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LA THEORIE DES EQUATIONS INTEGRALES!

Née il y a a peine dix ans, la théorie des équations mtegrales a
attiré d’emblée 'attention des mathématiciens tant par son attrait
propre que par limportance de ses applications. Plusieurs des
résultats de cette théorie sont déja classiques et nul doute que
dans quelques années les cours d’Analyse ne leur consacrent un

chapltre Aussi désirerais-je vous montrer quelques-uns des prin-

cipaux points de cette théorie en reliant ses résultats & des faits
algébriques connus. Mais, envisagé ainsi, mon sujet est trop vaste;
je ne pourrai parler ni des équations intégrales de 1™ espece

b

J Kis, t)o(t)dt = f(s)

a

ni de celles de 3™ espece
kis)o(s) —lr-‘/K(s t)ol(t) dt = f(s)

caractérisées par le fait que la fonction %(s) change de signe dans
Uintervalle (@, ). Je ne pourrai non plus rien dire des applications
de la théorie aux équations différentielles et aux équations aux
dérivées partielles. A part quelques travaux que je citerai, je me
permettrai de renvoyer pour la bibliographie compléte au rapport
que publie actuellement M. Haun 2.

Apergu sur les travaux de Fredholm, Hilbert, Schmidt.

Dans des travaux classiques, C. Neumany a montré que la solu-
tion du probleme intérieur de Dirichlet pour un domaine convexe

1 Conférence donnée a la Réunion de la Société wmathématiq.ue suisse, 4 Berne, le 10 dé-
cembre 1911, par M. Michel PLANGHEREL, professeur a P'Université de Fribourg.

? H. HAnN, Bericht iiber die Theorie der linearen Integraigleichungen. B.G. Teubner, Leipzig,
1911. La premiére partie seule a paru jusqu'a présent comme « Sonderabdruck aus dem 20.
Bande des Jahresberichts der Deutschen Mathematiker-Vereinigung ».

L’Enseignement mathém., 14¢ année 1912,
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90 M. PLANCHEREL

peut s’exprimer comme potentiel d’'une double couche portée par
la frontiére de ce domaine, potentiel que sa méthode de la moyenne
arithmétique permet de calculer. Plus tard, H. Poixcarg, levant
la restriction de la convexité du domaine, montra toute 'impor-
tance de la méthode de Neumann ; puis, généralisant le probleme,
il posa la question de la détermination d’un potentiel de double
couche par la condition que les valeurs de ce potentiel sur les
deux cotés de la frontiere vérifient une relation linéaire donnée.
.a densité de la double couche satisfait alors a une équation fonc-
tionnelle facile a obtenir; cette remarque, faite déja par Neumann,
fut le point de départ des recherches célébres dans lesquelles
FreonorLm aborde et résout toute une classe d’équations fonction-
nelles du type de ’équation rencontrée dans le probleme de Neu-
mann. Ces équations fonctionnelles, appelées aujourd’hui équa-
tions de [redholm ou équations intégrales linéaires de seconde
espece, sont dans le cas le plus simple (le cas des fonctions de plu-
sieurs variables n’apporte rien d’essentiellement nouveau a la
théorie et se traite par les mémes méthodes) de la forme

b

?(“’i) _— l/vK(s, to(t)dt == f(s) . (1)

a

fls) et K(s, ) y sont deux fonctions réelles données des variables
réelles s, t(a < s, t < b), ) est un parametre et ¢(s) la fonction in-
connue qu’il faut déterminer de maniére a satisfaire identique-
ment en s dans (a, b) la relation (1). K(s, ¢} est appelé le noyau
de 'équation intégrale et f(s) porte souvent le nom de second
membre de I'équation.

Pour résoudre l'équation (1), il vient naturellement a D'esprit
d’essayer de représenter la solution (comme 'ont fait Liouville et
C. Neumann a l'occasion de problemes particuliers) par un déve-
loppement \

ols) = o, (s) + Ko, (s) + No,ls) + ... + Mo, (s) + ... (2)

On obtient alors les relations de récurrence

qui permettent de calculer de proche en proche les coeflicients

R
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de 1" dans la série-(2). Si nous introduisens les noyaux iteres

b J C . .
K, (s, 1) —_—‘/‘Kn_1 (s, )K(r, t)dr , Ki(s, t) = Kls, ) ,
@ (3)
' . =12, 8. sexl
les relations de récurrence donnent
b
ol = [yt o
. a
et ¢(s) prend la forme
b
ofs) = fis) + A [I((X; s, Bfitydt (%)
@
avec
K(h; s, 8) :El" K,pqls, 00 (5]
n=>0

Sous la seule hypothese que K (s, ¢} et f(s) sont des fonctions bor-
nées intégrables, on démontre la convergence des séries (2] et (5)
dans le voisinage de 2 = 0 et, par le fait méme, I'existence dans
ce voisinage d’une et d’une seule solution bornée donnée par (4).
¢(s) et K(A; s, t) sont alors des fonctions holomorphes de 4 dans
le voisinage de 2 = 0. Il se pose naturellement a lear sujet la
question difficile : Peut-on prolonger analytiqguement K(k; s, t),
et si oui, quel est le caractere de la fonction de 1 ainsi définie”
La réponse a cette question fait I'objet fondamental de la théorie
des équations intégrales et c’est & Fredholm que nous la devons?.
Par une induction hardie, Fredholm est amené a mettre la résol-
vante K(4; s, t) sous forme de quotient de deux fonctions entiéres

de 2

. D(his, ) Kis, )+ Mafs, 1) + ... + XA (s, ¢) + ...
K{x; s, t) = = (6)

D () T4 ah 4.+ a4 .. ’

les quantités numériques a, et les fonctions A, (s, ) ayant les

L J. Frebnoun, Sur une classe d’équations fonctionnelles [Acta Mathematica, t. 27 (1903),
pp. 365-390]. '
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valeurs:
b

b
(— )" * 01, T2y ++v , G,
a, = , w.(n)... | K deydsy ... ds
n. Jdyy, Tgy o0 4, G n
[ n
a ‘

«a

b b )
(— 1)" $, 01, Og, v , @
A (s, 1) = ') o) . | K "Vdo,dsy ... ds, |
n. . t, 61,05, ... , 9, -
a a )
> Si, 52’ ! Sll , ;. . , .
et K{, ; , | étant une abréviation pour le déterminant
1, 9, vee n
K(Sl, 11) y K(S1, 12\), sop I{(SI, tll)
K ('8.2 > [1) i K (Sﬁ ’ 12) y ey K (S2 ’ tll)
Kis,. t, Kis,, ta3), ..., K{(s,, ¢,)

Sous la seule hypothése que le noyau K{s, ¢) est une fonction
bornée intégrable, il établit la convergence dans tout le plan de
la variable complexe 4 des séries D(1; s, ¢), D{A) et il vérifie di-
rectement ue la fonction ¢(s) donnée par les relations (4) et (6}
est solution (unique) de I'équation intégrale (1). L.a formule (6}
répond a la question posée plus haut: elle montre que K(4; s, ¢)
est une fonction méromorphe de 1 et que ses poles, nécessaire-
ment isolés et en nombre dénombrable, sont les zéros d’une
transcendante entiere D (). On peut d’ailleurs vérifier en déve-
loppant dans le voisinage de A =0 I'expression (6) en série entiére
(que la série ainsi obtenue est identique a (5), donc, que (6) est le
prolongement analytique de (5). C’est ce qu’a fait Kerroe.

LLorsque 4, est un zéro de D (1), Fredholm montre ensuite que
I’éqquation homogene

admet un nombre fini > 0 de solutions (non identiquement
nulles) linéairement indépendantes. Il donne le moyen de calculer
ces solutions par des séries analogues a D(4; s, ¢) et il indique
ensuite a quelles conditions doit satisfaire (s} pour que 1'équa-
tion inhomogene (1) soit résoluble pour la valeur A =12, .

[.a théorie générale des équations intégrales se trouve ainsi
complétement édifiée dans le mémoire de Fredholm. Ce mémoire
est d’'une importance capitale. Mais Fredholm n’y indique pas
Pintuition qui ’a guidé ni le procédé heuristique par lequel il ar-
rive aux formules (6) et (7). Par cela méme, sa méthode, malgré
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toute son élégance, malgré la beauté des résultats obtenus par
des démonstrations trés simples, présente un caractere artificiel
de vérification et laisse ’esprit non entierement satisfait. Aussi,
y a-t-il quelque intérét a connaitre la voie par laquelle HiLBERT
(reprenant rigoureusement le procédé heuristique suivi par Fred-
holm) établit les formules de Fredholm. Esquissons-la rapide-
ment. Elle revient 4 remplacer, conformément a la définition de
b
Iintégrale définie comme limite d’une som me,fl{ (s, )p(?)dt par

. a
sa valeur approchée

n ’
U
7 8‘8 Kis, tq)cp(tq)
q:'l

e - b—a
<a<{1<f2<...<t"’:l), tg,-|-1_t:°: >

q 7

et a résoudre d’abord, au lieu de (1), le probléme voisin

A

n
o (s) — lBEK(s, t)oalt,) = fls) (8)
q=I

par rapport a la fonction inconnue ¢ (s). Il est & prévoir, et Hil-
A

bert le démontre en toute rigueur, que lim ¢, (s) existe et fournit

: n=—w
la solution cherchée ¢(s) de (1). Calculons donc ¢ (s); faisons,
pour cela, s successivement égal a ¢, ¢,, ..., £, dans (8). Si nous
notons
oK, L) =k, . fll) =T, . (9)

nous obtenons alors un systéme linéaire

s n
.T.P———A S/rpqgrq:/p , (p::l,?,...,n) (10;
g=1
de n équations a n inconnues x,, x,, ..., x,. Le déterminant

D, (%) des coefficients des inconnues est un polynéme de degré n
en A T

' e non -
. 2 Kt , 1), Kt , ¢t
D, =1 — 1 SK [z ,t)+l,2‘252 Upr ) Kityo ) )
il p’p 21 K(t £) K(t i)
' p=1 p=1 g=1 I q’ 'p q’ °q

‘Le O1TETT Du(d; 2y, ¢g) de I'élément figurant i la p™e colonue et
ala g ligne du déterminant D.(2) est un polynome de degré n—1
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en Z; il a pour expression, si p3£¢

roOVK(t, t) K(t,t)
D, (%5 . 1) = B K(t,t)——lEB proa et ]
q P’ g - Kit,, t,) K(t,, ¢,

L.a solution «xp du systéme (10; est donnée par

n
T Q.
x, = —-—])nmzl/anll, Ly 1)
q:

et ¢, (s) se calcule ensuite par

v,(s) = [(s) + 7\82 Ki(s, t,)r,

p=1

Au passage a la limite n=—=ow, les sommes multiples qui figurent
comme coefficients des puissances de A tendent vers les intégrales
multiples dont elles sont des valeurs approchées; D,(1) converge
vers le déterminant de Fredholm D(k), Du(d; ¢y, t;) vers D(1; s, ¢)
lorsque ¢, tend vers s et ¢ vers . On retrouve de cetle maniére
les formules de I'redholm et tout revient a justifier ce passage a
la limite pour tendre rigoureuse cette méthode. C’est ce que fait
Hilbert dans la 1™ partie de la 1™ des 6 notes qu’il a consacrées a
la théorie des équations intégrales?.

Mais la n’est pas le résultat le plus important de cette premiere
note; Hilbert spécialise le noyau en le supposant symétrique.
Par une transformation orthogonale effectuée sur la forme qua-

dratique N kpgapxq qui se présente alors, il la transforme en une

p,q

n 3

somme 23—3 et obtient en passant a la limite des résultats de

by

Ap
p=l
la plus haute importance sur l'existence des racines de D(A) =0,
sur les relations d’orthogonalité des solutions de 'équation inté-
grale homogéne et sur le développement de fonctions arbitraires
en séries procédant suivant les solutions de I’équation intégrale
homogéne. Nous reviendrons plus loin sur ces résultats.
C’est a une méthode de résolution entierement diflérente
’ i ‘ lassique 2. Guidé les ré
qu’aboutit E. ScumipT dans sa these classique®. Guidé par les ré-
sultats obtenus par Hilbert dans le cas du noyau symétrique, il

L D. HiLBERT, Grundsiige einer allgemeinen Theorie der linearen Integralgleichungen |Nach-
richten der Konigl. Gesellschaft der Wissenschaiten zu Go6ttingen, Mathematisch-physika-
lische Klasse, 1904, 1905, 1906, 1910].

2 E. ScuMipt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. 1'Lleil : Ent-
wicklung willkiirlicher Funktionen nach Systemen vorgeschriebener [Mathematische Annalen,
Bd. 63 (1907), pp. 433-476).
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montre que la résolution de 'équation générale peut se ramener
a celle de ’équation a4 noyau symétrique et il aborde d13“e(3.tennent
I'étude de P'équation intégrale homogeéne a noyau symétrique. Il
établit par des raisonnements directs et trés simples tous les.'theo-
rémes de Fredholm et de Hilbert dont I’énoncé ne fait pas inter-
venir les séries de Fredholm; puis, par une méthode imitée de
méthodes de Schwarz et de Grafe, il établit 'existence d’un para-
meétre singulier et montre que la résolvante du noyau symétrique
est une fonction méromorphe a poles simples. La résolution de
I’équation intégrale inhomogene découle ensuite facilen.]ent de
celle de I’équation homogéne. Etablissant la forme canonique du
noyau symétrique, il retrouve et généralise (en les débarrassant
d’une restriction inutile) les théoremes de développement. .de
Hilbert. La these de Schmidt présente des qualités de simplicité
et d’élégance remarquables; les démonstrations y font transpa-
raitre immédiatement les analogies algébriques profondes de la
théorie des équations intégrales.

[Les nombreux travaux parus a la suite des travaux cités n’ont
pas modifié les lignes générales de la théorie. Nous ne citerons
en passant que ceux de PremELs et de Goursar relatifs a I'étude
de la résolvante de Fredholm dans le voisinage de ses poles et
ceux de J. Scuur démontrant sans l'intermédiaire des formules de
Fredholm plusieurs propriétés des équations intégrales a noyau
asymétrique. Par contre, des points de vue tout nouveaux ont été
apportés par Hilbert dans ses 4™ et 5™ notes' :" sa méthode des
formes quadratiques & une infinité de variables a permis d’aborder
des cas qui échappent a la théorie de Fredholm.

2. Analogies algébriques de la théorie des équations intégrales.

Du fait que les formules de Fredholm s’obtiennent comme cas
limite des formules de résolution d’un systéme de n équations
linéaires a n inconnues, il est & prévoir que la théorie des équa-
tions intégrales présentera des analogies avec celle de ces sys-
temes. MM. [iLsert et T@wepriTz ont, dans leurs études sur les
formes bilinéaires 8 une infinité de variables, insisté sur le fait
que la notion de déterminant, qui joue un si grand role dans ex-
position ordinaire de la théorie des équations algébriques li-
néaires, est difficilement extensible au cas d’une infinité d’équa-
tions & une infinité d’inconnues. Aussi, pour bien montrer ces
analogies, allons-nous d’abord, avec M. Teeplitz, énoncer sous
une forme qui différe de la forme ordinairement suivie, les théo-
remes relatifs a la résolution des systémes d’équations linéaires,

1 Loc. cit.
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en separant nettement des autres ceux de ces théorémes qui, dans
leur énoncé, n’impliquent pas la notion de déterminant.

Conmderons pour cela, les systemes suivants de n équations a
n inconnues

h S (1 + ky)ey + kpay + . + ka®, = h
(la) kpxy 4 (1 + kg @y + oo 4 by, = f,

A./zlx'l —I- A'nzxz + + (1 + I‘:nn)xn e fll

(T + Aoy + kpay, + oo + ke, =0
(1h) ko + (1 + kog)xy + ... + ky,x, =0

..............

/l.ILl xl + '{‘/12‘%2 + + {1 + /'./m)xn =0

(1 ky)yy + koyds + oo+ kyy, = &
kiayy (1 + koalog + oo+ kpy, = &

..............

(Ha)
/‘1n 1 + ]‘2/13':2 + e + (1 + /ILII n— 8n
(1 +;L11 1 a3 k. 212 T /"nl.yn =0
(II[)) 3 A ( + ]{22))'2 + o F k/w)‘n. =0

\ /i1,,3'1 + kznﬁ'z —I_ _I— (1 + /inn)yu =0

(la) et (lla) sont des systéemes inhomogenes; les matrices des
coefficients des inconnues y sont {ransposées. (16) et (115) sont les
systemes homogenes correspondants; ils admettent toujours les
solutions triviales x,—x,—=...=2 =0, y, =y, = ...=y, = 0.
Nous conviendrons de ne pas compter de telles solutions comme
solutions propres de ces systéemes. On a les théoréemes :

I. Les systemes homogenes transposeés (16) et (I1b) ont le méme
nombre r(0 < r < n) de solutions linéairement indépendantes.

II. Lorsque v=0, les systemes inhomogenes transposés (la) et
(Ha) ont chacun une solution unique et bz'en déterminée pour tout
systeme de valeurs des seconds membres f,, . fas o2y, 8y, oo Bn.

II. Lorsque r >0, les systemes (la) et !I[a) nont en général pas
de solutions. Notons par

(Y (1) (1) (1) (1)

al ’ O(2 ! ! Ull le ! f’z ! ! [n
(2) (2) (2) (2) (2) - (2)

d.l y a? y s aIL (Jl 9 (32 y ’ ()” (11)
{r) (r) {r) ) o) ()

al v %y ’ an pl ! ()‘.’ ’ ! l;n
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deux systémes complets de 7 solutions linéairement mdepen—'
dantes de (1) et de (115). La solution générale de (I5) est par suite

1 L _ ,
.xp__.c1l‘p‘—{—c,p +..‘.—{—c,,ap'). p=1.2,...,n

et celle de (1)
11 - 42 A . G ) — ¢ ;
j'p:clp;)—{—cwﬁ}(,}—%...—}—L,.(an'), (p=1,2,...,n

€,y Cyy ..., ¢p 6tant r constantes arbitraires quelconques. Pour
que (la) soit résoluble, i faut et il suffit que [[1=1(f}, o, -+ [n)
vérifie les » relations

LB+ hE + 18 = s=1,2,....1 (12)
et de méme pour que (Ila) soit résoluble, il faut et il suffit que [g]
vérifie les r I'elations

? s} o
glal:) + oz az) + ...+ gnaf{ =0, (s =1,2,...,r (13

Lorsque les relations (12) sont vérifiées, la solution générale de
Ia) est de la forme

R TR [ - ‘ — .
’Ip.—,xp‘i-(,lap —{'—Lzal(j)—{"..-"i—ci.a}(:): (P-——-192! ~~-7”)

{Xp) étant une solution particuliere quelconque du systéme et
Cyy Cy,y ooy ¢ I conslantes arbitraires. De méme, si les relations
(13) sont vérifiées, et si (Y, désigne une solutlon particuliere
quelconque de (Ila), la solution générale de ce systéeme est

, i (2 . :
wp:lp‘{‘cl(’};)”\l’cg(’})‘*‘ ‘\LC,-(’;) ; (p=1,2,...,n)

Remarquons qu’il résulte des théoremes 1 et Il lalternative sui-
vante : Ou bien les systémes inhomogenes transposés (la), (lla)
sont toujours résolubles, quelque soient leurs seconds membres
/], [g], ow bien les systémes homogenes transposés (15}, (I15) pos-
sédent des solutions (en méme nombre) non identiquement nulles.

Pour montrer les analogues de ces théoremes dans la théorie
des équations intégrales, considérons les équations

la)  o(s) —}—fK(s, t)o(t)dt = f(s) (Ib)  ofs) + /.K(S, tol(t)dt = 0‘

b
(Ila) di(s) + fI{(t, s)b(t)dt = g(s) (H[)), d(s) —-{—/11{(5’, s)d(
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(la) et (lla) sont des équations inhomogénes 4 noyaux transposés.
(16) et (I1b) sont les équations homogénes correspondantes; elles
admettent les solutions triviales ¢(s) =0, w(s) =0 que nous
conviendrons de ne pas compter comme solutions. Nous admet-
trons pour simplifier que Ks, ¢, £(s), g(s) sont des fonctions con-
tinues et nous exigerons des solutions ¢(s), y(s) qu’elles soient
aussi continues dans (@, bj. La théorie de Fredholm permet alors
d’établir les théoremes analogues.

L. Les équations intégrales homogenes transposées (1), (I16), ont
le meéme nombre v de solutions linéairement indépendantes. r est
fini.

II. Lorsque v =0, les équations intégrales inhomogenes trans-
posées (la), (Ila) ont chacune une solution unique et bien détermi-
née, pour toutes fonctions f(s), ¢(s).

HI. Lorsque r >0, les équations intégrales inhomogenes (la),
a) n’ont en général pas de solution. Soient

i

o1(s), oals). ..., 9,(8) de(s), dals), ..., D (s)

deux systemes complets de r solutions linéairement indépen-
dantes de (16} et de (115). La solution générale de (15) est

€

o(s) = €191(8) + Cavals) + ... + ¢,.0,.(s)
et la solution générale de (115) est
bis) = cidul(s) + cata(s) 4+ ... + ¢, 4,05

Cyy Cyy ooy O €tant 7 constantes arbitraires. Pour que {la) soit
résoluble, ¢l faut et il suffit que f|s) vérifie les r relations

b b b
/.f(s)%(s)ds = 0. [filslds =0, ... . [[ls)4(sids="0 (14)

« a a

et de méme, pour que (lla) soit résoluble, i/ faut et il suffit que
gls) vérifie les r relations
b

b b
[g(.s;q)l(s)ds:() , /lg(.s)cpz(s)ds:() S fg(s}@r(.s)ds = 0.
[£2 a

a
Si les relations (14) sont vérifiées, la solution générale de (la) est
ols) = D(s) + cro1(s) + capa(s) + ... + ¢,9,.(s) ,

@(sj étant une solution particuliére quelconque et ¢,, ¢,, ..., ¢»
r constantes arbitraires. De méme, si les relations (15) sont véri-

\

T R O Ae PUST %
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fies et si P (s) est une solution particuliére quelconque de (lla),
la solution générale de cette équation est

bis) = W(s) + exlals) + cadals) 4+ .o + c,dls) -

Il résulte donc encore des théoremes I et I alternative : Ou bien
les équations intégrales transposées inhomogenes (Iaj et (1la) sont
résolubles quelque soient leurs seconds membres f{s), g(s) ou
bien les équations homogénes transposées (10) et (116) admettent
des solutions non identiquement nulles. Cette alternative est
d’une extréme importance pour les applications de la théorie des
équations intégrales. ’

Les théoréemes indiqués plus haut sur les systémes linéaires
d’équations algébriques peuvent s’établir sans faire usage des-dé-
terminants. De méme, leurs analogues de la théorie des équations
intégrales, bien qu'obtenus pour la premiere fois par Fredholm

par 'intermédiaire de ses séries, peuvent se démontrer directe-

ment. Mais, s’il s’agit, en algebre, de trouver des critéres pour
déterminer dans quel cas de I’alternative on se trouve ou de cal-
culer effectivement les solutions 'emploi des déterminants est
nécessaire. Pour les introduire ici de maniére a conserver une
analogie encore plus étroite, nous aurons avantage a 1ntr0dun“
un parametre A4 et a conmderer non plus les systemes (I) et (1I)
mais le systéeme (10} que nous avons obtenu en exposant la mé-
thode de Hilbert. Nous étudierons donc les systémes transposés

’ 3 N S / 5 S § A .
Ta) : x, — ;\2 by = F, | (VD) © 2, — AZ/.qu_o

7= 7= p=1.2,..,n)
’ o (117 » . T ) S p—
(IWa): y, — XEA i = Dpl (IUh): y, — /\ququ —0
’ g =1 (]:l.

La théorie des déterminants montre que pour que (I'a) soit réso-
luble quelque soit [f], il faut et il suffit que le déterminant D, (1)
des coefficients des inconnues soit =£0 et que pour que le systeme
(1'0) soit résoluble, il faut et il suffit que ce déterminant soit nul.
51 nous remarquons que le déterminant du systeme (II') est en-
core égal a Dy(1) et que 1'équation du n*™° degré D,(A) =0 a n
racines 4, , 4,, ..., 4, (finies ou infinies), nous voyons que

1. pour 2 £ 12,, (I'a) et (Il'a) sont toujours résolubles, quelque
soient /], [&]-

2. pour A ==1,, (1'6) et (Il'd) sont résolubles.

. Dans le dernier cas, les solutions s’obtiennent au moyen des

mineurs de D, (1) et v, etant le rang du premier mineur de D,(})




100 M. PLANCHEREL

qui ne s’annule pas pour A = 1,, le nombre r, des solutions de
I’équation homogéne est égal a n—v,, pour A =1,.

Les analogies avec les résultats de Fredholm sont immédiates.
Nous prendrouns, pour les voir, les systémes suivants d’équations
intégrales :

b b
(Ua) = sis) — ) [K(s, tjg(tidt = f(s) | (I'b) : ofs) — 2 [K(s. tyeit)dt =0
a a
. b b
(Ia): d(s) — A fK(t, s)o(tydt = g(s) | (Ib): di(s) — K[K(t. $)9(t)dt =0
a a

D’apreés Fredholm, 1'alternative dépend d’une transcendante en-
tiere D (1), donnée par (6), qui n'a donc que des zéros isolés ap-
pelés parametres singuliers de I'équation intégrale. Alors

1. st D(A)3£0, (I'a) et (Il'a) sont résolubles quelque soient
/ls). gls)

2. si D(A) =0, (I'd) et (II'd) sont résolubles.

3. le nombre des solutions et leur calcul dans le cas 2) dé-
pendent de séries entiéres qui sont les analogues des mineurs de
D. (4.

Remarquons que D (1) peut ne pas avoir de zéros; il est alors de
la forme D (1) = e*W. Ce cas se présente en particulier pour un
noyau K s, ¢) tel que K(s, ) = 0 pour s <¢. Dans ce cas I'équation
intégrale (équation de VoLTErRA) se réduit &

o(s) — A /.K(vs, teolt)dt = f(s)
a

et il est facile de vérifier que les séries (2) et (5) relatives a ce
noyau convergent pour toute valeur finie de 1. I.’équation homo-
gene correspondante n’a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K{s, ¢) est une fonction symétrique de s, :
Kis, t) = K{(¢, s) les quantités kp, = K(¢p, ¢;,) sont telles que
kpg = kqp . Les systémes transposés (I') et (II') sont identiques et
il suffit dans ce cas d’étudier I'un d’eux, par exemple (I'). La

. . 1 . 1.5 . ‘ 2 .
substitution 2 = ramene l'équation D,(A) == 0 a une équation

bien connue sous le nom d’équation séculaire. Pour n = 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en «s») et

oo zaEs S
sl
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'on démontre que ses racines sont réelles. Ce fait est général ; de
la symétrie kpq = kqp vésulte que léquation Dn(A) = 0 a toutes ses
racines réelles. De plus, alors que dans le cas général Dy ('1) =0
peut avoir toutes ses racines infinies, il existe ici-au moins une
racine finie. Notant par 4., A,, ..., A les solutions de Dr(A) =0,
chacune répétée un nombre de fois égal au nombre des solutions
linéairement indépendantes de {1’6) pour cette valeur de 4, nous
pourrons trouver n systemes de valeurs

.x(p), xff), ...,xif’) (]);—:1,2,....72)

tels que chacun d’eux soit solution de (I') pour la valeur corres-
pondante A —=1, et tels que

n

Nl =5 o pg=120m (15

r=1

ot 0y =0, si p 7 ¢ et 0pp = 1. La substitution
¥, = xP (p=1,2,...,n (16)

est alors une substitution orthogonale, c¢’est-a-dire qu’elle laisse

n

. . 9
invariante la somme S xp

=1

2 2 2 2 2 2
R e UM i i e M

7

[ SV B

Cette substitution transforme la forme quadratique

n

n
N 2
2 kpqxpxq = x; + 22,725 + .

p=i gq=I

en une somme algébrique de carrés

n (p) (p) () T n
— [x1 x, 4 ay xy + o0+ 2 xn] 253; 17)
= — 1
A

p=1 . )\_p p=1 P
Nous obtenons ainsi la forme canonique de la forme quadratique.
Cette forme canonique est bien connue pour n =2, 3, la transfor-
mation effectuée étant alors la transformation d’'une conique ow
d’'une quadrique a ses axes principaux. Sachant résoudre 1'équa-
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tion homogeéne (1’6} on pourra facilement.exprimer la solution de
(I'a) en fonction des seconds membres et des quantités z‘]‘,’) . Nous
n’insistons pas la-dessus.

Indiquons maintenant les analogies. Nous considérons pour
cela les équations a noyau symétrique

b b
(a) : o(s)— % /.K(s Holt)dt = f(s) ; (17b): <p(s)———\fK(s, tio(t)dt =0
a a

On peut démontrer que toutes les racines de D(A) =0 sont
réelles. En d’autres termes, 'équation homogene (I'd) n’admet de
solutions que pour des valeurs réelles de 2. De plus D () == 0 pos-
sede au moins une racine réelle finie. Il existe donc au moins une
valeur finie de 2, pour laquelle (1'4) est résoluble. Soient encore %, .
Aoy oo hpy ... les zéros de D(1), chacun d’eux étant répété dans
cette suite autant de fois que 1’équation (I’d) a de solutions linéai-
rement indépendantes pour cette valeur de 1; nous pourrons faire
correspondre a chaque 4, une fonction ¢,(s) vérifiant la relation

€

b
9,(5) — foK(s, e, (t)dt =0 (18)
a

et telle que

b .
L/gop(sjcpq(.s)a’s::‘“pq , (p,g=1,2,3, ..., . (19)
a

Ces relations, analogues des relations {15), expriment que les so-
lutions de I'équation intégrale homogeéne (I'd) relatives a deux va-
leurs différentes 2,, 4, sont orthogonales et que le systéme com-

plet des solutions
o1(S), @afs), ... cpp(s),

forme un systéme orthogonal normé de fonctions pour linter-
valle (@, &). [.’analogue de la forme (17} est ici la formule

b —
[ J4(s)g,ts) dsJ

b b
K. bis)d , :“ ¢ 20
ff (s, §d(s)d(t)dsdt e (20)
a «a p

2

%

ou au second membre la sommation est étendue a toutes les va-
leurs du parametre singulier 4,. De cette relation découlent des

O
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I
propriétés trés importantes relatives a la forme canonique

(s)o,(t)

i Pp\%p
K(s, t) = E “—")\—;"“ (21)

p

du noyau et au développement d’une fonction arbitraire-f{s) en
série de la forme ‘

flsr = fiaulsi + figals) &+ .o [y =[Fls)g,(s)ds (22

procédant suivant les solutions de I'équation (1'0) (autofonctions
ou fonctions fondamentales). La relation (21) a lieu lorsque la
seme du second membre est convergente et E. Schmidt a montré
quun développement (22) uniformément et absolument convergent
est valable pour toute fonction fis) susceptible dune représenta-
tion de la forme

fI& gltdl . (23)

Remarquons, en terminant, que la solution de (I'a) s’exprime ai-
sément au moyen des solutions ¢,{s) de (1'4). On a, en effet,

A—;j.,,( 1 = 115,04

4. Les équations intégrales singuliéres.

Nous venons de voir I’étroite analogie qui existe entre la théorie
des systemes d’équations algébriques linéaires et celle des équa-
tions intégrales linéaires de seconde espéce. Remarquons encore
que la plupart des résultats de la théorie de Fredholm subsistent
encore dans le cas ou K{s, ¢) présente des singularités infinies
mais ou 'un des noyaux itérés K,(s, ¢} est fini. De méme, dans
le cas du noyau symétrique, les principaux résultats sont encore

vrals 51/ [ {)]*dsdt est finie.

Dans ses 4™ et 5™ notes surla théorie des équations intégrales,
Hicgerr a montré la raison profonde ‘de cette analogie, il en a
trouvé les limites et par le méme coup il a enrichi d’une nouvelle
méthode la théorie des équations intégrales. Cette méthode est
d’autant plus importante qu’elle permet d’aborder la théorie des




104 M. PLANCHEREL

équations intégrales a noyau singulier, c¢’est-a-dire a noyau pré-
sentant des singularités assez élevées pour échapper aux méthodes
de Fredholm et de Schmidt. Nous ne pouvons ici que donner un
rapide apercu de ses fondements,

Un systéme de fonctions ¢, (s}, ¢, (s), ... définies dans un inter-
valle (a, &), de carré intégrable dans cet intervalle, est orthogonal
relativement a (a, ), si l'intégrale du produit de deux fonctions

b

différentes du systeme est toujours nulle :fq)p (s)9,(s)ds=0, p7=q.

a
Un tel systeme est toujours dénombrable. Nous le normerons par
b
la conditionf[wp (s)]*ds = 1. On a done
o

b
f@p(s)cpq(s)ds = 8pq .
a

Il sera dit fermé, si toutes les relations
b .
€ " — — 9
l/‘h(s)qpp(é)ds__o. (P =1, 8,4, ...
a -

ne sont vérifiées simultanément ue parla seule fonction 4 (s) =0.
l.es fonctions

1 cos s sin s cos 2s sin’ 2s
. — e I r-a —
‘/‘ T ‘/7: I/n- |/7: ‘/7:

forment, par exemple, un systeme orthogonal fermé et normé
pour Uintervalle (0,27).-f(s) étant une fonction de carré intégrable
dans (a, b), on peut former les constantes (coeflicients de Fourier
de f(s) relativement au systeme [q>p($)])

‘ b
. :ff(s><p,,(s)ds : (p=1,2,3,...)

et la suite [f,] vérifie I'inégalité

b

< [l

r a

inégalité dans laquelle le signe — est a prendre lorsque le sys-
teme [ (s)] est fermé. Dans ce dernier cas, on a plus générale-
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»

b
Jrsistsids ="> 1,5, (24)
a P

[(s) et g(s) étant deux fonctions quelconques de carré intégrable,
o1 Zp leurs coefficients de Fourier.

La somme des carrés des coefficients de Fourier d’une fonction
de carré intégrable est donc convergente. Inversement, MM.
I. Riesz et E. Fiscugr ont montré qu’étant donnée une suite

quelconque de constantes réelles f;, /,, ..., telles que E/ con-

ment,

verge, il existe au moins une fonction f{s). de carré mtearable ad-
mettant ces constantes comme coefficients de }'ourler relative-
ment au systéme orthogonal normé [qap(s)]. En particulier, cette

fonction f(s) est nnique (a une fonction d’intégrale nulle pres)

lorsque le systeme (o, (s)] est fermé. Remarquons cependant que

le théoréeme de Riesz-Iischer n’est vrai sans exception que lors-

(qu’on étend la notion d’intégrale comme 1’a fait Lesrscur. Nous

prendrons donc dans tout ce § les intégrales au sens de Lebesgue.
Prenons maintenant ’équation intégrale

ols) — 2 [Kis, Og(t)de = f(s) (25)
et supposons f{s) de carré intégrable dans (a, ) et K(s, ¢) symé-

trique tel que
/fK g(t)dsdt

existe pour toute fonction g(s) de carré intégrable. Soit [¢,(s)] un

systeme orthogonal fermé et normé relativemental’ intervalle (a,d).
Notons

b
.IIPZQ/.@<.S‘)<ADP(.S‘)dS , __ffK ()dsdthv/ ,
a :
= [ [1s)9,(s)ds

multiplions 'équation intégrale par ¢,(s) et intégrons dans (a, b)

I’Enseignement mathém., 14¢ année; 1912 8
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en nous-servant de la formule de Riesz (24). 11 vient

—)\E/{mq £ p=1.,2,3,...) (27)
q=!

C’est un systéeme d’une infinité d’équations du 1" degré a une in-
finité d’inconnues x,, x,, ... . Si ce systeme admet une solution
(rp) de somme des carrés convergente, on pourra lui faire corres-
poundre par le théoréme de Riesz-Fischer une fonction ¢(s), de
carré intégrable, que ’on démontrera étre solution de I'équation
intégrale. I/ y a donc équivalence entre la résolution de l'équation
integrale et celle d’un systeme d’équations lineaires a une infinité
d’inconnues. On est ainsi amené a 'étude de tels systemes d’équa-
tions et a celle des formes quadratiques qui en dépendent. Cette
étude a été faite par Hilbert. Tceeplitz et Hellinger, dans leurs
recherches ultérieures, ont apporté des contributions nouvelles a
cette théorie, ils I'ont surtout simplifiée en réduisant a un mini-
mum les questions de convergence qui se posent inévitablement
dans une telle théorie, et en éclairant mieux la face algébrique du
probleme. [’hypothese faite plus haut sur K (s, ¢) revient a dire que

la forme quadratique a une infinité de variables E/qu.z’pxq est

: P q
bornee, c’est-a-dire telle que
} Ezl.pqxp;rq < M
p=1 g=1
pour tout systeme de valeurs
a4 a4+ Fal <, (n=1,2,3,...).

M étant une constante convenablement choisie. Cest a I’étude des
formes bornées que se limite la théorie de Hilbert. Hilbert consi-
dere comme solutions (et cela est naturel, d’aprés le théoreme de
Riesz-Fischer) les seules solutions x,, x,, ... a somme des carrés
sonvergente. Sa théorie montre alors que 'analogie trouvée plus
haut ne subsiste plus en général. Ainsi, il peut y avoir des valeurs
de A, pour lesquelles les équations homogeénes correspondantes
de (27) possédent une infinité dénombrable de solutions. Les va-
leurs de 4 ou le systeme (27) n’est pas résoluble sont encore réelles
et il en existe encore au moins une, mais elles peuvent ne pas étre
isolées et former un ensemble ayant la puissance du continu. Dans
ces cas, ['alternative n'existe plus : il y a des valeurs de 4 pour les-
quelles ni les équations (27) ni les équations homogeénes corres-
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pondantes n’ont de solutions & somme des carrés convergente. Par
suite, les valeurs nécessairement réelles de A ou I’équation inté-
grale (25) n’a pas de solution de carré intégrable peuvent donc,
dans le cas général, ne pas étre isolées et former un ensemble
ayant la puissance du continu et lalternative n’existera plus: il y
aura des valeurs de A ou ni ’équation (25) ni I'’équation homogéne
correspondante n’admettent de solutions de carré intégrable dans
(@, b). 1] se présente par contre des faits nouveaux sur lesquels je
ne puis insister ici'. Je me bornerai pour finir, a signaler que la
théorie des formes quadratiques & une infinité de variables per-
met de trouver des conditions nécessaires et suffisantes pour que
I’alternative ait encore lieu, qu’elle retrouve ainsi les résultats de
Fredholm et de Schmidt sur les noyaux symétriques et que de
plus elle permet d’aborder des équations intégrales inaccessibles
aux méthodes de ces deux savants.

M. Prancuerer (Fribourg).

LES RECTRICES. ETUDE DE GEOMETRIE PHYSIQUE

Sommarre : 1. Les rectrices. — 2. Les rectrices et la surface de l'onde. —
3. Applications pratiques des rectrices. — 4. Les rectrices centrales des
quadriques. — 5. La correspondance logarithmique entre quadriques et
cOnes recteurs. — 6. Les rectrices et la représentation des phénomeénes. —
7. La dualité géométrique et les rectrices. — 8. La matiére élastique et
le complexe du second ordre. — Les lignes de rupture. — 10. La rectrice
chimique. — 11. La loi cissoidale atomique. '

1. Les Rectrices. — Quand on examine une glace étamée recou-
verte d’une poussiére légére, on observe que les grains de pous-
siere paraissent s’aligner vers I'eeil. L’effet est, dans une certaine
mesure, d’autant plus apparent que la glace est plus épaisse. Si
la glace, au lieu d’étre plane, constitue une surface courbe, aux
alignements rectilignes correspondent des courbes tracées sur la
surface. Il est facile d’expliquer I'effet d’alignement par la réflexion
de chaque grain de poussiére.

On voit aisément que ces courbes sont en somme les trajectoires

1 Cf. E. HELLINGER, Neue Begriindung der Theorie quadratischer Formen von unendlich

vielen Verdnderlichen [Journal fir die reine und angewandte Mathematik, Bd. 136 (1909),
pp- 210-271].
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