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montre que la résolution de l'équation générale peut se ramener
à celle de l'équation à noyau symétrique et il aborde directement
l'étude de l'équation intégrale homogène à noyau symétrique. Il
établit par des raisonnements directs et très simples tous les
théorèmes de Fredholm et de Hilbert dont l'énoncé ne fait pas intervenir

les séries de Fredholm; puis, par une méthode imitée de
méthodes de Schwarz et de Grsefe, il établit l'existence d'un
paramètre singulier et montre que la résolvante du noyau symétrique
est une fonction méromorphe à pôles simples. La résolution de

l'équation intégrale inhomogène découle ensuite facilement de
celle de l'équation homogène. Etablissant la forme canonique du
noyau symétrique, il retrouve et généralise (en les débarrassant
d'une restriction inutile) les théorèmes de développement de
Hilbert. La thèse de Schmidt présente des qualités de simplicité
et d'élégance remarquables; les démonstrations y font transparaître

immédiatement les analogies algébriques profondes de la
théorie des équations intégrales.

Les nombreux travaux parus à la suite des travaux cités n'ont
pas modifié les lignes générales de la théorie. Nous ne citerons
en passant que ceux de Plemelj et de Goursat relatifs à l'étude
de la résolvante de Fredholm dans le voisinage de ses pôles et
ceux de J. Schur démontrant sans l'intermédiaire des formules de
Fredholm plusieurs propriétés des équations intégrales à noyau
asymétrique. Par contre, des points de vue tout nouveaux ont été
apportés par Hilbert dans ses 4me et 5me notes1 : sa méthode des
formes quadratiques à une infinité de variables a permis d'aborder
des cas qui échappent à la théorie de Fredholm.

2. Analogies algébriques de la théorie des équations intégrales.

Du fait que les formules de Fredholm s'obtiennent comme cas
limite des formules de résolution d'un système de n équations
linéaires à n inconnues, il est à prévoir que la théorie des équations

intégrales présentera des analogies avec celle de ces
systèmes. MM. Hilbert et Tœplitz ont, clans leurs études sur les
formes bilinéaires a une infinité de variables, insisté sur le fait
que la notion cle déterminant, qui joue un si grand rôle dans
l'exposition ordinaire de la théorie des équations algébriques
linéaires, est difficilement extensible au cas d'une infinité d'équations

à une infinité cl inconnues. Aussi, pour bien montrer ces
analogies, allons-nous d'abord, avec M. Tœplitz, énoncer sous
une forme qui diffère de la forme ordinairement suivie, les
théorèmes relatifs à la résolution des systèmes d'équations linéaires,

1 Loc. cit.
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en séparant nettement des autres ceux de ces théorèmes qui, dans
leur énoncé, n'impliquent pas la notion de déterminant.

Considérons, pour cela, les systèmes suivants de n équations à
n inconnues

{la)

(1 -j- kn)0Cx + ^I2'r2 + + k\nXn — A

^'21^1+ b + k22^ X2 H" *•' + k2nXn ~~ f'1

m

ka\X\ + k,ilX2 + + I1 + kméXn ~ fn

(1 kn)xx -{- kt2x2 -f- + k\ nxn — 9

knxx 4- (1 + k22)x.2 -f + k2n xn —0

(II«)

k,i\x 1 + kx2X2 + + t'1 + knn)Xn ~ 0

l1 + 4" ^2lJ2 + + k,i\ïn ~ 8'l

kl2J\ + 0 4- A>2b'2 + ••• + kn2Ïn ~ 82

(LU)

{ k\ny\ + htJ>2 + - + I1 4- knn]Yn ~ on

l i1 + Aibi + ^21^2 + + kn\yn — °

J kvlyx 4- (1 4- £22)y2 4- 4- ka2yn — 0

k\iJ\ + k>2ny-2 "h H" C1 + k,ui)Yn :

(la) et (lia) sont des systèmes inhomogènes ; les matrices des
coefficients des inconnues y sont transposées. (1b) et (lib) sont les
systèmes homogènes correspondants ; ils admettent toujours les
solutions triviales xi xy — =ixn — 0, yx — — yn— 0.
Nous conviendrons de ne pas compter de telles solutions comme
solutions propres de ces systèmes. On a les théorèmes :

I. Les systèmes homogènes transposés (Ib) et [lib) ont le même
nombre r(0 ^ r n) de solutions linéairement indépendantes.

II. Lorsque r 0, les systèmes inhomogènes transposés (la) et
(lia) ont chacun une solution unique et bien déterminée pour tout
système de valeurs des seconds membres A, f2, fn; g,, g2? gn.

III. Lorsque r>0, les systèmes (la) et fila) n'ont en général pas
de solutions. Notons par

rjy fiffi p(î)
K ' [J2 ' ' Ki-1". 4, - •

a(,)
u

4< «W
u

«r. g,.. ir)
a

n

p(2) p(2) fi(2)
A ' '2 ' '*' ' Li (11)

g,e
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deux systèmes complets de r solutions linéairement indépendantes

de (13) et de (113). La solution générale de (13) est par suite

Cl«»' + c2 +•••+ c,.a~P—

et celle de (113

(P 1.2, n)

?'p — Cl ftp + C*2 ß
o(2) o(r)+ *,% (/> 1, 2, n)

cr étant /' constantes arbitraires quelconques. Pour
que (h?) soit résoluble, il faut et il suffit que [f] — [f f2, /y
vérifie les r relations

/;ßis) + /2ßf + ••• +/;,ß!f o. 1,2, (12)

et de même pour que (Ila) soit résoluble, il faut et il suffit que jj]
vérifie les r relations

f#) ($) A
»1 ai + »2*2 + + »/Ai ~ (s 1, 2, (13)

Lorsque les relations (12) sont vérifiées, la solution générale de
(la) est de la forme

X„ + Cl«'" + c,ajf) + • • • + c,V (/> 1, 2,

(Xp) étant une solution particulière quelconque du système et
cx, c2 tv /' constantes arbitraires. De même, si les relations
(13) sont vérifiées, et si (Yp) désigne une solution particulière
quelconque de (IIa), la solution générale de ce système est

cNP]+c2ß]r' + +c,iïp (p =Z 1,2, 72)

Remarquons qu'il résulte des théorèmes I et II Valternative
suivante : Ou bien les systèmes inhomogènes transposés (1a), (Ila)
sont toujours résolubles, quelque soient leurs seconds membres
{/], [g1], ou bien les systèmes homogènes transposés (13), (113)
possèdent des solutions (en même nombre) non identiquement nulles.

Pour montrer les analogues de ces théorèmes dans la théorie
des équations intégrales, considérons les équations

\la W +JK(s, t)o(t)dt f(s)
a

b

{II«) <|>(s) + I*K (l,— g (s)

(I/,) f{s) + flils, t)*(t)cl0

Cl

b

(II/,) &[S)+ fK (f, :)^(t)df 0
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(la) et (lia) sont des équations inhomogènes à noyaux transposés.
(Ib) et (lié) sont les équations homogènes correspondantes ; elles
admettent les solutions triviales <p(s) 0, '(//(sJeeO que nous
conviendrons de ne pas compter comme solutions. Nous admettrons

pour simplifier que K(s, t), f[s), g (s) sont des fonctions
continues et nous exigerons des solutions cp(.s), ip(s) qu elles soient
aussi continues dans (a, b). La théorie de Fredholm permet alors
d'établir les théorèmes analogues.

I. Les équations intégrales homogènes transposées (lé), (lié), ont
le même nombre r de solutions linéairement indépendantes. r est
fini.

II. Lorsque r ~ 0, les équations intégrales inhomogènes trans-
posées (la), (lia) ont chacune une solution unique et bien déterminée,

pour toutes fonctions f(s), g (s).
III. Lorsque r > 0, les équations intégrales inhomogènes (la),

1 la) n'ont en général pas de solution. Soient

®l(s| ®ï(s) ©,.(«) ; '-M6') 'h(s) ' • • • * ^r(-S')

deux systèmes complets de r solutions linéairement indépendantes

de (lé) et de (lié). La solution générale de (lé) est

O(.s-) r= ct9i (.v) + c2©2(.s) + + £,.?,.(«)

et la solution générale de (lié) est

'b{s) Ci'bi«) -j- f2'i»2(.s-) —f- —{— cr4y(6')

r, c2, cr étant r constantes arbitraires. Pour que (la) soit
résoluble, il faut et il suffit que f(s) vérifie les / relations

b b b

l*f(s)^i(s)ds 0 j fis) fa(s) ds 0 f f(s)j/r(sjds 0 (14)

a a a

et de même, pour que (lia) soit résoluble, il faut et il suffit que
g (s) vérifie les /* relations

b b b

fg{s)yt(s)ds — 0 Çg(s)^{s)ds — 0 J*g{s)yr(s) ds 0

a a a

Si les relations (14) sont vérifiées, la solution générale de (la) est

(ù{s) — dps) -f- c 1 Cpi(S) -f- C2©j(s|i -j- -j- cr¥rl$)

<&(s) étant une solution particulière quelconque et c4, c2, cr
r constantes arbitraires. De même, si les relations (15) sont véri-
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fiées et si *P(s) est une solution particulière quelconque cle (Ha),
la solution générale de cette équation est

Z= W(s) + 6't^js) + C2^{.s) 4- -h Cr^rW

Il résulte donc encore des théorèmes I et II Valternative : Ou bien
les équations intégrales transposées inhomogènes (Ia) et (lia) sont
résolubles quelque soient leurs seconds membres f(s), g [s) ou
bien les équations homogènes transposées (Iô) et (II£) admettent
des solutions non identiquement nulles. Cette alternative est
d'une extrême importance pour les applications de la théorie des

équations intégrales.
Les théorèmes indiqués plus haut sur les systèmes linéaires

d'équations algébriques peuvent s'établir sans faire usage des
déterminants. De même, leurs analogues delà théorie des équations
intégrales, bien qu'obtenus pour la première fois par Fredholm
par l'intermédiaire de ses séries, peuvent se démontrer directement.

Mais, s'il s'agit, en algèbre, de trouver des critères pour
déterminer dans quel cas de l'alternative on se trouve ou de
calculer effectivement les solutions l'emploi des déterminants est
nécessaire. Pour les introduire ici de manière à conserver une
analogie encore plus étroite, nous aurons avantage à introduire
un paramètre A et à considérer non plus les systèmes (I) et (II)
mais le système (10) que nous avons obtenu en exposant la
méthode de Hilbert. Nous étudierons donc les systèmes transposés

n

(l'a) : xp - fp
q—\

il

(H a) • dp
q=\

La théorie des déterminants montre que pour que (La) soit résoluble

quelque soit [/], il faut et il suffit que le déterminant D„(A)
des coefficients des inconnues soit 0 et que pour que le système
(bb) soit résoluble, il faut et il suffit que.ce déterminant soit nul.
Si nous remarquons que le déterminant du système (IL) est
encore égal à Dn[É] et que l'équation du nième degré Drt(A) 0 a n
racines A2, Xn (finies ou infinies), nous voyons que

1. pour XjézXpi (La) et (Iba) sont toujours résolubles, quelque
soient [/'], [g],

^2. pour A — kp, (b£) et (ILb) sont résolubles.
o. Dans le dernier cas, les solutions s'obtiennent au moyen des

mineurs de D«(A) et vp étant le rang du premier mineur de D»(A)

n

(I'/,) : 0

7—1
ip Ö 1, 2, 11)

n 1

(IVb):
q-L
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qui ne s'annule pas pour A — Xp, le nombre rp des solutions de

l'équation homogène est égal k n— vp, pour X=iXp.
Les analogies avec les résultats de Fredholm sont immédiates.

Nous prendrons, pour les voir, les systèmes suivants d'équations
intégrales :

(La) : cpjs) —X ÇK($, t)o(t)dt zzr f(.s)

a
b

(II'«): i(s) — X fK(t,s)$(t)dt=g(s}

[l'b) : ®(s) — X ^K{t\<ù(t)dt— 0

a

b

(II'A): 4. (jr) — xfK(S)m

D'après Fredholm, l'alternative dépend d'une transcendante
entière D(A), donnée par (6), qui n'a donc que des zéros isolés
appelés paramétrés singuliers de l'équation intégrale. Alors

1. si D (A) ^ 0, (lVi et (IVa] sont résolubles quelque soient
f{s),g{s).

2. si D(A) ~ 0, (l'b) et (IV b) sont résolubles.
3. le nombre des solutions et leur calcul dans le cas 2)

dépendent de séries entières qui sont les analogues des mineurs de
D„(A).

Remarquons que D (A) peut ne pas avoir de zéros; il est alors de
la forme D(A) eh&h Ce cas se présente en particulier pour un
noyau K(s, t) tel que K(s, t) 0 pour s 5S t. Dans ce cas l'équation
intégrale (équation de Volterra) se réduit à

©(s) — X ÇK(s, t)y(t)dt=. f{s)

et il est facile de vérifier que les séries (2) et (5) relatives à ce

noyau convergent pour toute valeur finie de A. L'équation homogène

correspondante n'a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K(s, t) est une fonction symétrique de ,s\ t :

K(s, t) K(A s] les quantités kpq — K(tp, tq) sont telles que
kpq kqp. Les systèmes transposés (F) et (IF) sont identiques et
il suffit dans ce cas d'étudier l'un d'eux, par exemple (F). La

1
substitution A — - ramène l'équation D«(A) 0 à une équation

bien connue sous le nom d'équation séculaire. Pour n 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en i s ») et
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