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100 M. PLANCHEREL

qui ne s'annule pas pour A — Xp, le nombre rp des solutions de

l'équation homogène est égal k n— vp, pour X=iXp.
Les analogies avec les résultats de Fredholm sont immédiates.

Nous prendrons, pour les voir, les systèmes suivants d'équations
intégrales :

(La) : cpjs) —X ÇK($, t)o(t)dt zzr f(.s)

a
b

(II'«): i(s) — X fK(t,s)$(t)dt=g(s}

[l'b) : ®(s) — X ^K{t\<ù(t)dt— 0

a

b

(II'A): 4. (jr) — xfK(S)m

D'après Fredholm, l'alternative dépend d'une transcendante
entière D(A), donnée par (6), qui n'a donc que des zéros isolés
appelés paramétrés singuliers de l'équation intégrale. Alors

1. si D (A) ^ 0, (lVi et (IVa] sont résolubles quelque soient
f{s),g{s).

2. si D(A) ~ 0, (l'b) et (IV b) sont résolubles.
3. le nombre des solutions et leur calcul dans le cas 2)

dépendent de séries entières qui sont les analogues des mineurs de
D„(A).

Remarquons que D (A) peut ne pas avoir de zéros; il est alors de
la forme D(A) eh&h Ce cas se présente en particulier pour un
noyau K(s, t) tel que K(s, t) 0 pour s 5S t. Dans ce cas l'équation
intégrale (équation de Volterra) se réduit à

©(s) — X ÇK(s, t)y(t)dt=. f{s)

et il est facile de vérifier que les séries (2) et (5) relatives à ce

noyau convergent pour toute valeur finie de A. L'équation homogène

correspondante n'a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K(s, t) est une fonction symétrique de ,s\ t :

K(s, t) K(A s] les quantités kpq — K(tp, tq) sont telles que
kpq kqp. Les systèmes transposés (F) et (IF) sont identiques et
il suffit dans ce cas d'étudier l'un d'eux, par exemple (F). La

1
substitution A — - ramène l'équation D«(A) 0 à une équation

bien connue sous le nom d'équation séculaire. Pour n 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en i s ») et
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l'on démontre que ses racines sont réelles. Ce fait est général; de

la symétrie kPq ss kqp résulte que Véquation Dn(Ä) — 0 a toutes ses

racines réelles. De plus, alors que dans le cas général D„,(Ä) 0

peut avoir toutes ses racines infinies, il existe ici au moins une

racine finie. Notant par A1, Â2, les solutions de D^) 0,

chacune répétée un nombre de fois égal au nombre des solutions
linéairement indépendantes de (1/&) pour cette valeur de A, nous

pourrons trouver n systèmes de valeurs

xf, x[f (p 1, 2, n)

tels que chacun d'eux soit solution de (Irb) pour la valeur
correspondante 1 lp et tels que

a

2^)a:r?) 8M (p. 7 1.2 (15)'
r— 1

OÙ Ôpq 0, si p ^ q et Spp 1. La substitution

n

yp — x(tp) Xr [p — 1,2, n) (ifi)
/• i

est alors une substitution orthogonale, c'est-à-dire qu'elle laisse
n

invariante la somme x2v

P=i

y\ + xl + • • • + yn + ** + •. • + xn '

Cette substitution transforme la forme quadratique

n n

22 kpixpxt= + lr>'r2 + • • •

p— i

en une somme algébrique de carrés

11 r (p) i (p) i i (p) "i2 n 2

I ^ A A
"4~

C\
H""* • • • # I VLj 1 ~ 2 2 ^ ^ n II}

_ (17^

^==1 \ p=ilP

Nous obtenons ainsi la forme canonique de la forme quadratique.
Cette forme canonique est bien connue pour n — 2, 3, la transformation

effectuée étant alors la transformation d'une conique ou
d'une quadrique à ses axes principaux. Sachant résoudre l'éqna-
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tion homogène (Vb) on pourra facilement exprimer la solution de
(Va) en fonction des seconds membres et des quantités .rjf Nous
n'insistons pas là-dessus.

Indiquons maintenant les analogies. Nous considérons pour
cela les équations à noyau symétrique

b b

{Va): ®(s) — À f*K(s t)®(t)dt ~ f(s) ; (Ir/>) ; ©(s)— \j*K(s, t) o (t) dt m 0

a a

On peut démontrer que toutes les racines de D(A)—0 sont
réelles. En d'autres termes, l'équation homogène (Vb) n'admet de
solutions que pour des valeurs réelles de A. De plus D (A) 0
possède au moins une racine réelle finie. Il existe donc au moins une
valeur finie de A, pour laquelle (Vb) est résoluble. Soient encore Xi,
A2, A„, les zéros de D(A), chacun d'eux étant répété dans
cette suite autant de fois que l'équation (Vb) a de solutions
linéairement indépendantes pour cette valeur de A; nous pourrons faire
correspondre à chaque Xp une fonction g>p(s) vérifiant la relation

É b

?p(s) — XPfK(Ä> ') ?,,(<)= 0 (18l

a

et telle que

b

opq,q 1, 2, 3 (19)

a

Ces relations, analogues des relations (15), expriment que les
solutions de l'équation intégrale homogène (Vb) relatives à deux
valeurs différentes Xp, Xq sont orthogonales et que le système complet

des solutions
<M-S) ?«(«) ®p (s) >

forme un système orthogonal normé de fonctions pour l'intervalle

(a, b). L'analogue de la forme (17) est ici la formule

r- b

b b f•!-(s)?p («)<**J

ffK(s, t)^(s)^(t)dsdt~^— (20)

ou au second membre la sommation est étendue à toutes les
valeurs du paramètre singulier Xp. De cette relation découlent des
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propriétés très importantes relatives à la forme canonique

CD (S © it)
k(s,O 2 X- ,21)

p
p

du noyau et au développement d'une fonction arbitraire-/^)
série de la forme

b

en

f{s) r= + />pa(s) -1- fp —ff(s)9p{s)ds (22)

procédant suivant les solutions de l'équation (l'b) (autofonctions
ou fonctions fondamentales). La relation (21) a lieu lorsque la
série du second membre est convergente et E. Schmidt a montré
qu'un développement (22) uniformément et absolument convergent
est valable pour toute fonction fis) susceptible d'une représentation

de la forme
b

f(s) — ÇK (s t)g{t)dl (23)

a

Remarquons, en terminant, que la solution de (l'a) s'exprime
aisément au moyen des solutions q>P(s) de (l'b). On a, en effet,

b

œ(s) f{s) + -fp(s) f(s)fp^ds
P P

4. Les équations intégrales singulières.

Nous venons de voir l'étroite analogie qui existe entre la théorie
des systèmes d'équations algébriques linéaires et celle des équations

intégrales linéaires de seconde espèce. Remarquons encore
que la plupart des résultats de la théorie de Fredholm subsistent
encore dans le cas où K(s, i) présente des singularités infinies
mais où l'un des noyaux itérés fwf#, t) est fini. De même, dans
le cas du noyau symétrique, les principaux résultats sont encore

b b

vrais siJ f [K (s, Û]fdsdt est finie.
a a

Dans ses 4mc et omc notes sur la théorie des équations intégrales,
Hilbert a montré la raison profonde de cette analogie, il en a
trouvé les limites et par le même coup il a enrichi d'une nouvelle
méthode la théorie des équations intégrales. Cette méthode est
d'autant plus importante qu'elle permet d'aborder la théorie des
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