Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 14 (1912)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Artikel: LES FIGURES COLLINÈAIRES

Autor: Crelier, L.

Kapitel: Applications des figures collinéaires à la Géométrie descriptive.

DOI: https://doi.org/10.5169/seals-14284

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 16.10.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

2. Les figures homothétiques. Nous appellerons ainsi les figures d'une collinéation centrale dans laquelle les lignes homologues sont parallèles. Autrement, dans les figures homothétiques, l'axe de collinéation est rejeté à l'infini.

Exemples: Les sections planes parallèles d'une pyramide ou d'un cône et leurs projections sur un même plan.

Rapport d'homothétie: Quand deux figures sont homothétiques, les distances de deux points homologues au centre de collinéation ou d'homothétie forment un rapport constant.

3. Les figures égales et semblablement disposées. Ce sera le cas des figures collinéaires centrales, dans lesquelles le centre de col-

linéation et l'axe de collinéation seront à l'infini.

Exemples: Les sections planes parallèles d'un prisme ou d'un cylindre et leurs projections sur un même plan.

Pour ces cas spéciaux, on consultera avec intérêt : Rouché et Comberousse, Traité de Géométrie (t. I, p. 252); Grossmann, Darstellende Geometrie (p. 15, 42, 43, 51); Bentell, Ueber die ebenen Schnitte der Strahlenflächen. Dans ce dernier travail, les sections planes des corps simples sont spécialement développées en tenant compte de la collinéation.

Applications des figures collinéaires à la Géométrie descriptive.

Problème 1. — Etant donné une figure plane et trois points d'une autre figure collinéaire avec la première, déterminer complètement la seconde figure.

Problème 2. — Etant donné la projection horizontale d'un polygone plan et trois sommets de la projection verticale du même polygone, déterminer complètement cette deuxième projection (par la collinéation).

Problème 3. — Etant donné les deux projections d'une figure plane, déterminer le rabattement de cette figure. (On utilisera la hauteur de l'un des points pour rabattre celui-ci; les autres seront rabattus par la collinéation.)

Problème 4. — Déterminer la section d'un prisme par un plan et rabattre cette section dans le plan de la base.

Problème 5. — Déterminer la section d'une pyramide par un plan et rabattre cette section dans le plan de la base.

Problème 6. - Même question avec un cylindre.

Problème 7. — Même question avec un cône.

Remarque. — Dans les quatre derniers problèmes, nous supposerons la base du corps située dans un des plans fondamentaux.

D'autre part, on peut déterminer le premier point de la section

comme intersection d'une droite avec un plan et rechercher ensuite tous les autres points au moyen de la collinéation.

On peut également déterminer tous les points, même le pre-

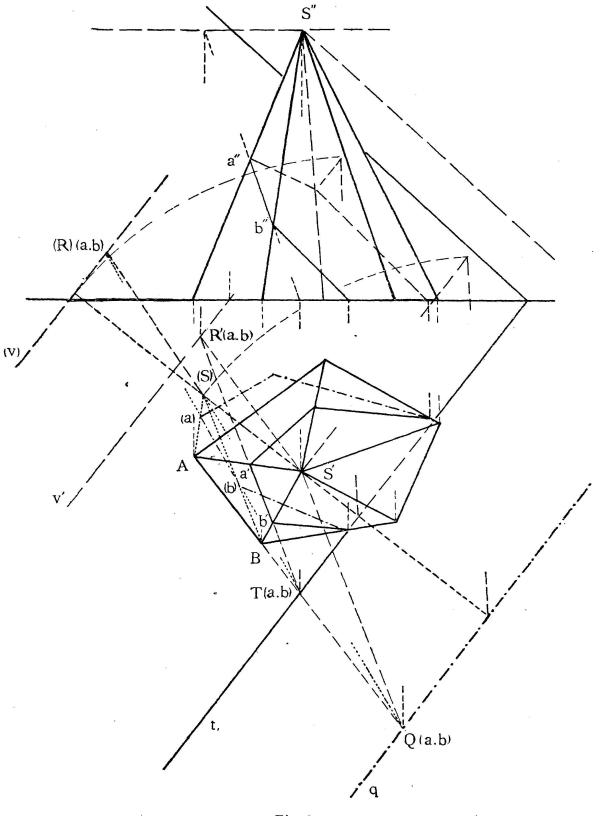


Fig. 3.

mier, par la collinéation. Nous développerons la solution du problème 5 en utilisant cette dernière méthode. Comme nous l'avons indiqué au début, nous sommes dans un chapitre de géométrie élémentaire, et cette méthode doit être établie par des moyens et des considérations appartenant tous au domaine de la géométrie élémentaire.

Nous n'utiliserons donc que les propriétés de la collinéation

centrale, telles que nous les avons présentées plus haut.

On pourra comparer notre solution avec celles données par MM. A. Benteli (mémoire déjà cité) et W. Fiedler, Die darstellende Geometrie (t. I, p. 345). La comparaison montrera que nous avons évité tous les développements ne relevant que de la géométrie supérieure et sortant, par conséquent, du programme des élèves qui nous intéressent.

Solution du problème 5. Nous ferons d'abord ressortir les fi-

gures collinéaires de ce problème (voir fig. 3) :

1. La base de la pyramide, dans le plan H et la section sont deux figures collinéaires situées dans des plans différents. L'axe de collinéation est la trace t_1 du plan sécant; le centre de collinéation est le sommet de la pyramide.

2. La base de la pyramide et la projection horizontale de la section considérée sont deux figures collinéaires situées dans le même plan. L'axe de collinéation est encore la trace t_4 ; le centre

de collinéation est la projection horizontale S' du sommet.

3. La projection horizontale de la section et son rabattement sur le plan H sont deux figures collinéaires situées dans le même plan. L'axe de collinéation est toujours la trace t_4 ; le centre de collinéation est à l'infini sur la direction perpendiculaire à t_4 . Ces deux dernières figures forment ainsi une affinité orthogonale.

4. Puisque les lignes homologues de la base de la pyramide et celles du rabattement de la section plane considérée se coupent également sur la trace t_1 , ces deux figures sont collinéaires. Elles sont dans le même plan. L'axe de collinéation est aussi la trace t_1 .

Nous reviendrons plus loin sur le centre de collinéation.

Nous avons encore d'autres collinéations : entres les deux projections de la section plane, entre la section elle-même et sa projection horizontale, et entre la section elle-même et son rabattement sur le plan H, mais nous ne nous occuperons pas davantage de celles-ci.

Nous pouvons rechercher maintenant les axes secondaires de ces divers groupes collinéaires. Prenons d'abord la base et la section: nous trouverons la ligne conjuguée de la droite de l'infini de la section, dans le plan H, en menant par le sommet des parallèles aux côtés de la section; celles-ci forment un plan parallèle au plan sécant passant par le sommet; leurs intersections avec les côtés correspondants de la base sont sur l'intersection de ce plan avec le plan H. Nous trouvons ainsi le premier axe secondaire q. Pour le deuxième, qui est la droite du plan de la section conjuguée de la droite de l'infini du plan H, nous mènerons

par S des parallèles aux côtés de la base; elles formeront un plan horizontal par le sommet et elles rencontreront les côtés correspondants de la section sur l'intersection du plan sécant avec ce plan horizontal auxiliaire, soit sur une horizontale du plan sécant dont la projection verticale passe par S'. Nous obtenons ainsi une droite de l'espace \(\rho\) qui est le deuxième axe secondaire.

En projetant horizontalement la section et le sommet de la pyramide sur le plan H, les parallèles aux projections horizontales des côtés de la section menées par S' représentent les parallèles précédentes, et elles rencontrent encore les côtés correspondants de la base sur la trace q du plan parallèle au plan sécant et passant par le sommet. q reste donc le premier axe secondaire de collinéation par rapport à la base de la pyramide et à la projection horizontale de sa section. Les parallèles par S' aux côtés de la base représentent également les parallèles menées par le sommet dans le plan horizontal auxiliaire; donc leurs intersections avec les projections des côtés de la section se trouveront sur la projection ρ de ρ . ρ qui est la projection de l'horizontale précédente, devient alors le deuxième axe secondaire de la collinéation considérée.

Nous avons encore à considérer les axes secondaires de la collinéation formée par la base et le rabattement de la section.

Pendant la rotation du plan sécant autour de t_1 , les côtés de la section sont entraînés dans le mouvement, mais leurs points de l'infini demeurent à l'infini. D'autre part, les points du plan de la base ou du plan H demeurent fixes et restent conjugués aux mêmes points du plan mobile. Dans ces conditions, le premier axe secondaire de la collinéation reste l'axe q et le deuxième axe secondaire reste ϱ pendant tout le mouvement, pour devenir (ϱ) lors du rabattement. Le deuxième axe secondaire est donc le rabattement de l'axe ϱ .

Recherchons maintenant le sommet de cette collinéation. Les parallèles aux côtés de la section menées par les points conjugués pris sur l'axe q sont demeurées parallèles pour toutes les positions du plan mobile. Elles ont donc constamment formé un second plan parallèle au plan sécant et mené par q. Leur point de coupe est donc resté dans ce plan pour se rabattre sur le plan H en même temps que le plan sécant lui-même. Le centre de la collinéation déterminée par la base de la pyramide et le rabattement de la section dans le plan de la base est donc le rabattement du sommet autour du premier axe secondaire q de la collinéation.

Recherche de la projection a'b'. Soit \overrightarrow{AB} le côté de la base. Sa trace horizontale vient en T(a,b) sur t_4 . Son point de coupe Q(a,b) avec q sera le conjugué du point de l'infini de \overline{ab} , le côté correspondant de la section. $S'Q_{(ab)}$ est alors une parallèle à $\overline{a'b'}$ et on pourra donc mener $\overline{a'b'}$ par $T_{(a,b)}$ parallèlement à $\overline{S'Q}_{(a,b)}$.

Les projections des arêtes limitent ensuite le segment considéré. Le prolongement de a'b' coupe ρ' en $R'_{(ab)}$.

Le procédé est applicable à tous les autres côtés de la section, mais il se simplifie immédiatement pour les points suivants par

l'emploi de l'axe de collinéation t_1 .

Recherche du rabattement (a)(b). Il est d'abord compris entre les droites (S)A et (S)B. Cette direction (a)(b) passera par T(ab) parallèlement à $\overline{Q_{(ab)}(S)}$. On peut aussi chercher $(R)_{(ab)}$ en menant $\overline{(S)(R)_{(ab)}}$ par (S) parallèlement à \overline{AB} . Les deux points $T_{(ab)}$ et $(R)_{(ab)}$ déterminent alors la direction (a)(b).

Les autres côtés du rabattement s'établissent ensuite au moyen

de l'axe de collinéation t₄.

On obtient la projection verticale en relevant les points comme $T_{(a, b)}$ sur la ligne de terre et comme $R'_{(ab)}$ sur la parallèle à la ligne de terre par S".

Observation finale. — Nous avons été amené à la publication de ce chapitre de géométrie élémentaire par l'élaboration du Rapport sur l'enseignement des mathématiques dans les écoles techniques moyennes suisses¹. En étudiant l'enseignement de la géométrie et de la géométrie descriptive, nous avons pu constater combien il serait avantageux de généraliser l'emploi de la collinéation centrale dans un grand nombre de constructions. Mais cela exige que la collinéation centrale puisse être présentée d'une manière élémentaire, à la portée des jeunes gens n'étant pas initiés à la géométrie supérieure. A ce titre, le présent exposé peut avoir quelque intérêt pour les professeurs de l'enseignement moyen.

L. CRELIER (Bienne).

¹ Un fascicule de 110 pages ; Georg & Çie, Genève.