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montre que la résolution de 'équation générale peut se ramener
a celle de ’équation a4 noyau symétrique et il aborde d13“e(3.tennent
I'étude de P'équation intégrale homogeéne a noyau symétrique. Il
établit par des raisonnements directs et trés simples tous les.'theo-
rémes de Fredholm et de Hilbert dont I’énoncé ne fait pas inter-
venir les séries de Fredholm; puis, par une méthode imitée de
méthodes de Schwarz et de Grafe, il établit 'existence d’un para-
meétre singulier et montre que la résolvante du noyau symétrique
est une fonction méromorphe a poles simples. La résolution de
I’équation intégrale inhomogene découle ensuite facilen.]ent de
celle de I’équation homogéne. Etablissant la forme canonique du
noyau symétrique, il retrouve et généralise (en les débarrassant
d’une restriction inutile) les théoremes de développement. .de
Hilbert. La these de Schmidt présente des qualités de simplicité
et d’élégance remarquables; les démonstrations y font transpa-
raitre immédiatement les analogies algébriques profondes de la
théorie des équations intégrales.

[Les nombreux travaux parus a la suite des travaux cités n’ont
pas modifié les lignes générales de la théorie. Nous ne citerons
en passant que ceux de PremELs et de Goursar relatifs a I'étude
de la résolvante de Fredholm dans le voisinage de ses poles et
ceux de J. Scuur démontrant sans l'intermédiaire des formules de
Fredholm plusieurs propriétés des équations intégrales a noyau
asymétrique. Par contre, des points de vue tout nouveaux ont été
apportés par Hilbert dans ses 4™ et 5™ notes' :" sa méthode des
formes quadratiques & une infinité de variables a permis d’aborder
des cas qui échappent a la théorie de Fredholm.

2. Analogies algébriques de la théorie des équations intégrales.

Du fait que les formules de Fredholm s’obtiennent comme cas
limite des formules de résolution d’un systéme de n équations
linéaires a n inconnues, il est & prévoir que la théorie des équa-
tions intégrales présentera des analogies avec celle de ces sys-
temes. MM. [iLsert et T@wepriTz ont, dans leurs études sur les
formes bilinéaires 8 une infinité de variables, insisté sur le fait
que la notion de déterminant, qui joue un si grand role dans ex-
position ordinaire de la théorie des équations algébriques li-
néaires, est difficilement extensible au cas d’une infinité d’équa-
tions & une infinité d’inconnues. Aussi, pour bien montrer ces
analogies, allons-nous d’abord, avec M. Teeplitz, énoncer sous
une forme qui différe de la forme ordinairement suivie, les théo-
remes relatifs a la résolution des systémes d’équations linéaires,

1 Loc. cit.
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en separant nettement des autres ceux de ces théorémes qui, dans
leur énoncé, n’impliquent pas la notion de déterminant.

Conmderons pour cela, les systemes suivants de n équations a
n inconnues

h S (1 + ky)ey + kpay + . + ka®, = h
(la) kpxy 4 (1 + kg @y + oo 4 by, = f,

A./zlx'l —I- A'nzxz + + (1 + I‘:nn)xn e fll

(T + Aoy + kpay, + oo + ke, =0
(1h) ko + (1 + kog)xy + ... + ky,x, =0

..............

/l.ILl xl + '{‘/12‘%2 + + {1 + /'./m)xn =0

(1 ky)yy + koyds + oo+ kyy, = &
kiayy (1 + koalog + oo+ kpy, = &

..............

(Ha)
/‘1n 1 + ]‘2/13':2 + e + (1 + /ILII n— 8n
(1 +;L11 1 a3 k. 212 T /"nl.yn =0
(II[)) 3 A ( + ]{22))'2 + o F k/w)‘n. =0

\ /i1,,3'1 + kznﬁ'z —I_ _I— (1 + /inn)yu =0

(la) et (lla) sont des systéemes inhomogenes; les matrices des
coefficients des inconnues y sont {ransposées. (16) et (115) sont les
systemes homogenes correspondants; ils admettent toujours les
solutions triviales x,—x,—=...=2 =0, y, =y, = ...=y, = 0.
Nous conviendrons de ne pas compter de telles solutions comme
solutions propres de ces systéemes. On a les théoréemes :

I. Les systemes homogenes transposeés (16) et (I1b) ont le méme
nombre r(0 < r < n) de solutions linéairement indépendantes.

II. Lorsque v=0, les systemes inhomogenes transposés (la) et
(Ha) ont chacun une solution unique et bz'en déterminée pour tout
systeme de valeurs des seconds membres f,, . fas o2y, 8y, oo Bn.

II. Lorsque r >0, les systemes (la) et !I[a) nont en général pas
de solutions. Notons par

(Y (1) (1) (1) (1)

al ’ O(2 ! ! Ull le ! f’z ! ! [n
(2) (2) (2) (2) (2) - (2)

d.l y a? y s aIL (Jl 9 (32 y ’ ()” (11)
{r) (r) {r) ) o) ()

al v %y ’ an pl ! ()‘.’ ’ ! l;n
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deux systémes complets de 7 solutions linéairement mdepen—'
dantes de (1) et de (115). La solution générale de (I5) est par suite

1 L _ ,
.xp__.c1l‘p‘—{—c,p +..‘.—{—c,,ap'). p=1.2,...,n

et celle de (1)
11 - 42 A . G ) — ¢ ;
j'p:clp;)—{—cwﬁ}(,}—%...—}—L,.(an'), (p=1,2,...,n

€,y Cyy ..., ¢p 6tant r constantes arbitraires quelconques. Pour
que (la) soit résoluble, i faut et il suffit que [[1=1(f}, o, -+ [n)
vérifie les » relations

LB+ hE + 18 = s=1,2,....1 (12)
et de méme pour que (Ila) soit résoluble, il faut et il suffit que [g]
vérifie les r I'elations

? s} o
glal:) + oz az) + ...+ gnaf{ =0, (s =1,2,...,r (13

Lorsque les relations (12) sont vérifiées, la solution générale de
Ia) est de la forme

R TR [ - ‘ — .
’Ip.—,xp‘i-(,lap —{'—Lzal(j)—{"..-"i—ci.a}(:): (P-——-192! ~~-7”)

{Xp) étant une solution particuliere quelconque du systéme et
Cyy Cy,y ooy ¢ I conslantes arbitraires. De méme, si les relations
(13) sont vérifiées, et si (Y, désigne une solutlon particuliere
quelconque de (Ila), la solution générale de ce systéeme est

, i (2 . :
wp:lp‘{‘cl(’};)”\l’cg(’})‘*‘ ‘\LC,-(’;) ; (p=1,2,...,n)

Remarquons qu’il résulte des théoremes 1 et Il lalternative sui-
vante : Ou bien les systémes inhomogenes transposés (la), (lla)
sont toujours résolubles, quelque soient leurs seconds membres
/], [g], ow bien les systémes homogenes transposés (15}, (I15) pos-
sédent des solutions (en méme nombre) non identiquement nulles.

Pour montrer les analogues de ces théoremes dans la théorie
des équations intégrales, considérons les équations

la)  o(s) —}—fK(s, t)o(t)dt = f(s) (Ib)  ofs) + /.K(S, tol(t)dt = 0‘

b
(Ila) di(s) + fI{(t, s)b(t)dt = g(s) (H[)), d(s) —-{—/11{(5’, s)d(
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(la) et (lla) sont des équations inhomogénes 4 noyaux transposés.
(16) et (I1b) sont les équations homogénes correspondantes; elles
admettent les solutions triviales ¢(s) =0, w(s) =0 que nous
conviendrons de ne pas compter comme solutions. Nous admet-
trons pour simplifier que Ks, ¢, £(s), g(s) sont des fonctions con-
tinues et nous exigerons des solutions ¢(s), y(s) qu’elles soient
aussi continues dans (@, bj. La théorie de Fredholm permet alors
d’établir les théoremes analogues.

L. Les équations intégrales homogenes transposées (1), (I16), ont
le meéme nombre v de solutions linéairement indépendantes. r est
fini.

II. Lorsque v =0, les équations intégrales inhomogenes trans-
posées (la), (Ila) ont chacune une solution unique et bien détermi-
née, pour toutes fonctions f(s), ¢(s).

HI. Lorsque r >0, les équations intégrales inhomogenes (la),
a) n’ont en général pas de solution. Soient

i

o1(s), oals). ..., 9,(8) de(s), dals), ..., D (s)

deux systemes complets de r solutions linéairement indépen-
dantes de (16} et de (115). La solution générale de (15) est

€

o(s) = €191(8) + Cavals) + ... + ¢,.0,.(s)
et la solution générale de (115) est
bis) = cidul(s) + cata(s) 4+ ... + ¢, 4,05

Cyy Cyy ooy O €tant 7 constantes arbitraires. Pour que {la) soit
résoluble, ¢l faut et il suffit que f|s) vérifie les r relations

b b b
/.f(s)%(s)ds = 0. [filslds =0, ... . [[ls)4(sids="0 (14)

« a a

et de méme, pour que (lla) soit résoluble, i/ faut et il suffit que
gls) vérifie les r relations
b

b b
[g(.s;q)l(s)ds:() , /lg(.s)cpz(s)ds:() S fg(s}@r(.s)ds = 0.
[£2 a

a
Si les relations (14) sont vérifiées, la solution générale de (la) est
ols) = D(s) + cro1(s) + capa(s) + ... + ¢,9,.(s) ,

@(sj étant une solution particuliére quelconque et ¢,, ¢,, ..., ¢»
r constantes arbitraires. De méme, si les relations (15) sont véri-

\

T R O Ae PUST %
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fies et si P (s) est une solution particuliére quelconque de (lla),
la solution générale de cette équation est

bis) = W(s) + exlals) + cadals) 4+ .o + c,dls) -

Il résulte donc encore des théoremes I et I alternative : Ou bien
les équations intégrales transposées inhomogenes (Iaj et (1la) sont
résolubles quelque soient leurs seconds membres f{s), g(s) ou
bien les équations homogénes transposées (10) et (116) admettent
des solutions non identiquement nulles. Cette alternative est
d’une extréme importance pour les applications de la théorie des
équations intégrales. ’

Les théoréemes indiqués plus haut sur les systémes linéaires
d’équations algébriques peuvent s’établir sans faire usage des-dé-
terminants. De méme, leurs analogues de la théorie des équations
intégrales, bien qu'obtenus pour la premiere fois par Fredholm

par 'intermédiaire de ses séries, peuvent se démontrer directe-

ment. Mais, s’il s’agit, en algebre, de trouver des critéres pour
déterminer dans quel cas de I’alternative on se trouve ou de cal-
culer effectivement les solutions 'emploi des déterminants est
nécessaire. Pour les introduire ici de maniére a conserver une
analogie encore plus étroite, nous aurons avantage a 1ntr0dun“
un parametre A4 et a conmderer non plus les systemes (I) et (1I)
mais le systéeme (10} que nous avons obtenu en exposant la mé-
thode de Hilbert. Nous étudierons donc les systémes transposés

’ 3 N S / 5 S § A .
Ta) : x, — ;\2 by = F, | (VD) © 2, — AZ/.qu_o

7= 7= p=1.2,..,n)
’ o (117 » . T ) S p—
(IWa): y, — XEA i = Dpl (IUh): y, — /\ququ —0
’ g =1 (]:l.

La théorie des déterminants montre que pour que (I'a) soit réso-
luble quelque soit [f], il faut et il suffit que le déterminant D, (1)
des coefficients des inconnues soit =£0 et que pour que le systeme
(1'0) soit résoluble, il faut et il suffit que ce déterminant soit nul.
51 nous remarquons que le déterminant du systeme (II') est en-
core égal a Dy(1) et que 1'équation du n*™° degré D,(A) =0 a n
racines 4, , 4,, ..., 4, (finies ou infinies), nous voyons que

1. pour 2 £ 12,, (I'a) et (Il'a) sont toujours résolubles, quelque
soient /], [&]-

2. pour A ==1,, (1'6) et (Il'd) sont résolubles.

. Dans le dernier cas, les solutions s’obtiennent au moyen des

mineurs de D, (1) et v, etant le rang du premier mineur de D,(})
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qui ne s’annule pas pour A = 1,, le nombre r, des solutions de
I’équation homogéne est égal a n—v,, pour A =1,.

Les analogies avec les résultats de Fredholm sont immédiates.
Nous prendrouns, pour les voir, les systémes suivants d’équations
intégrales :

b b
(Ua) = sis) — ) [K(s, tjg(tidt = f(s) | (I'b) : ofs) — 2 [K(s. tyeit)dt =0
a a
. b b
(Ia): d(s) — A fK(t, s)o(tydt = g(s) | (Ib): di(s) — K[K(t. $)9(t)dt =0
a a

D’apreés Fredholm, 1'alternative dépend d’une transcendante en-
tiere D (1), donnée par (6), qui n'a donc que des zéros isolés ap-
pelés parametres singuliers de I'équation intégrale. Alors

1. st D(A)3£0, (I'a) et (Il'a) sont résolubles quelque soient
/ls). gls)

2. si D(A) =0, (I'd) et (II'd) sont résolubles.

3. le nombre des solutions et leur calcul dans le cas 2) dé-
pendent de séries entiéres qui sont les analogues des mineurs de
D. (4.

Remarquons que D (1) peut ne pas avoir de zéros; il est alors de
la forme D (1) = e*W. Ce cas se présente en particulier pour un
noyau K s, ¢) tel que K(s, ) = 0 pour s <¢. Dans ce cas I'équation
intégrale (équation de VoLTErRA) se réduit &

o(s) — A /.K(vs, teolt)dt = f(s)
a

et il est facile de vérifier que les séries (2) et (5) relatives a ce
noyau convergent pour toute valeur finie de 1. I.’équation homo-
gene correspondante n’a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K{s, ¢) est une fonction symétrique de s, :
Kis, t) = K{(¢, s) les quantités kp, = K(¢p, ¢;,) sont telles que
kpg = kqp . Les systémes transposés (I') et (II') sont identiques et
il suffit dans ce cas d’étudier I'un d’eux, par exemple (I'). La

. . 1 . 1.5 . ‘ 2 .
substitution 2 = ramene l'équation D,(A) == 0 a une équation

bien connue sous le nom d’équation séculaire. Pour n = 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en «s») et

oo zaEs S
sl
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