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100 M. PLANCHEREL

qui ne s’annule pas pour A = 1,, le nombre r, des solutions de
I’équation homogéne est égal a n—v,, pour A =1,.

Les analogies avec les résultats de Fredholm sont immédiates.
Nous prendrouns, pour les voir, les systémes suivants d’équations
intégrales :

b b
(Ua) = sis) — ) [K(s, tjg(tidt = f(s) | (I'b) : ofs) — 2 [K(s. tyeit)dt =0
a a
. b b
(Ia): d(s) — A fK(t, s)o(tydt = g(s) | (Ib): di(s) — K[K(t. $)9(t)dt =0
a a

D’apreés Fredholm, 1'alternative dépend d’une transcendante en-
tiere D (1), donnée par (6), qui n'a donc que des zéros isolés ap-
pelés parametres singuliers de I'équation intégrale. Alors

1. st D(A)3£0, (I'a) et (Il'a) sont résolubles quelque soient
/ls). gls)

2. si D(A) =0, (I'd) et (II'd) sont résolubles.

3. le nombre des solutions et leur calcul dans le cas 2) dé-
pendent de séries entiéres qui sont les analogues des mineurs de
D. (4.

Remarquons que D (1) peut ne pas avoir de zéros; il est alors de
la forme D (1) = e*W. Ce cas se présente en particulier pour un
noyau K s, ¢) tel que K(s, ) = 0 pour s <¢. Dans ce cas I'équation
intégrale (équation de VoLTErRA) se réduit &

o(s) — A /.K(vs, teolt)dt = f(s)
a

et il est facile de vérifier que les séries (2) et (5) relatives a ce
noyau convergent pour toute valeur finie de 1. I.’équation homo-
gene correspondante n’a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K{s, ¢) est une fonction symétrique de s, :
Kis, t) = K{(¢, s) les quantités kp, = K(¢p, ¢;,) sont telles que
kpg = kqp . Les systémes transposés (I') et (II') sont identiques et
il suffit dans ce cas d’étudier I'un d’eux, par exemple (I'). La

. . 1 . 1.5 . ‘ 2 .
substitution 2 = ramene l'équation D,(A) == 0 a une équation

bien connue sous le nom d’équation séculaire. Pour n = 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en «s») et
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'on démontre que ses racines sont réelles. Ce fait est général ; de
la symétrie kpq = kqp vésulte que léquation Dn(A) = 0 a toutes ses
racines réelles. De plus, alors que dans le cas général Dy ('1) =0
peut avoir toutes ses racines infinies, il existe ici-au moins une
racine finie. Notant par 4., A,, ..., A les solutions de Dr(A) =0,
chacune répétée un nombre de fois égal au nombre des solutions
linéairement indépendantes de {1’6) pour cette valeur de 4, nous
pourrons trouver n systemes de valeurs

.x(p), xff), ...,xif’) (]);—:1,2,....72)

tels que chacun d’eux soit solution de (I') pour la valeur corres-
pondante A —=1, et tels que

n

Nl =5 o pg=120m (15

r=1

ot 0y =0, si p 7 ¢ et 0pp = 1. La substitution
¥, = xP (p=1,2,...,n (16)

est alors une substitution orthogonale, c¢’est-a-dire qu’elle laisse

n

. . 9
invariante la somme S xp

=1

2 2 2 2 2 2
R e UM i i e M

7

[ SV B

Cette substitution transforme la forme quadratique

n

n
N 2
2 kpqxpxq = x; + 22,725 + .

p=i gq=I

en une somme algébrique de carrés

n (p) (p) () T n
— [x1 x, 4 ay xy + o0+ 2 xn] 253; 17)
= — 1
A

p=1 . )\_p p=1 P
Nous obtenons ainsi la forme canonique de la forme quadratique.
Cette forme canonique est bien connue pour n =2, 3, la transfor-
mation effectuée étant alors la transformation d’'une conique ow
d’'une quadrique a ses axes principaux. Sachant résoudre 1'équa-
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tion homogeéne (1’6} on pourra facilement.exprimer la solution de
(I'a) en fonction des seconds membres et des quantités z‘]‘,’) . Nous
n’insistons pas la-dessus.

Indiquons maintenant les analogies. Nous considérons pour
cela les équations a noyau symétrique

b b
(a) : o(s)— % /.K(s Holt)dt = f(s) ; (17b): <p(s)———\fK(s, tio(t)dt =0
a a

On peut démontrer que toutes les racines de D(A) =0 sont
réelles. En d’autres termes, 'équation homogene (I'd) n’admet de
solutions que pour des valeurs réelles de 2. De plus D () == 0 pos-
sede au moins une racine réelle finie. Il existe donc au moins une
valeur finie de 2, pour laquelle (1'4) est résoluble. Soient encore %, .
Aoy oo hpy ... les zéros de D(1), chacun d’eux étant répété dans
cette suite autant de fois que 1’équation (I’d) a de solutions linéai-
rement indépendantes pour cette valeur de 1; nous pourrons faire
correspondre a chaque 4, une fonction ¢,(s) vérifiant la relation

€

b
9,(5) — foK(s, e, (t)dt =0 (18)
a

et telle que

b .
L/gop(sjcpq(.s)a’s::‘“pq , (p,g=1,2,3, ..., . (19)
a

Ces relations, analogues des relations {15), expriment que les so-
lutions de I'équation intégrale homogeéne (I'd) relatives a deux va-
leurs différentes 2,, 4, sont orthogonales et que le systéme com-

plet des solutions
o1(S), @afs), ... cpp(s),

forme un systéme orthogonal normé de fonctions pour linter-
valle (@, &). [.’analogue de la forme (17} est ici la formule

b —
[ J4(s)g,ts) dsJ

b b
K. bis)d , :“ ¢ 20
ff (s, §d(s)d(t)dsdt e (20)
a «a p

2

%

ou au second membre la sommation est étendue a toutes les va-
leurs du parametre singulier 4,. De cette relation découlent des

O
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I
propriétés trés importantes relatives a la forme canonique

(s)o,(t)

i Pp\%p
K(s, t) = E “—")\—;"“ (21)

p

du noyau et au développement d’une fonction arbitraire-f{s) en
série de la forme ‘

flsr = fiaulsi + figals) &+ .o [y =[Fls)g,(s)ds (22

procédant suivant les solutions de I'équation (1'0) (autofonctions
ou fonctions fondamentales). La relation (21) a lieu lorsque la
seme du second membre est convergente et E. Schmidt a montré
quun développement (22) uniformément et absolument convergent
est valable pour toute fonction fis) susceptible dune représenta-
tion de la forme

fI& gltdl . (23)

Remarquons, en terminant, que la solution de (I'a) s’exprime ai-
sément au moyen des solutions ¢,{s) de (1'4). On a, en effet,

A—;j.,,( 1 = 115,04

4. Les équations intégrales singuliéres.

Nous venons de voir I’étroite analogie qui existe entre la théorie
des systemes d’équations algébriques linéaires et celle des équa-
tions intégrales linéaires de seconde espéce. Remarquons encore
que la plupart des résultats de la théorie de Fredholm subsistent
encore dans le cas ou K{s, ¢) présente des singularités infinies
mais ou 'un des noyaux itérés K,(s, ¢} est fini. De méme, dans
le cas du noyau symétrique, les principaux résultats sont encore

vrals 51/ [ {)]*dsdt est finie.

Dans ses 4™ et 5™ notes surla théorie des équations intégrales,
Hicgerr a montré la raison profonde ‘de cette analogie, il en a
trouvé les limites et par le méme coup il a enrichi d’une nouvelle
méthode la théorie des équations intégrales. Cette méthode est
d’autant plus importante qu’elle permet d’aborder la théorie des
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