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108 F. BUTAVAND

de points assujettis a rester sur la surface, tout en se dirigeant a
chaque instant vers un point fixe. Le plan déterminé par celui-ci
et la tangente en un point a la courbe est normal a la surface en
ce dernier point. Toutes les courbes qui remplissent cette con-
dition sont les orthogonales des sphériques déterminées dans la
surface par des sphéres dont le centre est au point fixe. Nous les
désignerons, pour abréger, sous le nom de « rectrices ».

On montre que dans toute transformation vectorielle de la sur-
face telle qu’a un rayon vecteur issu du point fixe, en corresponde
un autre dans la méme direction, dont la grandeur soit fonction
seulement de celle du premier, la qualité de la rectrice se con-
serve. lL.es transformations: inverse, homothétique, conchoidale
etc..., ainsi que les combinaisons diverses de ces transformations
conservent donc la rectrice.

Dans la transformation par polaires réciproques, aux sphé-
riques correspondent les enveloppes des plans tangents situés a
une méme distance du point fixe. A une rectrice correspond l'en-
veloppe d’un plan tangent qui se rapproche du point fixe par la voie
la plus courte a chaque instant. On voit ainsi que dans la théorie
géométrique de Poinsot, du mouvement dun solide autour d’un
point fixe, la développable circonscrite a 'ellipsoide le long de la
polhodie n’est autre que la polaire réciproque d'une rectrice.

2. Les rectrices de la surface de l'onde. — Une autre transfor-
mation est intéressante a examiner. On considere les sections
planes passant par un point fixe; de celui-ci on méne les nor-
males a la courbe de section ; sur la perpeundiculaire au plan de
section par le point fixe, et a partir de celui-ci, on porte une
longueur qui est fonction uniquement de la longueur d’'une des
normales. Le point ainsi déterminé décrit une certaine surface
quand le plan de section varie. Le plan défini par ce point et la
normale correspondante dans la section est normal a la surface
ainsi décrite, au point considéré. l.es surfaces apsidales se rat-
tachent au cas général qui précede.

En particulier, en appliquant la transformation a un ellipsoide
par rapport a son centre, et portant des longueurs égales aux
axes de la section, on sait que I'on obtient la surface de I'onde.
On en déduit immédiatement que celle-ci a deux nappes, et que
les cones recteurs de 'une des nappes sont les cones sphériques
de 'autre. Cela se traduit, dans le phénomeéne de la réfraction des
biaxes, par ce fait que sur une méme direction les plans déter-
minés par celle-ci et par les vibrations propagées sont rectan-
gulaires, propriété découverte par Hamilton.

Un cone recteur — ou sphérique — de la surface de l'onde est
— on le verrait aisément — le cone complémentaire d’un cone
sphérique de l'ellipsoide générateur. On sait qu’un tel cone est
du second ordre et appartient a la famille linéaire définie pour
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les cones — imaginaires — asymptotes de l'ellipsoide et de la
spheére. Les cones recteurs de la surface de 'onde sont donc du
second ordre et forment une famille linéaire tangentielle.

Les courbes isochromatiques sont, comme on le sait, les traces
des cones sphériques de la surface aux différences des rayons
vecteurs des deux nappes de la surface de 'onde dans une méme
direction. Les courbes d’égale intensité, et non plus de méme
coloration, sont, 1e\perlence le montre, les orthogonales des
precedentes ce sont des hyperboles equllateres passant par les
traces des deux axes du milieu biréfringent. Ces courbes sont les
traces des cones recteurs de la surface différentielle lesquels cons-
tituent aussi une famille de cones du second ordre. Nous n’in-
sisterons pas sur la question au point de vue géométrique.

3. Applications pratiques des rectrices. — On rencontre les rec-
trices et les sphériques dans des questions d’ordre tres différent.
Ainsien stéréotomie on les trouve dans ’appareillage d’'un berceau
oblique a téte circulaire. La projection sur le mur de téte des
courbes de joint est la trajectoire orthogonale des rectrices planes
paralleles au mur de téte, c¢’est-a-dire des sphériques du berceau
ayant leur centre a l'infini dans la direction normale a ce mur.
[Les courbes de joint sont donc les rectrices du berceau dans cette
direction. '

En topographie les lignes de plus grande pente, qui corres-
pondent aux hachures, et théoriquement en général au tracé des
cours d’eau, sont des rectrices de la surface du sol, les sphériques
étant les courbes de niveau, relatives a la direction dela verticale.

4. Les rectrices centrales des quadriques. — Parmi les cas les
plus simples, on est conduit & considérer celui des rectrices cen-
trales des quadriques. Ce sont les trajectoires orthogonales des
sphériques, et 'on sait que les cones sphériques sont ici du se-
cond ordre. I’équation des cdnes recteurs est facile a obtenir.
Soit : |

Ax? 4+ By? + Czt = 1

'équation d’une quadrique & centre. Soit z = f(xy) 'équation
cherchée du cone recteur. On aura

xz, + B)‘:/y‘—— Cz=0

/ !/
xrz, + ¥3, — 0

(3]

la premiére de ces équations exprime que le cone est normal a la
quadrique au point xyz, la deuxiéme exprime que s = f{xy) re-
présente bien un céne. On en déduit :

P ——

—
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et, en intégrant :

on aurait de méme :

C
— : !
Lz = =—5 Ly 4 ¢()
on en déduit :
C—B A—C B—A
x y .z — k

ce qui représente bien un cdne puisque :
(C—B)+(A—C)+ (B—A)=0.

Réciproquement si 'on donne une équation de la forme :

xay@ 2=k
représentant un céne avec les conditions :

¢ a4+ B4+ yv=0
on posera :
a_:C—B, f=A—C, y=B — A
d’ou
B=C—a, A=C+ §
et I’équation de la quadrique est:

(C— a)a? + (C + Byt 4+ Cz2 =1
ou encore : ) ,
Clx? 4+ y* 4+ 2%) — (ax? — By¥) =1,

ce qui représente un faisceau de quadriques défini par l'intersec-
tion d’un cylindre avec une sphére. Dans ce faisceau il y a des.
cylindres :

1o A=—=0, f=—C, a=—f3—DB;
20 B=0, a—=2C,. f—=A —a;
3o C=0.

On voit ainsi que les hyperboles équilatéres de tout ordre, et en
particulier les courbes dénommées adiabatiques en physique, de
méme que les paraboles de tout ordre sont les projections sur un
plan paralléle a un plan principal, des rectrices centrales de qua-
driques. ’




GEOMETRIE PHYSIQUE 111

5. La correspondance logarithmique entre quadriques et cones
recteurs. — Soient
' Ax? 4+ By? + Cz* =1

1
9 A’xt 4+ B'y? + C'z2 =1

les équations de deux quadriques & centres ayantles mémes plans
principaux. Leurs cones recteurs ont pour équation :

(2) , JCOL.}‘BzY = Z‘, x” ).B 2 =k,
avece
a—=C— B, @« =C" — B,
f=A—C, B/ =A"—C",

vy=B—A, v =B —A’.
Ajoutons membre a membre les équations (1), il vient :
(3) 7 (A -+ A’)x2 + (B + B/)yz + (C + C/) 72 — ,

ce (ui représente une quadrique ayant les mémes plans princi-
paux que les deux premieres, et passant par leur intersection.

D’autre part, multiplions membre a membre les équations (2),
il vient: -

7 4 74

(4) M N L e TS

C’est I’équation d’un cone recteur de la quadrique (3). En effet,
en posant

A+A =@ ,
B+B =& ,
cro=¢€ ,
on aura
«+o'=C - @B ,
B+p=AaA—-C ,

T+y=0B - QA .

On généraliserait facilement, et 'on verrait que si 'on donne
n quadriques ayant mémes plans principaux : .

Aya? 4 Biy? + Cyz2 =1,

AH,JJ‘? -—I— I'Sn.)'g + CnZz el | ,
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dont les cOnes recteurs sont respectivement :

o 3
2% af Y — g

xan yﬁn ZYIL — kn
la quadrique
X2TA 4 y¥EB + :22C = n

a pour cones recteurs

de. ?2[3 2y

— ¥

P

¢’est-a-dire

H(.’L‘a )") "Y) e

Enrésumé, on peut dire par abréviation que le produit des cones
recteurs est cone recteur de la somme des quadriques. On peut
encore exprimer ceci en un langage symbolique en disant que la
(quadrique est le logarithme du recteur.

6. Les rectrices et la représentation des phénoménes. — Nous
avons rencontré les rectrices dans un certain nombre de faits tres
divers. On a vu que les phénomeénes représentés par des hyper-
boles équilatéres ou des paraboles, se rattachent a la considération
des rectrices. Tels sont par exemple : I’évolution isothermique ou
adiabatique d’une masse gazeuse, la loi moyenne de variation de
I’'absorption cathodique et du rayonnement secondaire, etc....

D’autre part on constate aisément que le tracé méme d’une rec-
trice obéit a la loi du moindre effort momentané, c¢’est-a-dire du
maximum d’effet — soit du chemin parcouru vers le pole — pour
le minimum de travail — soit de résistance passive a vaincre.

Nous venons de mettre en évidence une autre propriété des rec-
trices, qu’il convient de rapprocher des -considérations par les-
quelles on est amené a exprimer que les causes peuvent étre con-
sidérées comme les logarithmes des effets.

Admettons que, soit comme symbole, soit par la nature méme,
le tracé d’une rectrice représente un phénomene ou un fait.

Il est bien clair que la cause correspondra aux deux liaisons
qui commandent le mobile: la surface et le point fixe. Quant a
Veffet, il est évidemment représenté par la courbe tracée, ou si
Von veut, parle cone recteur. Et alors la relation géométrique que
nous avons trouvée dans le cas d’une quadrique devient en quel-
que sorte la forme représentative concrete de 'aphorisme général
rappelé ci-dessus.

Ce qui préceéde explique pourquoi la considération des rectrices
est apte a intervenir dans la représentation des phénomenes, et

e
SR

i 08
ST
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il ne sera pas toujours inutile d’y avoir recours. Il se dégage
(’ailleurs de ce qui précéde, ce fait que les phénomenes simples
et fondamentaux correspondent en general au cas des rectrices
de quadriques.

On ne doit pas étre surpris du role ainsi joué par les quadriques
a centre, et notamment par I'ellipsoide. On trouve bien cette sur-
face dans I'étude des phénomenes élastiques autour d’un point:
on considere les ellipsoides des dilatations et d’élasticité. Cette
derniere surface, par une transformation connue donne la surface
de I'onde qu’on retrouve dans la théorie des biaxes. .

7. La dualité géométrique et les rectrices. — La dualité, qui,
par la considération des polaires réciproques fait correspondre
un point a4 un plan et inversement, n’est pas seulement une con-
ception abstraite; elle n’est pas inapte a intervenir dans les
sciences de la matiere. Ainsi, 4 I'ceil, organe assimilable & un
point, et destiné a scruter la matiere et notamment les surfaces
qui définissent celle-ci, correspond un organe plan d’un usage
différent, mais utile au méme but, et destiné a compléter le pré-
cédent. Cet organe plan dont le role est dit tactile, est constitué
par la main, et il est 'apanage des étres supérieurs comme
I’homme et les anthropoides. Eux seuls posseédent des organes
du tact d’une étendue suffisante pour éire considérés comme des
plans, ‘ou des assemblages de plans permettant un degré con-
sidérable dans la perfection du sens du toucher.

Transformons par polaires réciproques le représentatif rectoriel
d’un phénomene a quadrique centrée au pole. A la quadrique
correspond une autre quadrique qui est apte a représenter une
cause. Quant a l'effet, qui était représenté par un coéne rec-
teur, il sera représenté par la développable circonscrite & la qua-
drique et dont le cone asymptote est le cone complémentaire du
precedent c¢’est-a-dire en somme par le cone complémentaire lui-
méme. Il est d’ailleurs facile de montrer que ce cone complémen-
taire est aussi un cone recteur de la premiére quadrique.

En effet, soit x,y,z, un point du cone recteur
e
xag“J =k

La normale par le sommet du cone au plan tangent suivant la
génératrice du point x,y,2, a pour équations :

307 %o %

on en déduit :




114 F. BUTAVAND

comme ¢ + 84+ =20, ona:

N

2 B oA 1 o B
|z{:_/::aﬁ‘¥{’

ce qui représente bien un cone recteur de la premiére quadrique.
[.a puissance de ce cone est:

k' = % o« (jf) YY .

Soit «x, y, z le point de la quadrique correspondant a x,y,z,,
on aura :

>~

2% 4B 2Y
xo '70 ZO
K= 2% B oY
i1 1

d’ou :

L 3 5 B
I — (xoxl)a. (yoyl)@. (202 W= *. [;( YY .

1

Nous avons a peine besoin de faire remarquer que x, y, z,,
Zyy,z,, sont'les sommets de la section centrale qu’ils déter-
minent dans la quadrique.

En résumé, on voit que 'effet, représenté par un coéne recteur
correspond dans la transformation par dualité a un autre cone
recteur de la méme quadrique.

Sans chercher a généraliser, nous ferons observer que la sur-
face de 'onde a pour cdénes recteurs des cones du second ordre
qui, par dualite, donnent d’autres cénes du second ordre. Aussi
bien la surface de 'onde, par polaires réciproques, donne-t-elle
une autre surface de 'onde.

8. La matiére élastique et le complexe du second ordre. — On
définit en résistance des matériaux une surface dite ellipsoide
inverse d’élasticité en chaque point d’un solide. Passant a la
limite pour l'étude autour d’'un méme point, on peut considérer
seulement le cone asymptote — imaginaire en ’espéce — de
cette surface. Un solide apparait donc comme une portion d’espace
caractérisée en chaque point par un coéne du second ordre. Clest
précisément la la définition d’'un complexe.

Considérons, dans un complexe, la séparation entre les points
ou le cone est réel et ceux ol il est imaginaire. A cette conception
correspond la limite — une surface en général — entre la matiére
réelle et la matiere non réalisable. Comme cas particulier, en-
visageons le cas de la surface de I'onde. Le complexe des droites
capables d’'un diedre rectangle circonscrit a un ellipsoide donné
posséde en chaque point un cone du second ordre. [.a surface qui
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sépare dans ce cas les deux régions définies ci-dessus est précisé-
ment une surtace de 'onde.

En un point d’un ellipsoide E passent deux autres quadriques
ui lui sont homofocales : un hyperboloide a deux nappes et une
surface gauche du second ordre: H, et H,. On sait que les axes
du cone du complexe au point considéré sont les normales aux
trois quadriques E, H,, H,. L’aréte du cone dégénéré en deux
plans en chaque point de la surface de I'onide est normale a celle-
ci. Les deux autres axes du cone sont dans le plan tangent a celle-
ci; ils sont précisément tangents, 'un a la rectrice, I’autre a la
sphérique en ce point. | _

On sait d’autre part que la surface de onde peut étre définie
comme le lieu de la quartique intersection des deux quadriques
homofocales dont les parametres sont égaux, mais de signe con-
traire, 'une des quadriques étant toujours un ellipsoide E. Si a
E on associe la surface gauche H, on obtient la nappe intérieure
de la surface de I'onde. Avec I’hyperboloide 4 deux nappes H, on
obtient la nappe extérieure.

Les cones ayant pour sommet le centre et pour directrices ces
quartiques sont du second ordre. Ce sont précisément les cones
recteurs pour une nappe et sphériques pour l'autre.

Dans le cas d’un milieu isotrope, le cone est en tous les points
constitué par une sphére-point. Dans le cas d'un uniaxe, 'ellip-
soide inverse des élasticités est de révolution. Le cone imaginaire
est donc de révolution. Dans le cas d’un biaxe, le cone est a trois
axes inégaux; il a d’ailleurs méme orientation et mémes dimen-
sions en tous les points. Les corps hétérogénes ont en chaque
point un cdne dont l'orientation et les dimensions varient avec
les coordonnées du point.

9. Les lignes de rupture. — Admettons que les coeflicients de
Péquation du cone varient non seulement avec les coordonnées du
sommet, mais dépendent en outre d’une quatriéme variable, le
temps par exemple. lLe cone d’abord imaginaire pourra devenir
réel, a ce moment la matiére ne sera plus stable: elle tendra a
se diviser suivant les génératrices d’'un cone. Si 'on considere
dans le solide, une surface, celle qui le limite, par exemple, elle
va se fendiller suivant des directions régulieres. Dans le cas d’une
variation lente ce seront les directions des génératrices de con-
tact du cone avec la surface elle-méme en chaque point. Il y aura
donc en chaque point une direction de rupture. Si au contraire
la variation est_trés rapide, instantanée par exemple, pour arriver
a un cone réel, en chaque point il y aura deux directions de rup-
ture qui seront les intersections du coéne avec le plan tangent a
la surface.

Supposons maintenant qu’il s’agisse d’un milieu isotrope, et
que la modification du coéne du complexe résulte de 'action
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exercée par un ébranlement émané d’'un point fixe du solide. En
chaque point, par symétrie, le cone primitivement isotrope va
devenir un cone imaginaire, puis réel, mais toujours de révolution
autour du recteur allant de l'ovigine au sommet. Quand, en un
des points de la surface du solide le cone sera devenu tangent a
celle-ci, la génératrice de contact sera la tangente a la rectrice
en ce point. On en conclut que la rupture progressive de la sur-
face aura lieu suivant les rectrices.

Si, au contraire, la rupture est instantanée, comme daus le cas
d’une explosion, il y a deux directions de rupture en chaque point,
avec la rectrice et la sphérique pour bissectrices.

Considérons un solide en forme de céne de révolution; ad-
mettons que ’ébranlement provienne de son sommet et qu’il se
transmette instantanément avec la méme intensité a toute distance:
les lignes de rupture seront les trajectoires homogonales des géné-
ratrices, ce sont des hélices coniques, courbes que l'on trouve
dans I'étude du mouvement d’un corpuscule négatif dansun champ
d’un seul pdle sud, et qui sont au surplus des géodésiques du cone.

Si, comme surface, on prend un plan passant par le centre
d’ébranlement, on voit que les lignes de rupture feront des angles
égaux avec les rayons recteurs, ce seront donc des spirales loga-
rithmiques. (ie résultat est bien connu, et on le vérifie expéri-
mentalement dans les sections transversales des bouches a feu.

[.a détermination des lignes de rupture instantanée donne lieu
a une foule de problemes de géométrie. L.e cas d'une sphere est
particuliéerement intéressant en considérant une section telle que
les cones soient circulaires, égaux et paralleles entre eux (cas
d’une extension). On voit que les lignes de rupture font en chaque
point un angle constant avec une direction fixe. Ce sont les tra-
jectoires que suivrait un navire dont l'axe ferait un angle constant
avec la direction du poéle. On montre facilement que la projection
de ces courbes sur-le plan perpendiculaire a la direction des axes
est une épicycloide. On peut ainsi trouver sur une carte en pro-
jection équatoriale I'angle polaire a observer pour atteindre un
point connu en partant d’un point donné.

L’épicycloide a pour cercle générateur un cercle de rayon égal a
R (1 — cos ), R étant le rayon de la sphere et # le demi-angle au
sommet du cone; ce cercle roule sur un cercle dont le rayon est
R cos 8. Toutes les courbes sont extérieures a ce dernier cercle.

Un autre cas intéressant est celui ou les cones ont des axes nor-
maux a un diametre fixe qu’ils rencontrent. On voit que dans ce
cas, au contraire, toutes les courbes sont a l'intérieur du cercle
de rayon R sin #. En projection sur un plan paralléle aux axes,
ces courbes sont des spirales dont on trouverait facilement 1'équa-
tion différentielle. Elles sont, dans une certaine mesure, réalisées
pratiquement a la surface des billes de billard qui sont tournées
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sur axe méme d’une défense en ivoire. On les apercoit assez
nettement. Leur présence est due a ce que l'ivoire est constitué
par des couches cylindriques alternées, couches (ui, &8 un moment
donné tout au moins, ont eu des résistances différentes, et qui se
sont moulées successivement les unes contre les autres. Le milieu
n’est donc pas isotrope, et a un moment donné la résistance
tangentielle étant de sens contraire a la résistance radiale le
cone est devenu réel, des fissures se sont établies et colmatées.

10. La rectrice chimique. — On sait que le produit du poids
atomique d’un corps par sa chaleur spécifique a 'état solide ou
liquide est une quantité sensiblement constante et égale a 6,38,
fait qui constitue la loi de Dulong et Petit. Cette loi est traduite
~ par une hyperbole équilatére, qui est comme nous ’avons vu, la
projection d’une rectrice de cylindre du second ordre.

Siles poids atomiques sont comptes suivant Ox, et les chaleur
spécifiques suivant Oy, I’équation du cyhndre est :

.2

2 =~ ]
+3=1

et le plan z = 1/ 2 est coupé par les cones recteurs suivant des
hyperboles équilateres. .

Considérons la rectrice correspondant & 2y — 6,38 — k.

Soit &, 8, 7 = 1/ 2, un point de ’hyperbole. Joignons-le & l’ori-
gine. Le rayon vecteur de la rectrice est:

=a’ + )7 4 2

O

mais :
r_r_ =%
a_ﬁ—‘/§
d’ou
2 2:2 2 2
o' = gl + B+ 2)
oron a:
__ =
et:
-3 2
TR+t
par suite :
2 af 4 B2 4 2




118 F. BUTAVAND

et comme o = /&, on a en définitive :

o 41
o -+ A2

(1) ' (,2 =1+ &

avec k — 06,38, ou A? = 40.

l’équation représente une courbe en g, & du 4™ ordre, symé-
trique par rapport a chacun des axes de coordonnées. Nous la con-
sidérerons seulement dans l'angle x 0 y. Elle a pour asymptote
la bissectrice des axes, x =— y. En effet, on vérifie facilement que
¢ — o tend vers zéro quand « augmente indéfiniment.

Examinons maintenant le tableau de Mendeleieff. La série
des poids atomiques des corps d'une méme famille a des diffé-
rences premieres qui, au début de 15 montent a 25 environ pour
redescendre et paraitre se fixer autour de 20 ou 22.

Prenons par exemple la famille du Sodium :

H=1, =7, Na = 23 , K —=39,2 , Cu = 63,3 ,
Rb = 85,5 , Ag =— 108 etc.

Portons en abscisse des longueurs en progression arithmétique
etenordonnéesles poidsatomiques. Nous obtenons ainsi des points
qui dessinent une courbe présentant une analogie frappante avec
la courbe en g, a. Dans I’équation (1) donnons a a des valeurs en
progression arithmétique avec la raison 20. On obtient les valeurs
suivantes de o, (fig. 1):

Xy
v o p
| A
P /y;AgﬂOS o 1 - H = 1
: YR 20 64 Li— 7
Y Rh_qco!
E IRb-SS,:Q 40 21,4 Na — 23
| i 60 40,9 K = 39,3
! | 80 63 Cu— 63,3
| |
: } 100 84,6 Rb —= 85,3 °
H” 7 L 5 120 106 Ag = 108
= _/"_‘fLG 1_.L_‘__..-._._. o =
O 20 4,0 GO 80 100 120 . ©m . e e s eae s ee e e

Fig. 1.

Si nous considérons que « est proportionnel au rang, et si nous
laissons de coté la considération de la chaleur spécifique nous
voyons que le poids atomique est le rayon vecteur d’un point de
la rectrice K. = 6.38 et que 1'abscisse de la projection centrale de
ce point sur le plan z = y/ 2 est le rang du corps. (fig. 2.)
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Les corps des autres familles se placent par interpolation de
huitieme en huitieme. On donnera a « les valeurs suivantes :

1
Glucinium o 4 3 20

2 / 7 B
Bore . . o + '*8' 20 N I’ang a
3 JZ._._.
Carbone . o + =20 s .
i ecirice
A
Azote. . o+ g 20
Oxygeéne . a -+ -;)—20 X
5 6
Fluor. . o - .§20
Néon . .. a + éQO Fig 2.

en faisant «=—=o0 on obtient des corps entre I'hydrogéne et le li-
thium. Ces corps ne sont pas connus, sauf un seul, I'hélium, ho-
mologue inférieur du néon. Son poids atomique est donné par la
formule *

2 J
g1 p !
[ i d_z + /‘2
y ar « 3 7
ou 1l faut faire ¢ = 320
on obtient ¢ = 4,5. I expeuence donne pour le poids atomique de

I'hélium la \aleur 4. L’insertion de ce corps sur la courbe se fait
donc dans des COIldlthIlS d’approximation comparables a celles
des autres corps.

11 La loi cissoidale atomique. — La formule

2 -2 9
a
of = t P
41
peut s’écrire :
2
2 o3 1
6 — 1 -
CEFF T T Ega

a partir de Q — 10, les deux derniers termes représentent moins
de 2°/, de ¢ ? En les négligeant on aura : -

0.2

:‘/az—i—F
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Cette expression représente précisément le rayon vecteur d’une
cissoide droite, émanant du point de rebroussement, et déter-
minant surl’asymptote, a partir de 'axe de symétrie, une longueur
égale a .

l.a distance du point de rebroussement a 'asymptote est 63.8,
correspondant au poids atomique du cuivre (63.8). |

Si 'on désigne par N le rang du corps (le lithium étant pris
avec le n° 1) on voit que le poids atomique est donné approxima-
tivement par la formule suivante :

— 20 . N*(N? 4 10)”

La figure 3 traduit cette formule.

On améliore d’ailleurs celle-ci en ajoutant — ou restituant — le
terme {1 :
N2
(2) A—=14+20—— .
/N 4 10

[.a courbe correspondante devient
alors une cissoide légérement défor-
mée par transformation conchoidale.

| Au =197 [La vériﬁc.ati(.)n de cette for‘mule est
/11180 assez satisfaisante, — sauf pour le

o [ potassium — ainsi qu’il résulte du
ai .
) ; 160 tableau suivant : .
/! /"l, . Eléments. Rang. A calculé. A
’,?/:140 H 0 1 1
s £ 1 7 7
£ ;120 Na 2 22,4 3
/ K 3 42,2 39,3
/ ]
g O Cu & 64.8 63,3
) =
o ) Rb b) 85,4 39,2
’ 180 Ag 6 107,6 108
80.9 . e e
/%60 Au 10 192 197
3' .....
140 . o
': Nous avons a peine besoin d’ajou-
! ter que la loi cissoidale traduite par
{ . . . s
;20 la formule (2) doit étre considérée

9.-':'_ S s |

S L17 63,8 0

Fig. 3.

comme essentiellement empirique.

F. Buravanp (Alger).
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pondantes n’ont de solutions & somme des carrés convergente. Par
suite, les valeurs nécessairement réelles de A ou I’équation inté-
grale (25) n’a pas de solution de carré intégrable peuvent donc,
dans le cas général, ne pas étre isolées et former un ensemble
ayant la puissance du continu et lalternative n’existera plus: il y
aura des valeurs de A ou ni ’équation (25) ni I'’équation homogéne
correspondante n’admettent de solutions de carré intégrable dans
(@, b). 1] se présente par contre des faits nouveaux sur lesquels je
ne puis insister ici'. Je me bornerai pour finir, a signaler que la
théorie des formes quadratiques & une infinité de variables per-
met de trouver des conditions nécessaires et suffisantes pour que
I’alternative ait encore lieu, qu’elle retrouve ainsi les résultats de
Fredholm et de Schmidt sur les noyaux symétriques et que de
plus elle permet d’aborder des équations intégrales inaccessibles
aux méthodes de ces deux savants.

M. Prancuerer (Fribourg).

LES RECTRICES. ETUDE DE GEOMETRIE PHYSIQUE

Sommarre : 1. Les rectrices. — 2. Les rectrices et la surface de l'onde. —
3. Applications pratiques des rectrices. — 4. Les rectrices centrales des
quadriques. — 5. La correspondance logarithmique entre quadriques et
cOnes recteurs. — 6. Les rectrices et la représentation des phénomeénes. —
7. La dualité géométrique et les rectrices. — 8. La matiére élastique et
le complexe du second ordre. — Les lignes de rupture. — 10. La rectrice
chimique. — 11. La loi cissoidale atomique. '

1. Les Rectrices. — Quand on examine une glace étamée recou-
verte d’une poussiére légére, on observe que les grains de pous-
siere paraissent s’aligner vers I'eeil. L’effet est, dans une certaine
mesure, d’autant plus apparent que la glace est plus épaisse. Si
la glace, au lieu d’étre plane, constitue une surface courbe, aux
alignements rectilignes correspondent des courbes tracées sur la
surface. Il est facile d’expliquer I'effet d’alignement par la réflexion
de chaque grain de poussiére.

On voit aisément que ces courbes sont en somme les trajectoires

1 Cf. E. HELLINGER, Neue Begriindung der Theorie quadratischer Formen von unendlich

vielen Verdnderlichen [Journal fir die reine und angewandte Mathematik, Bd. 136 (1909),
pp- 210-271].
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