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LA THÉORIE DES ÉQUATIONS INTÉGRALES1

Née il y a à peine dix ans, la théorie des équations intégrales a

attiré d'emblée l'attention des mathématiciens tant par son attrait
propre que par l'importance de ses applications. Plusieurs des
résultats de cette théorie sont déjà classiques et nul doute que
dans quelques années les cours d'Analyse ne leur consacrent un
chapitre. Aussi désirerais-je vous montrer quelques-uns des
principaux points de cette théorie en reliant ses résultats à des faits
algébriques connus. Mais, envisagé ainsi, mon sujet est trop vaste ;
je ne pourrai parler ni des équations intégrales de lre espèce

b

J K (s, t)o(t) dt — f{s)

a

ni de celles de 3me espèce
h

/•[s]® [s] -}- t)zit)dt =2 f(s)
a

caractérisées par le fait que la fonction le (s) change de signe dans
l'intervalle (a, b). Je ne pourrai non plus rien dire des applications
de la théorie aux équations différentielles et aux équations aux
dérivées partielles. A part quelques travaux que je citerai, je me
permettrai de renvoyer pour la bibliographie complète au rapport
que publie actuellement M. Hahn2.

t. Aperçu sur les travaux de Fredholm, Hilbert, Schmidt.

Dans des travaux classiques, C. Neumann a montré que la solution

du problème intérieur de Dirichlet pour un domaine convexe

1 Conférence donnée à la Réunion de la Société mathématique suisse, à Berne, le 10
décembre 1911, par M. Michel Planchkriîl, professeur à l'Université de Fribourg.

2 H. Hahn, Bericht über die Theorie der linearen Integralgleichungen. B.G.Teubner, Leipzig,.
1911. La première partie seule a paru jusqu'à présent comme « Sonderabdruck aus dem 2(L
Bande des Jahresberichts der Deutschen Mathematiker-Vereinigung ».

L'Enseignement mathém., 14e année 1912. ~k
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peut s'exprimer comme potentiel d'une double couche portée par
la frontière de ce domaine, potentiel que sa méthode de la moyenne
arithmétique permet de calculer. Plus tard, H. Poincaré, levant
la restriction de la convexité du domaine, montra toute l'importance

de la méthode de Neumann ; puis, généralisant le problème,
il posa la question de la détermination d'un potentiel de double
couche par la condition que les valeurs de ce potentiel sur les
deux côtés de la frontière vérifient une relation linéaire donnée.
La densité de la double couche satisfait alors à une équation
fonctionnelle facile à obtenir ; cette remarque, faite déjà par Neumann,
fut le point de départ des recherches célèbres dans lesquelles
Fredholm aborde et résout toute une classe d'équations fonctionnelles

du type de l'équation rencontrée dans le problème de
Neumann. Ces équations fonctionnelles, appelées aujourd'hui équations

de Fredholm ou équations intégrales linéaires de seconde
espèce, sont dans le cas le plus simple (le cas des fonctions de
plusieurs variables n'apporte rien d'essentiellement nouveau à la
théorie et se traite par les mêmes méthodes) de la forme

fis) et K(s, t) y sont deux fonctions réelles données des variables
réelles s, t{a ^ s, t ^ b), X est un paramètre et cp(s) la fonction
inconnue qu'il faut déterminer de manière à satisfaire identiquement

en s dans (a, h) la relation (1). K(s, t) est appelé le noyau
de l'équation intégrale et f(s) porte souvent le nom de second
membre de l'équation.

Pour résoudre l'équation (1), il vient naturellement à l'esprit
d'essayer de représenter la solution (comme l'ont fait Liouville et
C. Neumann à l'occasion de problèmes particuliers] par un
développement *

b

a

O(.s-) 0o(.s) 4- \<pt(s) + Àaç?2U) 4- -f- + (2)

On obtient alors les relations de récurrence

b

a

qui permettent de calculer de proche en proche les coefficients
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de dans la série (2). Si nous introduisons les noyaux

0 -

±n(s t) zz^j*K/f j
(5 r)K.(r, i)dv Ki(s> t) — KIs if)

/I —: 2 o

(3)

les relations de récurrence donnent

tp>)
a

et y (s) prend la forme
b

e(s)+ X ÇK (X ; s, t)f\t)dt

K(X; s,t)=^^X" K(l+1 (s, t)

Sous la seule hypothèse que K (s, t) et f[s) sont des fonctions bornées

intégrables, 011 démontre la convergence des séries (2) et (5)

dans le voisinage de A 0 et, par le fait même, l'existence dans
ce voisinage d'une et d'une seule solution bornée donnée par (4).
<p [s) et K (A ; s, t) sont alors des fonctions holomorphes de A. dans
le voisinage de A —- 0. Il se pose naturellement à leur sujet la
question difficile: Peut-on prolonger ancilytiquemeiit K (A ; s, /),
et si oui, quel est le caractère de la fonction de A ainsi définie P

La réponse à cette question fait l'objet fondamental de la théorie
des équations intégrales et c'est à Fredholm que nous la devons1.
Par une induction hardie, Fredholm est amené à mettre la résolvante

K (A ; s, t) sous forme de quotient de deux fonctions entières
de A

D (A: s t) K(s, t) -j- AAjjs, t) -f- -}- XnA [s, t) -|-
K(X; j, t) i= uz 1 (6)

b (A) 1 -f- a± A -f- -}- an V1

les quantités numériques an et les fonctions An(s, t) ayant les

1 J. Friîdiiolîm, Sur une classe d'équations fonctionnelles [Acta Mathematica, t. 27 (1903)
pp. 305-390].
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valeurs

I;;;;;;^a a

c/a

(7)

c?ait/a2 c/a

6'l .V2, S

et K / étant une abréviation pour le déterminant\ti, h, i

K(Ä'i> t±) K («s'i, f2)
>

K i s i, t(i)

K(.v2, 4) K(sa, t2) K(äs tn)

K{sn, tt) K(5w, U) K(S#1, g
Sous la seule hypothèse que le noyau K [s, t) est une fonction
bornée intégral)le, il établit la convergence dans tout le plan de
la variable complexe X des séries D (Ä; s, t), D(Â) et il vérifie
directement que la fonction cp[s) donnée par les relations (4) et (6)
est solution (unique) de l'équation intégrale (1). La formule (6)

répond à la question posée plus haut : elle montre que K(Â; s, t)
est une fonction monomorphe de X et que ses pôles, nécessairement

isolés et en nombre dénombrable, sont les zéros d'une
transcendante entière D (X). On peut d'ailleurs vérifier en
développant dans le voisinage de X 0 l'expression (6) en série entière
que la série ainsi obtenue est identique à (5), donc, que (6) est le
prolongement analytique de (5). C'est ce qu'a fait Kellog.

Lorsque X0 est un zéro de D(à), Fredholm montre ensuite que
l'équation homogene

©(*)

o

K [s t)o(t) dt z=z 0

admet un nombre fini > 0 de solutions (non identiquement
nulles) linéairement indépendantes. Il donne le moyen de calculer
ces solutions par des séries analogues à D [X ; et il indique
ensuite à quelles conditions doit satisfaire f(s) pour que l'équation

inhomogene (1) soit résoluble pour la valeur X — X0

La théorie générale des équations intégrales se trouve ainsi
complètement édifiée dans le mémoire de Freclholm. Ce mémoire
est d'une importance capitale. Mais Fredholm n'y indique pas
l'intuition qui l'a guidé ni le procédé heuristique par lequel il
arrive aux formules (6) et (7). Par cela même, sa méthode, malgré
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toute son élégance, malgré la beauté des résultats obtenus par
des démonstrations très simples, présente un caractère artificiel
de vérification et laisse l'esprit non entièrement satisfait. Aussi,
y a-t-il quelque intérêt à connaître la voie par laquelle Hilbert
(reprenant rigoureusement le procédé heuristique suivi par Fred-
holm) établit les formules de Fredholm. Esquissons-la rapidement.

Elle revient à remplacer, conformément à la définition de
b

l'intégrale définie c.nrnre linrite d'nn, ,on,„,e,/Kpar
a

sa valeur approchée
il

s2K(s' v°(v
•7=1

b — a(a < h <U < < tn b <î+l~ t,

et à résoudre d'abord, au lieu de (i), le problème voisin

11

— À§2k(4> g?„(g » <8i

î=i

par rapport à la fonction inconnue <pn[s). Il est à prévoir, et
Hilbert le démontre en toute rigueur, que lim cpa(s) existe et fournit

n~x>
la solution cherchée g>(s) de (1). Calculons donc cpjs); faisons,
pour cela, s successivement égal à tif..., tu dans (8). Si nous
notons

=*, ®K (tj,,tq)ipq =fp ,9)

nous obtenons alors un système linéaire

~P kpq*q ~fp ' (P— 1
' 2 ' ••• ' ,l) (10)À

;=i
de il équations à n inconnues ,xA .:r2, ;.vn. Le déterminant
D,i(Â) des coefficients des inconnues est un polynôme de degré n
en À

n n

D„|X) 1-X28K
P~^ p=1 q— l

K(gg. «dgg
K<g g - K(c- g

Le mineur D„(Ä; ïp, de l'élément figurant à la />ièmo colonne et
a la ligne du déterminant D„ft) est un polynôme de degré n—1
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en À ; il a pour expression, si

La solution xp du système (lOj est donnée par
h

XP ~ ]> |X)2^D"|X : lP' V
q=1

et <pfl[s) se calcule ensuite par
n

?„(«) =M+ XS^j? K(s,
P=i

Au passage à la limite n~z co les sommes multiples qui figurent
comme coefficients des puissances de X tendent vers les intégrales
multiples dont elles sont des valeurs approchées; Dw(Â) converge
vers le déterminant de Fredholm D(Â), D/t(A; tp, tq) vers 1) (Ä ; s, t)

lorsque tp tend vers s et tq vers t. On retrouve de cette manière
les formules de Fredholm et tout revient à justifier ce passage à

la limite pour fendre rigoureuse cette méthode. C'est ce que fait
Hilbert dans la lre partie de la lre des 6 notes qu'il a consacrées à
la théorie des équations intégrales 1.

Mais là n'est pas le résultat le plus important de cette première
note; Hilbert spécialise le noyau en le supposant symétrique.
Par une transformation orthogonale effectuée sur la forme

quadratique kpqxpxq qui se présente alors, il la transforme en une
p,q
n .2

somme et obtient en passant à la limite des résultats de

p=l kp
mla plus haute importance sur l'existence des racines de D(À) 0,

sur les relations d'orthogonalité des solutions de l'équation
intégrale homogène et sur le développement de fonctions arbitraires
en séries procédant suivant les solutions de l'équation intégrale
homogène. Nous reviendrons plus loin sur ces résultats.

C'est à une méthode de résolution entièrement différente
qu'aboutit E. Schmidt dans sa thèse classique 2. Guidé par les
résultats obtenus par Hilbert dans le cas du noyau symétrique, il

1 D. Hilbert, Grundz'ùge einer allgemeinen Theorie der linearen Integralgleichungen
[Nachrichten der Königl. Gesellschaft der Wissenschalten zu Göttingen, Mathematisch-physikalische

Klasse, 1904, 1905, 1906, 1910].
2 E. Schmidt, Zur Theorie der linearen und nichtlinearen Integralgleichungen. I Teil :

Entwicklung willkürlicher Funktionen nach Systemen vorgeschriebener [Mathematische Annalen,
Bd. 63 (19C7), pp. 433-476].
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montre que la résolution de l'équation générale peut se ramener
à celle de l'équation à noyau symétrique et il aborde directement
l'étude de l'équation intégrale homogène à noyau symétrique. Il
établit par des raisonnements directs et très simples tous les
théorèmes de Fredholm et de Hilbert dont l'énoncé ne fait pas intervenir

les séries de Fredholm; puis, par une méthode imitée de
méthodes de Schwarz et de Grsefe, il établit l'existence d'un
paramètre singulier et montre que la résolvante du noyau symétrique
est une fonction méromorphe à pôles simples. La résolution de

l'équation intégrale inhomogène découle ensuite facilement de
celle de l'équation homogène. Etablissant la forme canonique du
noyau symétrique, il retrouve et généralise (en les débarrassant
d'une restriction inutile) les théorèmes de développement de
Hilbert. La thèse de Schmidt présente des qualités de simplicité
et d'élégance remarquables; les démonstrations y font transparaître

immédiatement les analogies algébriques profondes de la
théorie des équations intégrales.

Les nombreux travaux parus à la suite des travaux cités n'ont
pas modifié les lignes générales de la théorie. Nous ne citerons
en passant que ceux de Plemelj et de Goursat relatifs à l'étude
de la résolvante de Fredholm dans le voisinage de ses pôles et
ceux de J. Schur démontrant sans l'intermédiaire des formules de
Fredholm plusieurs propriétés des équations intégrales à noyau
asymétrique. Par contre, des points de vue tout nouveaux ont été
apportés par Hilbert dans ses 4me et 5me notes1 : sa méthode des
formes quadratiques à une infinité de variables a permis d'aborder
des cas qui échappent à la théorie de Fredholm.

2. Analogies algébriques de la théorie des équations intégrales.

Du fait que les formules de Fredholm s'obtiennent comme cas
limite des formules de résolution d'un système de n équations
linéaires à n inconnues, il est à prévoir que la théorie des équations

intégrales présentera des analogies avec celle de ces
systèmes. MM. Hilbert et Tœplitz ont, clans leurs études sur les
formes bilinéaires a une infinité de variables, insisté sur le fait
que la notion cle déterminant, qui joue un si grand rôle dans
l'exposition ordinaire de la théorie des équations algébriques
linéaires, est difficilement extensible au cas d'une infinité d'équations

à une infinité cl inconnues. Aussi, pour bien montrer ces
analogies, allons-nous d'abord, avec M. Tœplitz, énoncer sous
une forme qui diffère de la forme ordinairement suivie, les
théorèmes relatifs à la résolution des systèmes d'équations linéaires,

1 Loc. cit.
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en séparant nettement des autres ceux de ces théorèmes qui, dans
leur énoncé, n'impliquent pas la notion de déterminant.

Considérons, pour cela, les systèmes suivants de n équations à
n inconnues

{la)

(1 -j- kn)0Cx + ^I2'r2 + + k\nXn — A

^'21^1+ b + k22^ X2 H" *•' + k2nXn ~~ f'1

m

ka\X\ + k,ilX2 + + I1 + kméXn ~ fn

(1 kn)xx -{- kt2x2 -f- + k\ nxn — 9

knxx 4- (1 + k22)x.2 -f + k2n xn —0

(II«)

k,i\x 1 + kx2X2 + + t'1 + knn)Xn ~ 0

l1 + 4" ^2lJ2 + + k,i\ïn ~ 8'l

kl2J\ + 0 4- A>2b'2 + ••• + kn2Ïn ~ 82

(LU)

{ k\ny\ + htJ>2 + - + I1 4- knn]Yn ~ on

l i1 + Aibi + ^21^2 + + kn\yn — °

J kvlyx 4- (1 4- £22)y2 4- 4- ka2yn — 0

k\iJ\ + k>2ny-2 "h H" C1 + k,ui)Yn :

(la) et (lia) sont des systèmes inhomogènes ; les matrices des
coefficients des inconnues y sont transposées. (1b) et (lib) sont les
systèmes homogènes correspondants ; ils admettent toujours les
solutions triviales xi xy — =ixn — 0, yx — — yn— 0.
Nous conviendrons de ne pas compter de telles solutions comme
solutions propres de ces systèmes. On a les théorèmes :

I. Les systèmes homogènes transposés (Ib) et [lib) ont le même
nombre r(0 ^ r n) de solutions linéairement indépendantes.

II. Lorsque r 0, les systèmes inhomogènes transposés (la) et
(lia) ont chacun une solution unique et bien déterminée pour tout
système de valeurs des seconds membres A, f2, fn; g,, g2? gn.

III. Lorsque r>0, les systèmes (la) et fila) n'ont en général pas
de solutions. Notons par

rjy fiffi p(î)
K ' [J2 ' ' Ki-1". 4, - •

a(,)
u

4< «W
u

«r. g,.. ir)
a

n

p(2) p(2) fi(2)
A ' '2 ' '*' ' Li (11)

g,e
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deux systèmes complets de r solutions linéairement indépendantes

de (13) et de (113). La solution générale de (13) est par suite

Cl«»' + c2 +•••+ c,.a~P—

et celle de (113

(P 1.2, n)

?'p — Cl ftp + C*2 ß
o(2) o(r)+ *,% (/> 1, 2, n)

cr étant /' constantes arbitraires quelconques. Pour
que (h?) soit résoluble, il faut et il suffit que [f] — [f f2, /y
vérifie les r relations

/;ßis) + /2ßf + ••• +/;,ß!f o. 1,2, (12)

et de même pour que (Ila) soit résoluble, il faut et il suffit que jj]
vérifie les r relations

f#) ($) A
»1 ai + »2*2 + + »/Ai ~ (s 1, 2, (13)

Lorsque les relations (12) sont vérifiées, la solution générale de
(la) est de la forme

X„ + Cl«'" + c,ajf) + • • • + c,V (/> 1, 2,

(Xp) étant une solution particulière quelconque du système et
cx, c2 tv /' constantes arbitraires. De même, si les relations
(13) sont vérifiées, et si (Yp) désigne une solution particulière
quelconque de (IIa), la solution générale de ce système est

cNP]+c2ß]r' + +c,iïp (p =Z 1,2, 72)

Remarquons qu'il résulte des théorèmes I et II Valternative
suivante : Ou bien les systèmes inhomogènes transposés (1a), (Ila)
sont toujours résolubles, quelque soient leurs seconds membres
{/], [g1], ou bien les systèmes homogènes transposés (13), (113)
possèdent des solutions (en même nombre) non identiquement nulles.

Pour montrer les analogues de ces théorèmes dans la théorie
des équations intégrales, considérons les équations

\la W +JK(s, t)o(t)dt f(s)
a

b

{II«) <|>(s) + I*K (l,— g (s)

(I/,) f{s) + flils, t)*(t)cl0

Cl

b

(II/,) &[S)+ fK (f, :)^(t)df 0
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(la) et (lia) sont des équations inhomogènes à noyaux transposés.
(Ib) et (lié) sont les équations homogènes correspondantes ; elles
admettent les solutions triviales <p(s) 0, '(//(sJeeO que nous
conviendrons de ne pas compter comme solutions. Nous admettrons

pour simplifier que K(s, t), f[s), g (s) sont des fonctions
continues et nous exigerons des solutions cp(.s), ip(s) qu elles soient
aussi continues dans (a, b). La théorie de Fredholm permet alors
d'établir les théorèmes analogues.

I. Les équations intégrales homogènes transposées (lé), (lié), ont
le même nombre r de solutions linéairement indépendantes. r est
fini.

II. Lorsque r ~ 0, les équations intégrales inhomogènes trans-
posées (la), (lia) ont chacune une solution unique et bien déterminée,

pour toutes fonctions f(s), g (s).
III. Lorsque r > 0, les équations intégrales inhomogènes (la),

1 la) n'ont en général pas de solution. Soient

®l(s| ®ï(s) ©,.(«) ; '-M6') 'h(s) ' • • • * ^r(-S')

deux systèmes complets de r solutions linéairement indépendantes

de (lé) et de (lié). La solution générale de (lé) est

O(.s-) r= ct9i (.v) + c2©2(.s) + + £,.?,.(«)

et la solution générale de (lié) est

'b{s) Ci'bi«) -j- f2'i»2(.s-) —f- —{— cr4y(6')

r, c2, cr étant r constantes arbitraires. Pour que (la) soit
résoluble, il faut et il suffit que f(s) vérifie les / relations

b b b

l*f(s)^i(s)ds 0 j fis) fa(s) ds 0 f f(s)j/r(sjds 0 (14)

a a a

et de même, pour que (lia) soit résoluble, il faut et il suffit que
g (s) vérifie les /* relations

b b b

fg{s)yt(s)ds — 0 Çg(s)^{s)ds — 0 J*g{s)yr(s) ds 0

a a a

Si les relations (14) sont vérifiées, la solution générale de (la) est

(ù{s) — dps) -f- c 1 Cpi(S) -f- C2©j(s|i -j- -j- cr¥rl$)

<&(s) étant une solution particulière quelconque et c4, c2, cr
r constantes arbitraires. De même, si les relations (15) sont véri-
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fiées et si *P(s) est une solution particulière quelconque cle (Ha),
la solution générale de cette équation est

Z= W(s) + 6't^js) + C2^{.s) 4- -h Cr^rW

Il résulte donc encore des théorèmes I et II Valternative : Ou bien
les équations intégrales transposées inhomogènes (Ia) et (lia) sont
résolubles quelque soient leurs seconds membres f(s), g [s) ou
bien les équations homogènes transposées (Iô) et (II£) admettent
des solutions non identiquement nulles. Cette alternative est
d'une extrême importance pour les applications de la théorie des

équations intégrales.
Les théorèmes indiqués plus haut sur les systèmes linéaires

d'équations algébriques peuvent s'établir sans faire usage des
déterminants. De même, leurs analogues delà théorie des équations
intégrales, bien qu'obtenus pour la première fois par Fredholm
par l'intermédiaire de ses séries, peuvent se démontrer directement.

Mais, s'il s'agit, en algèbre, de trouver des critères pour
déterminer dans quel cas de l'alternative on se trouve ou de
calculer effectivement les solutions l'emploi des déterminants est
nécessaire. Pour les introduire ici de manière à conserver une
analogie encore plus étroite, nous aurons avantage à introduire
un paramètre A et à considérer non plus les systèmes (I) et (II)
mais le système (10) que nous avons obtenu en exposant la
méthode de Hilbert. Nous étudierons donc les systèmes transposés

n

(l'a) : xp - fp
q—\

il

(H a) • dp
q=\

La théorie des déterminants montre que pour que (La) soit résoluble

quelque soit [/], il faut et il suffit que le déterminant D„(A)
des coefficients des inconnues soit 0 et que pour que le système
(bb) soit résoluble, il faut et il suffit que.ce déterminant soit nul.
Si nous remarquons que le déterminant du système (IL) est
encore égal à Dn[É] et que l'équation du nième degré Drt(A) 0 a n
racines A2, Xn (finies ou infinies), nous voyons que

1. pour XjézXpi (La) et (Iba) sont toujours résolubles, quelque
soient [/'], [g],

^2. pour A — kp, (b£) et (ILb) sont résolubles.
o. Dans le dernier cas, les solutions s'obtiennent au moyen des

mineurs de D«(A) et vp étant le rang du premier mineur de D»(A)

n

(I'/,) : 0

7—1
ip Ö 1, 2, 11)

n 1

(IVb):
q-L
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qui ne s'annule pas pour A — Xp, le nombre rp des solutions de

l'équation homogène est égal k n— vp, pour X=iXp.
Les analogies avec les résultats de Fredholm sont immédiates.

Nous prendrons, pour les voir, les systèmes suivants d'équations
intégrales :

(La) : cpjs) —X ÇK($, t)o(t)dt zzr f(.s)

a
b

(II'«): i(s) — X fK(t,s)$(t)dt=g(s}

[l'b) : ®(s) — X ^K{t\<ù(t)dt— 0

a

b

(II'A): 4. (jr) — xfK(S)m

D'après Fredholm, l'alternative dépend d'une transcendante
entière D(A), donnée par (6), qui n'a donc que des zéros isolés
appelés paramétrés singuliers de l'équation intégrale. Alors

1. si D (A) ^ 0, (lVi et (IVa] sont résolubles quelque soient
f{s),g{s).

2. si D(A) ~ 0, (l'b) et (IV b) sont résolubles.
3. le nombre des solutions et leur calcul dans le cas 2)

dépendent de séries entières qui sont les analogues des mineurs de
D„(A).

Remarquons que D (A) peut ne pas avoir de zéros; il est alors de
la forme D(A) eh&h Ce cas se présente en particulier pour un
noyau K(s, t) tel que K(s, t) 0 pour s 5S t. Dans ce cas l'équation
intégrale (équation de Volterra) se réduit à

©(s) — X ÇK(s, t)y(t)dt=. f{s)

et il est facile de vérifier que les séries (2) et (5) relatives à ce

noyau convergent pour toute valeur finie de A. L'équation homogène

correspondante n'a jamais de solution (bornée).

3. Les analogies dans le cas du noyau symétrique.

Lorsque le noyau K(s, t) est une fonction symétrique de ,s\ t :

K(s, t) K(A s] les quantités kpq — K(tp, tq) sont telles que
kpq kqp. Les systèmes transposés (F) et (IF) sont identiques et
il suffit dans ce cas d'étudier l'un d'eux, par exemple (F). La

1
substitution A — - ramène l'équation D«(A) 0 à une équation

bien connue sous le nom d'équation séculaire. Pour n 2, 3 une
équation de cette forme se présente dans la recherche des axes
principaux des coniques et des quadriques (équation en i s ») et
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l'on démontre que ses racines sont réelles. Ce fait est général; de

la symétrie kPq ss kqp résulte que Véquation Dn(Ä) — 0 a toutes ses

racines réelles. De plus, alors que dans le cas général D„,(Ä) 0

peut avoir toutes ses racines infinies, il existe ici au moins une

racine finie. Notant par A1, Â2, les solutions de D^) 0,

chacune répétée un nombre de fois égal au nombre des solutions
linéairement indépendantes de (1/&) pour cette valeur de A, nous

pourrons trouver n systèmes de valeurs

xf, x[f (p 1, 2, n)

tels que chacun d'eux soit solution de (Irb) pour la valeur
correspondante 1 lp et tels que

a

2^)a:r?) 8M (p. 7 1.2 (15)'
r— 1

OÙ Ôpq 0, si p ^ q et Spp 1. La substitution

n

yp — x(tp) Xr [p — 1,2, n) (ifi)
/• i

est alors une substitution orthogonale, c'est-à-dire qu'elle laisse
n

invariante la somme x2v

P=i

y\ + xl + • • • + yn + ** + •. • + xn '

Cette substitution transforme la forme quadratique

n n

22 kpixpxt= + lr>'r2 + • • •

p— i

en une somme algébrique de carrés

11 r (p) i (p) i i (p) "i2 n 2

I ^ A A
"4~

C\
H""* • • • # I VLj 1 ~ 2 2 ^ ^ n II}

_ (17^

^==1 \ p=ilP

Nous obtenons ainsi la forme canonique de la forme quadratique.
Cette forme canonique est bien connue pour n — 2, 3, la transformation

effectuée étant alors la transformation d'une conique ou
d'une quadrique à ses axes principaux. Sachant résoudre l'éqna-
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tion homogène (Vb) on pourra facilement exprimer la solution de
(Va) en fonction des seconds membres et des quantités .rjf Nous
n'insistons pas là-dessus.

Indiquons maintenant les analogies. Nous considérons pour
cela les équations à noyau symétrique

b b

{Va): ®(s) — À f*K(s t)®(t)dt ~ f(s) ; (Ir/>) ; ©(s)— \j*K(s, t) o (t) dt m 0

a a

On peut démontrer que toutes les racines de D(A)—0 sont
réelles. En d'autres termes, l'équation homogène (Vb) n'admet de
solutions que pour des valeurs réelles de A. De plus D (A) 0
possède au moins une racine réelle finie. Il existe donc au moins une
valeur finie de A, pour laquelle (Vb) est résoluble. Soient encore Xi,
A2, A„, les zéros de D(A), chacun d'eux étant répété dans
cette suite autant de fois que l'équation (Vb) a de solutions
linéairement indépendantes pour cette valeur de A; nous pourrons faire
correspondre à chaque Xp une fonction g>p(s) vérifiant la relation

É b

?p(s) — XPfK(Ä> ') ?,,(<)= 0 (18l

a

et telle que

b

opq,q 1, 2, 3 (19)

a

Ces relations, analogues des relations (15), expriment que les
solutions de l'équation intégrale homogène (Vb) relatives à deux
valeurs différentes Xp, Xq sont orthogonales et que le système complet

des solutions
<M-S) ?«(«) ®p (s) >

forme un système orthogonal normé de fonctions pour l'intervalle

(a, b). L'analogue de la forme (17) est ici la formule

r- b

b b f•!-(s)?p («)<**J

ffK(s, t)^(s)^(t)dsdt~^— (20)

ou au second membre la sommation est étendue à toutes les
valeurs du paramètre singulier Xp. De cette relation découlent des
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propriétés très importantes relatives à la forme canonique

CD (S © it)
k(s,O 2 X- ,21)

p
p

du noyau et au développement d'une fonction arbitraire-/^)
série de la forme

b

en

f{s) r= + />pa(s) -1- fp —ff(s)9p{s)ds (22)

procédant suivant les solutions de l'équation (l'b) (autofonctions
ou fonctions fondamentales). La relation (21) a lieu lorsque la
série du second membre est convergente et E. Schmidt a montré
qu'un développement (22) uniformément et absolument convergent
est valable pour toute fonction fis) susceptible d'une représentation

de la forme
b

f(s) — ÇK (s t)g{t)dl (23)

a

Remarquons, en terminant, que la solution de (l'a) s'exprime
aisément au moyen des solutions q>P(s) de (l'b). On a, en effet,

b

œ(s) f{s) + -fp(s) f(s)fp^ds
P P

4. Les équations intégrales singulières.

Nous venons de voir l'étroite analogie qui existe entre la théorie
des systèmes d'équations algébriques linéaires et celle des équations

intégrales linéaires de seconde espèce. Remarquons encore
que la plupart des résultats de la théorie de Fredholm subsistent
encore dans le cas où K(s, i) présente des singularités infinies
mais où l'un des noyaux itérés fwf#, t) est fini. De même, dans
le cas du noyau symétrique, les principaux résultats sont encore

b b

vrais siJ f [K (s, Û]fdsdt est finie.
a a

Dans ses 4mc et omc notes sur la théorie des équations intégrales,
Hilbert a montré la raison profonde de cette analogie, il en a
trouvé les limites et par le même coup il a enrichi d'une nouvelle
méthode la théorie des équations intégrales. Cette méthode est
d'autant plus importante qu'elle permet d'aborder la théorie des
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équations intégrales à noyau singulier, c'est-à-dire à noyau
présentant des singularités assez élevées pour échapper aux méthodes
de Fredholm et de Schmidt. Nous ne pouvons ici que donner un
rapide aperçu de ses fondements.

Un système de fonctions cpl (s), <jp2(s)f définies dans un intervalle

(a, b), de carré intégrable dans cet intervalle, est orthogonal
relativement à (a, b), si l'intégrale du produit de deux fonctions

b

différentes du système est toujours nulle: j*yp[s)cpq{s)ds 0, p-^q*
a

Un tel système est toujours dénombrable. Nous le nornierons par
b

la condition f [yp(s)]2ds — 1. On a donc
a

b

a

Il sera dit fermé, si toutes les relations

b

*f*h(s)yp(s)ds=L 0 (^ 1,2,3,
a t

ne sont vérifiées simultanément queparla seule fonction h[s) 0.
Les fonctions

1 cos s sin .s- cos 2s siir 2.s

j/ftt {/t. [/m [/n [/ T.

forment, par exemple, un système orthogonal fermé et normé
pour l'intervalle (0,2n).~f(s) étant une fonction de carré intégrable
dans [a, &), on peut former les constantes (coefficients de Fourier
de f[s) relativement au système [y (s)])

b

fp=fy{s)fp[s)ds 2,3,....)
Cl

et la suite [fp] vérifie l'inégalité

b

p a

inégalité dans laquelle le signe est à prendre lorsque le
système [yp (.s)] est fermé. Dans ce dernier cas, on a plus générale-
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ment,
b

ff (s) g (s) ds — ^fpgp (24)

a p

f(s) et g[s) étant deux fonctions quelconques de carré intégrable,
f i gp leurs coefficients de Fourier.

La somme des carrés des coefficients cle Fourier d'une fonction
de carré intégrable est donc convergente. Inversement, MM.
F. Riesz et E. Fischer ont montré qu'étant donnée une suite

quelconque de constantes réelles fx f2, telles que con-
p

verge, il existe au moins une fonction /"(s).de-carré intégrable
admettant ces constantes comme coefficients de Fourier relativement

au système orthogonal normé [«jP^fs)]. En particulier, cette
fonction f{s) est unique (à une fonction d'intégrale nulle près)
lorsque le système [y (s)] est fermé. Remarquons cependant que
le théorème de Riesz-Fischer n'est vrai sans exception que
lorsqu'on étend la notion d'intégrale comme l'a fait Lebesgue. Nous
prendrons donc clans tout ce § les intégrales au sens cle Lebesgue.

Prenons maintenant l'équation intégrale

b

9(6') — K|s-, t)y{t)dt =z f(s) (25)

a

et supposons f[s) cle carré intégrable clans (a, b) et K (s, t) symétrique

tel que
b b

fy*K.(.ç, t)g{s)g(i)dsdt
a a

existe pour toute fonction g(s) de carré intégrable. Soit [y (s)] un
système orthogonal fermé et normé relativement à l'intervalle (a,b).
Notons

b

xp =-ffis) 9p&)ds

multiplions l'équation intégrale par cpp(s) et intégrons clans (a, b)

L'Enseignement mathém., 14e année; 1912 8

''pq—ft)fpis)'?<jWdsdt=kllp >

a a

b
(26)

fp =J
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en nous servant de la formule de Riesz (24). Il vient

•'/< - :

7=1

(p 1,2,3. (27)

C'est un système d'une infinité d'équations du 1er degré à une
infinité d'inconnues xi .r2, Si ce système admet une solution
{.Vp) de somme des carrés convergente, on pourra lui faire
correspondre par le théorème de Riesz-Fischer une fonction cf (s), de
carré intégrable, que l'on démontrera être solution de l'équation
intégrale. Il y a donc équivalence entre la résolution de Véquation
intégrale et celle d'un système d'équations linéaires à une infinité
d'inconnues. On est ainsi amené à l'étude de tels systèmes chéqua-
tions et à celle des formes quadratiques qui en dépendent. Cette
étude a été faite par Hilbert. Tœplitz et Hellinger, dans leurs
recherches ultérieures, ont apporté des contributions nouvelles à

cette théorie, ils l'ont surtout simplifiée en réduisant à un minimum

les questions de convergence qui se posent inévitablement
dans une telle théorie, et en éclairant mieux la face algébrique du
problème. L'hypothèse faite plus haut sur K(s, t) revient à dire que
la forme quadratique à une infinité de variables kp

p,q
bornée, c'est-à-dire telle que

xvxQ estpq p^q

22 kpi xp X1

P— l q — 1

pour tout système de valeurs

< M

+ • • • + < S > (n 1,2, 3,

M étant une constante convenablement choisie. C'est à l'étude des
formes bornées que se limite la théorie de Hilbert. Hilbert considère

comme solutions (et cela est naturel, d'après le théorème de
Riesz-Fischer) les seules solutions xi à somme des carrés
convergente. Sa théorie montre alors que l'analogie trouvée plus
haut ne subsiste plus en général. Ainsi, il peut y avoir des valeurs
de A, pour lesquelles les équations homogènes correspondantes
de (27) possèdent une infinité dénombrable de solutions. Les
valeurs de X où le système (27) n'est pas résoluble sont encore réelles
et il en existe encore au moins une, mais elles peuvent ne pas être
isolées et former un ensemble ayant la puissance du continu. Dans
ces cas, Valternative n'existe plus : il y a des valeurs de X pour
lesquelles ni les équations (27) ni les équations homogènes corres-
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pondantes n'ont de solutions à somme des carrés convergente. Par
suite, les valeurs nécessairement réelles de X où l'équation
intégrale (25) n'a pas de solution de carré intégrable peuvent donc,
dans le cas général, ne pas être isolées et former un ensemble
ayant la puissance du continu et Valternative n'existera plus : il y
aura des valeurs de X où ni l'équation (25) ni l'équation homogène
correspondante n'admettent de solutions de carré intégrable dans
[a, b). 11 se présente par contre des faits nouveaux sur lesquels je
ne puis insister ici1. Je me bornerai pour finir, à signaler que la
théorie des formes quadratiques à une infinité de variables permet

de trouver des conditions nécessaires et suffisantes pour que
l'alternative ait encore lieu, qu'elle retrouve ainsi les résultats de
Fredholm et de Schmidt sur les noyaux symétriques et que de
plus elle permet d'aborder des équations intégrales inaccessibles
aux méthodes de ces deux savants.

M. Plancherel (Fribourg).

LES RECTRICES. ÉTUDE DE GÉOMÉTRIE PHYSIQUE

Sommaire : 1. Les rectrices. — 2. Les rectrices et la surface de l'onde. —
3. Applications pratiques des rectrices. — 4. Les rectrices centrales des
quadriques. — 5. La correspondance logarithmique entre quadriques et
cônes recteurs. — 6. Les rectrices et la représentation des phénomènes. —
7. La dualité géométrique et les rectrices. — 8. La matière élastique et
le complexe du second ordre. — Les lignes de rupture. — 10. La rectrice
chimique. — 11. La loi cissoïdale atomique.

1. Les Rectrices. — Quand on examine une glace étamée recouverte
d'une poussière légère, on observe que les grains de poussière

paraissent s'aligner vers l'œil. L'effet est, dans une certaine
mesure, d'autant plus apparent que la glace est plus épaisse. Si
la glace, au lieu d'être plane, constitue une surface courbe, aux
alignements rectilignes correspondent des courbes tracées sur la
surface. Il est facile d'expliquer l'effet d'alignement par la réflexion
de chaque grain de poussière.

On voit aisément que ces courbes sont en somme les trajectoires

1 Cf. E. Hiïllingiîr, Neue Begründung der Theorie quadratischer Formen von unendlichVleerforderlichen [Journal für die reine und angewandte Mathematik, Bd. 136 (1909),
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