier indice 0 et en admettant que Sg, > S, = Sg . .
Supposons maintenant qu'une somme de p™* puissances
distinctes des nombres polygonaux de n cotés puisse étre

une p*™ puissance d’un nombre polygonal de n cotés, et

- considérons l'identité

P . p P
n n’ n,—n 1
e F e = (1)
1 Les sommes de p'°™® puissances distinctes égales & une po™ puissance. E. BARBETTE,

page 148. Editeur: Gauthier-Villars, Paris; prix: Fr. 12,50.

et Pt Sy R iR
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dans laquelle les p* puissances sont écrites par ordre de
grandeur, en sorte que

x—1=a >a,>...>a =1,

Ajoutons aux deux membres de l'égalité (1) les lacunes
laissées par les parties du premier membre dans la suite
des p*** puissances des x premiers nombres polygonaux
de n cotés nf, nf, ..., n’; nous obtenons

9 b

(n) __ P P p p
Sp’x = nx+a —+ n._, - n._s 4 o+ nx—a,n—;—i

p P p
+ n 1 -+ nx-am—2 + ...+ n

L—Cp ~ T—ay,_q+1

)

—l—np —]—np __‘2 —{—-...~{—n}17 ;

x— 0, —I r—o,

égalilé qui entraine la condition S}(,’f)x >~ ni.H,, .

‘Par suite, sil'inégalité Sj,'f\x < /ziH n’est satisfaite que pour
x < p., il n’existera aucune somme de p*** puissances dis-
tinctes de nombres polygonaux de n cotés, dont la plus
grande est nt, ou nf, ou nf, ..., ou ni, qui soit égale a
une p**™ puissance d’un nombre polygonal de n cotés.

Les conditions nécessaires et suffisantes pour que I'éga-
“lité (1) existe se déterminent, en ce qul concerne les nombres
polygonaux de n cotés pour n > 2, ainsi que nous l'avons
fait dans I’hypolhése n =— 2 dans notre ouvrage sur les
sommes de p** puissances.

Des relations

. 1
S(:)x = gx(x + 1) (x + 2)
4) 1
S,lyx,: gx(x + 1) (22 4+ 1)
s — Loaiw 4 1)

1, x 2

(6) 1 .
Sy x = —x(x 4+ 1) {bx — 1)

o

nous déduisons, ainsi que nous l'avons fait pour les nombres
carrés (pages 77 et 105), que pour qu'une somme de nombres
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polygonaux de n c6tés soit un nombre polygonal de n cotés,
il faut et il suffit que L'on ait trois conditions distinctes; il
s’ensuit que 'égalite

Ry g T Ty = Rypig (2)

peut exister: en effet, le nombre x étant donné, deux des
trois conditions précitées permettront de déterminer les
couples de valeurs correspondantes de «, et «; le nombre

de solutions sera limité, o devant satisfaire a l'inégalité

() . ”
S1,2 > Nzyq. Et si 'un de ces couples transforme la troi-

siéme condition en identité, il existera une relation de la
forme (2). Nous avons montré, dans notre étude sur les p'**
puissances (page 153) que de telles sommes existent.

Observation. — Quoique les probléemes qui vont suivre
s’appliquent aux p'* puissances pour toute valeur de p,
nous n’examinerons dans nos exemples que I'hypothese
p =1

Probléme I. — Quelles sont toutes les sommes de p*™* puis-
sances distinctes de nombres polygonaux de n cétés, dont la
plus grande est n’ | égales a une p* puissance d’'un nombre
polygonal de n cdiés ?

Solution. — Soit

> n? = S(”
p

) p
z+h vz < agng

» .' 3 (’L) P 4 .. " - M) ‘
L’égalité S, » = nzys, si elle existe, fournit une premiére
solution
PP P p__p
n +n2—l—n3+ +”x“”x+h .
Posons
() __ p ~(n) P
Sp,x =Ry + [bp,x -— n,x_'_a] : (3)
« variant de 1 & %, puis transformons le crochet par diffé-
rences successives en une somme de p®* puissances dis-
tinctes de nombres polygonaux de n cotés, si possible, dont
la plus grande ne dépasse pas n?_, , mais peut étre moindre :
en supprimant de part et d’autre de I'égalité (3) ainsi trans-
formée, les parties communes, nous obtiendrons autant de
solutions qu'il existera de sommes de p™ puissances dis-

tinctes égales a ce crochet; il n’y en aura pas d’autre. -
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Sommes de nombres triangulaires distincts, dont le plus
grand est 3, ou 21, égales a un nombre triangulaire :

Ce®
51,6 — 56 .

1o 143464104154 21 = 56 = 28 + 15 4+ 10 43

d’ou 1+64+21 =28 ou 31+ 3s+4 36 = 37 ;
20 14+34+6+104+15+21 =56 =36 +10-4-6-+F+3+1
d'ou 15421 =36 ou 35—+ 36 = 3s ;

3 14+3+6-+104+15+21 = 56 = 45+ 10+ 1

d’ou 3464+15+21 =45 ou 32+ 3s+ 35+ 36 = 3o ;

bo 14+3+64+104+15-+4+-21 =56 =5541

dou 3+4+6410+4+154+21 =55 ou 32+3s+ 344 35+ 36 = 310 .

Sommes de nombres carrés distincts, dont le plus grand est
by ou 64, égales a un nombre carré:
@ _
S = 204 .
1o 14449164 25 36 + 49 -+ 64
= 204 = 814+ 49 436 -+25+9 4
d’out 141664 = 81 ou 41 - ho + 4s = ks ;
20 14 44 94 16 + 25 4 36 + 49 4 64
: = 204 = 100 4 49+ 25 16 +9 44 + 1
d’ou 36 4 64 — 100 ou 4e + 4s = 410 ;
30 A4 94164 25+ 36 4 49 -+ 64
= 204 =121 449+ 25+ 9
dou 1+ 4416436464 =121 ou 41+ 4o+ ba + 46 + 48 = 411 ;
ho 14449416 25136+ 49 + 64
: — 204 = 16942519 1+ 1
don &4 16436 449 4 64 = 169 ou 4s - e -+ ho - by + s = bus .

Sommes de nombres pentagonaux distincts, dont le plus
grand est by ou 117, égales @ un nombre pentagonal :

G __
S = 405 .
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10 1+5+12+22+35+51+/o+92+117
_405:145+92+70+51+37
, | 12
‘d’ou 4454224117 = 145 ou 51452+ 54—+ 59 = 510 ;
20 45412422+ 354 51 4 70 + 92 4117
_405:210+9z+51+35+12
. +2o
d’ot 14-22 470 4117 =210 ou 51+ 5a -+ 5r 5o =512 ;
30 1454124 22+ 354 51 + 70 + 92 4117 |
— 405 = 210 4 70 4 51 + 35 4 22
+12+5
d’ou 1—-]—92—[—117::210 ou 51 -+ 98 4 59 == 512 ;
o 15412422435+ 51+ 70 4 92 + 117 |
— 405 = 287 + 70 4+ 35 + 12 -1
d’ot 51412451 4921117 = 287 ou 52 + 54 + 56 + 55 - 5o

— D14 ;
50 1+5+12+22+35-{—51—|—/0—|—92+117
105"—330—} 70—]—5

d’ou 14+ 1222435+ 51+ 924117 =330 ou 51 + 5s + 54 -+ 55 -+ 56 -+ 58
—+ 59 =515 ;

6o 145412422435+ 514704924117
—405—=330-+-354 224124541

d’ou 51 4 70 492 + 117 =330 ou 56 +- 57 4 58 4 5o = 515 .

Sommes de nombres hexagonaux distincts, dont le plus
grand est 65 ou 120, égales a un nombre hexagonal :

©®) _ gn
S© =372 .
Le probleme n’admet que la solution donnée par I'identité
146415428+ 45466491 4120 = 372 — 231 4 91 428 + 1546+ 1

d’ou 45 +66 120 = 231 ou 65+ 66+ 63 — 611 .

Probléme II. — Quelles sont toutes les sommes de p*™
puissances distinctes de nombres polygonaux de n céiés,
; : ibme odo P 7 :
égales a une ™ prissence donnée n . d’un nombre poly-
gonal de n cétés?

b e et ot et et
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Solution. — Soit

(n) p - ln)
Sp’x___1 < m = bp,x .

Calculons successivement

s . gm g gl

p,x prx+1 "’ pyx+2 T p,q -1

.
’

puis transformons chacun des résultats obtenus en sommes
de p* puissances distinctes de nombres polygonaux de
n cotés dont la plus grande est n et dont toutes les autres
sont moindres respectivement que

P . b . P . . P
n. nOH_1 3 nx+2 Do nq__l .

En supprimant des deux membres des égalités ainsi trans-
formées, les termes communs, nous formerons toutes les
sommes de p*ém‘““ puissances distinctes égales a la p*®™ puis-
sance donnée n

Sommes de nombres triangulaires distincts egczlev au nombre
triangulaire 3,, ou 55 :

85 < 55 < 56  ou S(” <3,< s,

1,6 7

S =56 ; S¥=284; S =120; 5§ =165.

1o 8% ou 1483464104154 21
— 56 =551

dou 346440415421 =55 ou 32+ 334 3¢+ 35+ 36 = 310 ;

20 sﬁ? ou 1--3-4+6-410+15-+ 21 28
—84=55+15--10 4+ 341
d’ou 621+ 28 =155 ou 3s~+ 36+ 37 == 310 :
30 sgf’; ou 14346410-+15-+21+ 28+ 36
—120=55--28 +21 + 1541
d’ou 3464104 36=2>55 ou 324 3s+ 3¢+ 38 == 310 ;
S® ou 14846410415+ 21 + 28 + 36
— 120 =551 28 + 21 310+ 6
d’ou 143415436 =255 ou 31+ 32+ 35+ 38 = 310 ;
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to S* ou 143 +6+10+15+21+28+36+45
’ A —165——55+36+28+21+15+10
d’ou 1484645 =55 ou 31+ 324 33439 =310 ;
S ou 14+346-104154214-28436+45 -
‘ — 165 ="55--36 128 21+ 15+ 6 + 3
d’on 10 4- 45 =55 ou 34 -+ 39 = 310 . 41

Sommes de nombres carrés distincts égales au nombre
carré &, ou 121:

91 < 121 < 140  ou sg‘fg <4, < 8Yy

1,7 7

1,10

® __ ‘ @ _ . 28 . ©
sV =140 ; s =1204; SH=1285; 5 =385 .

1o Sgg ne fournit aucune solution ;

20 S ou 14449416+ 25+ 36 -+ 49 64
— 204 =121+ 49 1+ 25+9
dott 144416436464 =121 ou 41+ be + he+ bo+ bs = bu1 ;
30 S® ou 144494164254 8649+ 64+ 81 |
— 9285 =121+ 64+ 49+ 25+ 164+ 9
d’out 4436481 =121 ou 42+ 46+ 4o =411 ; 41
4o sg‘-’fo 1449+ 16425 + 36 4 49 + 64 4 81 4100
— 385 = 121 + 81 - 64 - 49 + 36 + 25

+9
d’ott 1-4+4%4+164+100 =121 ou 41 -+ 42 + &s + %10 = 411 .

Sommes de nombres pentagonaux distincts égales au
nombre pentagonal 5, ou 92 :

75 < 92 < 126 ou S<f’><5 < 8@,

16’
G) __ ; ¢) __
8P, =126 ; ST =196 .
1o 8® ou 1454124224854 51 =126 =92 4 22 4 12
d’'ou 14+5+354+51=92 ou 51-}+52-+4+55+56=25s ;.
20 S ou 1454124224 35+51+70

- —196=92 -+ 51 1 35124511
d'ott - 22 170 ="92 ou 5i--5r=>5s .
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Sommes de nombres hexagonaux distincts égales au nombre
hexagonal 6,, ou 325 :

1,8 ’

| | ® O
252 < 325 <372 ow  S{) <6, <S

S® =372, s®=52; $® —715; S© =946 ; SO —1222 .

1,10 1,11 1,12

1o SEG; ne fournit pas de solution ;

20 S® ou 1464154 28 4 45 4 66 4 91+ 120 4 153
— 525 — 325 4120 4 45 + 28 - 611
d’ou 15 466 491 4 153 = 325 ou 63 + 66 + 67 4 69 — 613 ;

S ou 1464154 28 45+ 66 491 4120 4 153

— 525 — 325 4+ 91 + 66 4 28 15
d'ou 1464 454120153 = 325 ou 61 - 62 4 65 - 68 4 69 = 613 ;

30 siefo 14615+ 28+ 45 4 66 4+ 91 4 120 -~ 153 4+ 190
: — 715 =325 + 153 + 120 - 66 - 45 1+ 6

dott 14+154 284914190 =325 ou 61 -} 63— 64 - 67 4 610 — 613 ;

S, ou 1—[—6-[-’15—{-28—[—45—}—66—[—91+120+153+190
— 715 = 325 - 153 - 91 - 66 - 45 - 28

+6-+1
d’ou 154+ 120 4 190 = 325 ou 63+ 65 4 610 = 613 ;

ko sg‘?l, 146415+ 28+ 45 +66 491 4120 -+ 153 + 190 - 231
) — 946 — 325 -+ 190 + 153 -+ 120 4 91
4661
d'ott 6415 - 28 - 45 - 231 = 325 ou 62 -+ 63 - 64 - 65 + 611 = 613 ;

sg"fl 1 4 6 4 15 4 28 + 45 + 66 4 91 - 120 - 153 4 190 - 231
— 946 — 325 - 190 -- 153 4 120 - 91
445415461
d’ot 28—]—66—}-231.._325 ou 64 66 611 = 613 ;

50 sg?z 146415+ 28 4 45 4 66 + 91 4120 4 153 4 190 - 231 + 276
— 12922 — 325 - 231 4= 190 + 153 4 120
+ 914 664451

d’ou 6 + 15 4 28 4- 276 — 325 ou 62 +- 63+ 64 4 612 = 613 .
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Probléme III. — Quelles sont les sommes de p*™* puissances
consécutives de nombres polygonaux de n cétés égales a une
p*™ puissance d’'un nombre polygonal de n cotés ?

Solution. — Considérons un damier d'un nombre illimité
de cases et écrivons en diagonale, de haut en bas et de
gauche a droite, la suite '

Ajoutons au nombre n? de cette diagonale, le nombre nl_,
L 7 \ . ’ p p .
qui le précede; au résultat n’ 4 n’_ , ajoutons le nombre
P oty T . P P
o _,3 au résultat v, +n,_, + n,_,,

tons le nombre n?_, qui précede n?
x—3 x

n’_, qui précede nl ajou-

_,; et ainsi de suite.

Ecrivons’ les sommes obtenues successivement dans les
cases qui suivent la verticale passant par ”5 , de bas en haut:
dans la &' case, c’est-a-dire dans la case qui appartient a la
premiére bande horizontale du damier, se trouvera le nombre
représenté par la somme-

P
np—l—n

x x—1

Tout nombre N de ce tableau appartient a4 l'intersection
d’une bande horizontale qui, considérée de gauche a droite,

commence par n; .,

de bas en haut, commence par n’; a ce nombre correspond
Iégalité

et d’'une bande verticale qui, considérée

p p P __
ny_l_l—}—ny_l_g—}—...—{—nx_N.

Lorsque N sera une p*™ puissance d'un nombre polygonal
de n cotés, I'égalité qui précéde donnera une solution du
probléme. |

Observons, en passant, que tout nombre N du damier est
égal 4 la différence S — S™ |

g erence S, — S
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Sommes de nombres triangulaires consécutifs égales a un
nombre triangulaire : '

31 + 32 - 33 = 314

35 + 36 == 3s ;

32 + 33 + 34 + 35 + 36 == 310 ;

3t + 32 + 7 + 324+ 35+ 36+ 37+ 38 = 315 ;
38 + 3y + 310 = 316 ;

3¢ +35 +3 + ... ... .. + 30=32;
3¢ +35 -3 + . .. . .. .. -+ 311 =33 ;
3 +36 +3r 4+ .. . .. . . . - 315 = 32 ;
33 + 34 +35 4+ .. ... ... 4 319=3s ;
313 4+ 31a+315s-+ . ... .. .. 4+ 320=3s;
31 +32 +38 4+ . ... .. .. 4 32 =3 ;
3124+ 318+ 3+ ... ..o .. 4 321 = 3¢ ;
32 +3s +3« + . . .. ... . 4 321 = 350 ;
3 + 32+ 3+ ... .. L .. 4 328 = Jé ;
31a + 315 F+3ws+ ... .. ... 4 32e= 36 ;
33 +39 +3004+ ... .. ... 4 327 = 3ss ;
321 + 322 F+ 334+ . . . . . . . . + 3= 3ss ;
C 8 435 48 b ... ... 33 3s

Sommes de nombres carrés consécutifs égales a un nombre
carre :

4 + by = b5

boo + 421 = h2e
by + he 4 4s 4+ . . .. . . . . A bea = bro
b8 4+ Gyo Fhzo 4+ . . . . L L . A bdes = bur
by + b4y +ho + . . . . . .. hee == hee
bo 4 b1 - G + . . . . . . . . - bds2 = hios ;
bir 4+ bag 4+ bie -+ . . . . . L ..+ b3 = huss ;
by 4+ b4s b 4+ ... Lo L0 Ase = bues

hoo =4 4e1 4 be2 - . . . . . . . . 4 hes = biss ;
bag -} bGso -+ hao + o . . . . . . . bas = bGuas ;

Sommes de nombres pentagonaux consécutifs égales a un
nombre pentagonal :
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52 + 5s 4 54 4 55 -+ B + 57 -+ 95 = Dt ;

7 5¢ + 97 -} B -+ 59 = 15 ;
54 4+ 5s 456 + . . 6. - - . . + 510o=51;
Be + 57 4+ 5s 4+ . .. . . . . . 4 511=25dn;
5 -+ 59 4 510 4+ . . . . . . . . - 518 =0 ;
5 =54 455 4+ . . . . . . . . % =23 ;
5s - 59 - 5104+ . . . . . . . . - He2 = deo ;

525 -+ Des = O35 ;
. B2 bs 4+ bie 4 ... . ... . - D= 95 ;
510 4+ H11 B2 4+ . . . . . . . . - O = Js1 ;

Sommes de nombres hexagonaux conséculifs égales a un

nombre hexagonal : '
462 +63 + . .. . . . . . 4 611 = 62 ;
+ 64 +65 + .. . . . . . + 6183 = 62s ;
, 618 + 614 = 619 ;
615 + 616 6174+ . . . .. . . . -+ 622 = beo ;
Observation. — En ce qui concerne les nombres trlangu-

laires, la forme

ﬂg)x — E%x(x 4 1) (x4 2) (82 + 6z 4 1)

S
fait prévoir qu'une somme de carrés de deux nombres trian-
gulaires ne peut étre le carré d’un triangulaire!; et puisque,
‘d’apres le théoréme de Fermat, une somme de deux p*™
puissances ne peut étre une p*° puissance lorsque p est
supérieur a 2, il en résulterait le théoréme suivant :

Une somme de deux p*™* puissances de nombres triangu-
laires ne peut étre une p*™ puissance d’'un nombre triangu-
laire lorsque p est supérieur a Lunité.

1 A consulter : Le dernier théoreme de Fermat par E. BarBiTTE, (Editeur ; Gauthier-Villars,
Paris; prix : Fr. 1,50.)

Une somme de deux carrés de nombres triangulaires peut cependant étre un carré, mais
non le carré d’un triangulaire : .

2

2 2 2 2 2 2 2 2 2 2 2 2
21428 =37 ou 3 43 =3 ; 154 36 = 39 ou 3 +3 = 39

FR

2 2. 2 2 2 2 2 2 2 2 2 2
28 45 =53 on 3 43 =53 ; 36 +105 =11 ou 3 4 =111
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En d’autres termes, 1'équation

[(.76 — oy (X — oy - 1}]17 [x(x -+ ’l)]P . [(ﬂc + a){x + a -+ 1) ]2
2 | T 21 T 2 J
est impossible en nombres entiers lorsque p est plus grand
que 1.

La forme
(3)

p,x

$Y = a4+ 1)l 4 2)Q,
dans laquelle, lorsque p est plus grand que 1, Q, représente
un polynome entier du (2p — 2)*™ degré en x, conduit direc-
tement a la méme conclusion.
La relation '

<4) - 1 ¢ 2 3

D 3—(—)33(90 -+ 1) (22 + 1) (3x* + dx — 1) ,
fait aussi prévoir qu'une somme de carrés de deux nombres
carrés re peut étre un carré de carré. Mais des formules

s® 1

0z = (—5—6x(x + 1) (2723 4 182 — 13x — 2)

et

<®:1mw+umﬁ+6ﬁ;mx+u,

S22 30
nous ne pouvons conclure qu'une somme de deux carrés de
nombres pentagonaux ou hexagonaux ne peut étre respec-
tivement le carré d’'un nombre pentagonal ou hexagonal; il
est bon d’observer cependant que nous n’aflirmons pas pour

cela qu’une telle égalité existe.
E. BarserTE (Liége).
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