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propriétés très importantes relatives à la forme canonique

CD (S © it)
k(s,O 2 X- ,21)

p
p

du noyau et au développement d'une fonction arbitraire-/^)
série de la forme

b

en

f{s) r= + />pa(s) -1- fp —ff(s)9p{s)ds (22)

procédant suivant les solutions de l'équation (l'b) (autofonctions
ou fonctions fondamentales). La relation (21) a lieu lorsque la
série du second membre est convergente et E. Schmidt a montré
qu'un développement (22) uniformément et absolument convergent
est valable pour toute fonction fis) susceptible d'une représentation

de la forme
b

f(s) — ÇK (s t)g{t)dl (23)

a

Remarquons, en terminant, que la solution de (l'a) s'exprime
aisément au moyen des solutions q>P(s) de (l'b). On a, en effet,

b

œ(s) f{s) + -fp(s) f(s)fp^ds
P P

4. Les équations intégrales singulières.

Nous venons de voir l'étroite analogie qui existe entre la théorie
des systèmes d'équations algébriques linéaires et celle des équations

intégrales linéaires de seconde espèce. Remarquons encore
que la plupart des résultats de la théorie de Fredholm subsistent
encore dans le cas où K(s, i) présente des singularités infinies
mais où l'un des noyaux itérés fwf#, t) est fini. De même, dans
le cas du noyau symétrique, les principaux résultats sont encore

b b

vrais siJ f [K (s, Û]fdsdt est finie.
a a

Dans ses 4mc et omc notes sur la théorie des équations intégrales,
Hilbert a montré la raison profonde de cette analogie, il en a
trouvé les limites et par le même coup il a enrichi d'une nouvelle
méthode la théorie des équations intégrales. Cette méthode est
d'autant plus importante qu'elle permet d'aborder la théorie des
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équations intégrales à noyau singulier, c'est-à-dire à noyau
présentant des singularités assez élevées pour échapper aux méthodes
de Fredholm et de Schmidt. Nous ne pouvons ici que donner un
rapide aperçu de ses fondements.

Un système de fonctions cpl (s), <jp2(s)f définies dans un intervalle

(a, b), de carré intégrable dans cet intervalle, est orthogonal
relativement à (a, b), si l'intégrale du produit de deux fonctions

b

différentes du système est toujours nulle: j*yp[s)cpq{s)ds 0, p-^q*
a

Un tel système est toujours dénombrable. Nous le nornierons par
b

la condition f [yp(s)]2ds — 1. On a donc
a

b

a

Il sera dit fermé, si toutes les relations

b

*f*h(s)yp(s)ds=L 0 (^ 1,2,3,
a t

ne sont vérifiées simultanément queparla seule fonction h[s) 0.
Les fonctions

1 cos s sin .s- cos 2s siir 2.s

j/ftt {/t. [/m [/n [/ T.

forment, par exemple, un système orthogonal fermé et normé
pour l'intervalle (0,2n).~f(s) étant une fonction de carré intégrable
dans [a, &), on peut former les constantes (coefficients de Fourier
de f[s) relativement au système [y (s)])

b

fp=fy{s)fp[s)ds 2,3,....)
Cl

et la suite [fp] vérifie l'inégalité

b

p a

inégalité dans laquelle le signe est à prendre lorsque le
système [yp (.s)] est fermé. Dans ce dernier cas, on a plus générale-
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ment,
b

ff (s) g (s) ds — ^fpgp (24)

a p

f(s) et g[s) étant deux fonctions quelconques de carré intégrable,
f i gp leurs coefficients de Fourier.

La somme des carrés des coefficients cle Fourier d'une fonction
de carré intégrable est donc convergente. Inversement, MM.
F. Riesz et E. Fischer ont montré qu'étant donnée une suite

quelconque de constantes réelles fx f2, telles que con-
p

verge, il existe au moins une fonction /"(s).de-carré intégrable
admettant ces constantes comme coefficients de Fourier relativement

au système orthogonal normé [«jP^fs)]. En particulier, cette
fonction f{s) est unique (à une fonction d'intégrale nulle près)
lorsque le système [y (s)] est fermé. Remarquons cependant que
le théorème de Riesz-Fischer n'est vrai sans exception que
lorsqu'on étend la notion d'intégrale comme l'a fait Lebesgue. Nous
prendrons donc clans tout ce § les intégrales au sens cle Lebesgue.

Prenons maintenant l'équation intégrale

b

9(6') — K|s-, t)y{t)dt =z f(s) (25)

a

et supposons f[s) cle carré intégrable clans (a, b) et K (s, t) symétrique

tel que
b b

fy*K.(.ç, t)g{s)g(i)dsdt
a a

existe pour toute fonction g(s) de carré intégrable. Soit [y (s)] un
système orthogonal fermé et normé relativement à l'intervalle (a,b).
Notons

b

xp =-ffis) 9p&)ds

multiplions l'équation intégrale par cpp(s) et intégrons clans (a, b)

L'Enseignement mathém., 14e année; 1912 8

''pq—ft)fpis)'?<jWdsdt=kllp >

a a

b
(26)

fp =J
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en nous servant de la formule de Riesz (24). Il vient

•'/< - :

7=1

(p 1,2,3. (27)

C'est un système d'une infinité d'équations du 1er degré à une
infinité d'inconnues xi .r2, Si ce système admet une solution
{.Vp) de somme des carrés convergente, on pourra lui faire
correspondre par le théorème de Riesz-Fischer une fonction cf (s), de
carré intégrable, que l'on démontrera être solution de l'équation
intégrale. Il y a donc équivalence entre la résolution de Véquation
intégrale et celle d'un système d'équations linéaires à une infinité
d'inconnues. On est ainsi amené à l'étude de tels systèmes chéqua-
tions et à celle des formes quadratiques qui en dépendent. Cette
étude a été faite par Hilbert. Tœplitz et Hellinger, dans leurs
recherches ultérieures, ont apporté des contributions nouvelles à

cette théorie, ils l'ont surtout simplifiée en réduisant à un minimum

les questions de convergence qui se posent inévitablement
dans une telle théorie, et en éclairant mieux la face algébrique du
problème. L'hypothèse faite plus haut sur K(s, t) revient à dire que
la forme quadratique à une infinité de variables kp

p,q
bornée, c'est-à-dire telle que

xvxQ estpq p^q

22 kpi xp X1

P— l q — 1

pour tout système de valeurs

< M

+ • • • + < S > (n 1,2, 3,

M étant une constante convenablement choisie. C'est à l'étude des
formes bornées que se limite la théorie de Hilbert. Hilbert considère

comme solutions (et cela est naturel, d'après le théorème de
Riesz-Fischer) les seules solutions xi à somme des carrés
convergente. Sa théorie montre alors que l'analogie trouvée plus
haut ne subsiste plus en général. Ainsi, il peut y avoir des valeurs
de A, pour lesquelles les équations homogènes correspondantes
de (27) possèdent une infinité dénombrable de solutions. Les
valeurs de X où le système (27) n'est pas résoluble sont encore réelles
et il en existe encore au moins une, mais elles peuvent ne pas être
isolées et former un ensemble ayant la puissance du continu. Dans
ces cas, Valternative n'existe plus : il y a des valeurs de X pour
lesquelles ni les équations (27) ni les équations homogènes corres-
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pondantes n'ont de solutions à somme des carrés convergente. Par
suite, les valeurs nécessairement réelles de X où l'équation
intégrale (25) n'a pas de solution de carré intégrable peuvent donc,
dans le cas général, ne pas être isolées et former un ensemble
ayant la puissance du continu et Valternative n'existera plus : il y
aura des valeurs de X où ni l'équation (25) ni l'équation homogène
correspondante n'admettent de solutions de carré intégrable dans
[a, b). 11 se présente par contre des faits nouveaux sur lesquels je
ne puis insister ici1. Je me bornerai pour finir, à signaler que la
théorie des formes quadratiques à une infinité de variables permet

de trouver des conditions nécessaires et suffisantes pour que
l'alternative ait encore lieu, qu'elle retrouve ainsi les résultats de
Fredholm et de Schmidt sur les noyaux symétriques et que de
plus elle permet d'aborder des équations intégrales inaccessibles
aux méthodes de ces deux savants.

M. Plancherel (Fribourg).

LES RECTRICES. ÉTUDE DE GÉOMÉTRIE PHYSIQUE

Sommaire : 1. Les rectrices. — 2. Les rectrices et la surface de l'onde. —
3. Applications pratiques des rectrices. — 4. Les rectrices centrales des
quadriques. — 5. La correspondance logarithmique entre quadriques et
cônes recteurs. — 6. Les rectrices et la représentation des phénomènes. —
7. La dualité géométrique et les rectrices. — 8. La matière élastique et
le complexe du second ordre. — Les lignes de rupture. — 10. La rectrice
chimique. — 11. La loi cissoïdale atomique.

1. Les Rectrices. — Quand on examine une glace étamée recouverte
d'une poussière légère, on observe que les grains de poussière

paraissent s'aligner vers l'œil. L'effet est, dans une certaine
mesure, d'autant plus apparent que la glace est plus épaisse. Si
la glace, au lieu d'être plane, constitue une surface courbe, aux
alignements rectilignes correspondent des courbes tracées sur la
surface. Il est facile d'expliquer l'effet d'alignement par la réflexion
de chaque grain de poussière.

On voit aisément que ces courbes sont en somme les trajectoires

1 Cf. E. Hiïllingiîr, Neue Begründung der Theorie quadratischer Formen von unendlichVleerforderlichen [Journal für die reine und angewandte Mathematik, Bd. 136 (1909),
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