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126 L. CRE HER
line collinéation centrale ou line homologies au lieu d'une colli-
néation simple.

En Suisse, nous admettons couramment la dénomination de
collinéation centrale d'après Mœbius et Fiedler, mais il serait
tout aussi exact d'appeler ces figures, des figures homologiques
d'après Poncelet et Chasles. A ce sujet, on peut consulter :

T. Heye, Geometrie der Lage (tome III, p. 2).
Axes secondaires de la collinéation.. — Soit Pce sur BD et N»

sur AB, les points homologues p et n de la deuxième figure seront
sur Sp II BD, puis sur Sn || AB. Ils seront en outre sur les lignes
homologues bd et ab.

Nous trouvons ainsi une droite pn de la deuxième figure qui est
l'homologue de la droite PocNoo ou de la droite de l'infini de la
première figure. P^Noo coupant l'axe de collinéation à l'infini, il en
sera de même de pn. La droite pn s'appelle un axe secondaire de
la collinéation.

D'autre part, considérons l*> sur ah et sur bd. Les points
homologues de l'autre figure sont L et K sur SL || ab et SK || bd.

Ces points sont en outre sur les lignes homologues AB et BD.
Nous obtenons la droite LK de la figure ABC, qui est l'homologue
de la droite de l'infini Gkcc dans la figure abc. LK est parallèle à

l'axe de collinéation, puisque son homologue Icckcc rencontre cet
axe à l'infini. LK s'appelle également un axe secondaire de
collinéation.

Les axes secondaires de deux figures formant une collinéation
centrale, sont les droites de chaque figure correspondant à la droite
de Vinfini de Vautre figure. Ces axes sont parallèles ci l'axe principal

de collinéation. (Voir fig. 2.)

Cas spéciaux de la collinéation centrale.

1. Les figures affines. Nous avons ici le cas où le centre de
collinéation est à l'infini, autrement dit les lignes de jonction
des points homologues de deux figures affines sont parallèles.

Exemples : Les diverses sections planes d'un prisme ou d'un cylindre ;

les deux projections orthogonales d'une ligure plane ; le rabattement d'un
polygone plan et la projection de même nom.

Si les lignes de jonction des points homologues sont également
perpendiculaires à l'axe de collinéation, qui prend ici le nom
d'axe d'affinité, la propriété des figures ainsi apparentées prend
le nom déaffinité orthogonale.

Rapport d'affinité : Dans les figures formant une affinité
orthogonale, le rapport des distances de deux points homologues à

l'axe d'affinité est constant.
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2. Les figures homothètiques. Nous appellerons ainsi les figures
d'une collinéation centrale dans laquelle les lignes homologues
sont parallèles. Autrement, dans les figures homothétiques, l'axe
de collinéation est rejeté à l'infini.

Exemples : Les sections planes parallèles d'une pyramide ou d un cône et
leurs projections sur un même plan.

Rapport d'homothètie : Quand deux figures sont homothétiques,

les distances de deux points homologues au centre cle

collinéation ou d'homothètie forment un rapport constant.
3. Les figures égales et semblahlement disposées. Ce sera le cas

des figures collinéaires centrales, clans lesquelles le centre de
collinéation et l'axe de collinéation seront à l'infini.

Exemples : Les sections planes parallèles d'un prisme ou d'un cylindre
et leurs projections sur un même plan.

* Pour ces cas spéciaux, on consultera avec intérêt : Rouché et
Comberousse, Traité de Géométrie (t. I, p. 252); Grossmann,
Darstellende Geometrie (p. 15, 42, 43, 51) ; Benteli, Ueber die ebenen
Schnitte der Strahlenflächen. Dans ce dernier travail, les sections
planes cles corps simples sont spécialement développées en tenant
compte de la collinéation.

Applications des figures collinéaires à la Géométrie descriptive.

Problème 1. — Etant donné une figure plane et trois points
d'une autre figure collinéaire avec la première, déterminer
complètement la seconde figure.

Problème 2. — Etant donné la projection horizontale d'un
polygone plan et trois sommets de la projection verticale du même
polygone, déterminer complètement cette deuxième projection
(par la collinéation).

Problème 3. — Etant donné les deux projections d'une figure
plane, déterminer le rabattement de cette figure. (On utilisera la
hauteur cle l'un cles points pour rabattre celui-ci; les autres
seront rabattus par la collinéation.)

Problème 4. — Déterminer la section d'un prisme par un plan
et rabattre cette section dans le plan cle la base.

Problème 5. — Déterminer la section d'une pyramide par un
plan et rabattre cette section clans le plan de la base.

Problème 6. — Même question avec un cylindre.
Problème 7. — Même question avec un cône.
Remarque. — Dans les quatre derniers problèmes, nous supposerons

la base clu corps située dans un des plans fondamentaux.
D'autre part, on peut déterminer le premier point de la section
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