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294 MELANGES ET CORRESPONDANCE

méme sens du méme angle le centre C autour de ¢; ¢, — 'axe de
collinéation — étant l'intersection de P et w; ¢ - le premier axe
secondaire — étant l'intersection de 7 avec le plan mené par C
parallelement a P. Supposons que, par le mouvement de rotation,
A soit venu en A, et C en C,.

En désignant par M le centre de la circonférence décrite par C
et par N celui de la circonférence décrite par A, nous constatons
que les triangles CMC, et ANA, sont semblables, parce que tous
les deux sont isoscéles et par condition 4C CMC, = <47 ANA,. Et

comme les triangles sont aussi semblablement situés, on a:
CCy|| AA4, ' | (1)
De la similitude des triangles A'NA et A'MC on a:
A’A : A’C = NA : MC. (a)
De méme de la similitude des triangles ANA, et CMC, on a:
NP; : MC == AA, : CC,. (B)

De (@] et (8) on obtient:

A’A 1 A’C = AA, : CG,, (2)

La relation (2) avec le résultat (1) dit que la ligne de jonction
des points A, et C, passe par A’. L.e théoreme est donc démontré.

[.. Hanros (Keeskemét, Hongrie)

Sur un certain développement en fraction continue.

A propos d’ une communication de M. BAATARD.

Au cours d’'une communication présentée a Soleure (En's. math.,
1912, p. 31-37), M. Baararp a signalé une propriété curieuse d'une
famille de fractions continues qu’il ne serait peut-étre pas inutile
de mettre en lumiére.

Soient a, le terme initial et a,, a,, ... a,, les quotients incom-
plets d’une période dans le développement en fraction continue
de VA ; je rappelle que a,, = 24,.

A ce terme initial et & la suite infinie des quotients incomplets

a ,
répondent les réduites Py r Po P

9, 1
gent de plus en plus vers VA .

, , , etc., qui conver-
9, qm—-}—l ‘
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Appliquons a 'une des réduites Pr e procédé (') de M. Baa-
tard®.

4 A 3 ’ 7 ——
Nous aurons une nouvelle valeur approchée b de YA qui s’ex
prime ainsi '

n

et s i s

2 2 . -
Pn+ Ag,
b — ———— . t

% 2P nn

| Or, dans les exemples choisis par M. Baatard, on a, quel que
. 2 .

) soit n, b = F2a : en d’autres termes, on a la relation |
! 92n 7 i
i

! 2 2 !
f Pan o Pn =+ Aqn ;
kan 2pll,qll r -

(1)

M. Baatard fait remarquer avec raison que ce fait ne se présente
pas toujours.

Une question se pose alors: quels sont les nombres A dont les
développements en fraction continue fournissent des réduites vé-
rifiant la condition (1)? : _

Je rappellerai d’abord que la relation (1) a lieu pour tout A,
lorsque I'indice n est un multiple de m, m étant le nombre des
termes de la période.

On a, en effet, quel que soit 7,

—_ —.1
(2) pim _ qim‘/A — (P,n - (/m‘/A.} ’

_ —
p2im — (/2im ‘/A — (pm - qm‘/A) ’

et par conséquent (Cf. Serret, Cours d’alg. sup., 5¢ édit., t. 1,

n \
1 Dans le cas général d’une racine quelconque VA, ce procédé consiste & remplacer une
n
premiére valeur approchée a de Va par la valeur

! n—1Ya A
b = P—————+ (IL ) 5 ou p/ =
an-l
c’est-a-dire par
. a — A o [la)
na”-1 [ (a)’ ~

en posant z’* — A = f(x). On voit done que le procédé (') revient a celui de Newton ap~

pliqué a équation " — A = 0. (Cf. Encyecl. des Sciences math., Tome 1, art. 23, p. 282, et
~Tome II, art. 26, p. 58.) '
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p. 76 et 77)

. e ' e 2
(5) p2im e q2im‘/A — (pim - (lim‘/A) ’

ce qui donne bien
2 2
PQZ"" _ Pim + Aqim
q‘Zi/n 2piln 9im

Mais la relation (1) n’a pas lieu pour tout A, lorsque V'indice n
n’est pas un multiple de m. Soit, par exemple, A = 7. Ici a, = 2,
la période contient quatre termes 1, 1,1, 4. En appliquant (0’) a
P1 2 11 . Pg & . ) PZ
‘= = —,0n a b == ¢ét comme = = 3, on voit que b === .
q1 1 b 4 qg ) q q2

Je dis que les nombres A qui vérifient la relation (1) sont carac-
térisés par la condition :

(&) 2a

o est divisible pa.r A — af} )

Cette condition est nécessaire et suflisante. Flle est nécessaire.
En effet, la relation (1) étant supposée vraie pour tout n, on doit
avoir en particulier

2 2 2
p:  p,+ Aq, a, + A

qz — 2P1 ql o 2(l0

b

et comme
}2 _ aogay + 1

b

q, a4
on en tire

200 = a, (A — ) .

. Donec 2a, est divisible par A — a et le quotient de la division

[

est précisément égal a a, .
La condition (4) est suffisante. Supposons que 2a, soit divisible
par A — a? et posons ’
2a,

2
A—-—ao

=d .

En formant les quotients complets x, , x,, on trouve

1
— 9 il
X fli_‘{_é:_ﬁj___fj: 4 .
Y A — a* 11 (A — a?)
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1 s
Donc a;, = d et comme x, —= a, + — , on en tire
2

Xy :1'1(A — a,(z)) = 2(10 —l- ,;U: .

Par conséquent a, = 2a, et x, = x, .
l.a période se compose donc de deux termes :

2a,

A — at

0

ay —= ‘et as = 2a, ,

ou du seul terme 2a,, lorsque A — &} = 1.

Si donc la condition (4) est vérifiée, la relation (1) a lieu, en
vertu de (3) (en posant m =2), pour toutes les réduites de rangs
pairs. 1l nous reste a la démontrer pour les réduites de rangs im-
pairs.

" Or ,
A — a ai + A pi—}—Aqi

Pe
f—=a, + == = —
q, U 2a, 2a, 2p,q,

La relation (1) a donc lieu pour n» =1 et on peut écrire dans ce
cas particulier

(5) Po— VA= r——=(p,— q VAP .

—at
0

5 Ty . .y s Pt~
Considérons maintenant une réduite quelconque —2—

de rang
. C o e Tai—1
impair. Soit

o 1 2ayay + 1
Ut g = g

wl| Q

0

On a, comme on sait (Serret, p. 62),

— - 1
Poi—1 — ‘]2;‘—1‘/A — (P1 - qlt/A) (0 — B&Tﬂl .

et comme a —fx, = p, — g, VA, il vient

Poi1 — 9251 VA= (P, — ‘111/:&) (P, — qg‘/K)l——l

d’oli, en vertu de (2) et de (5),

A 1 . ) Visal
P22i—1) — ‘12(2i—1)‘/A — m‘l’%‘—'l - ‘/2;'—1‘/1&)2
: ] 0 .

~
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ce qui conduit a la relation (1) pour n impair. Si donc la condi-
tion (4) est vérifiée, la relation (1) alieu quel que soit n. C.Q.F.D.
Il résulte de la que les nombres A vérifiant la relation (1) sont
de la forme
- 2a,
A

@, étant un nombre entier quelconque et a, un diviseur quel-
conque de 2a,. LLe nombre des nombres A compris entre «] et

(@, + 1)* est donc égal au nombre des différents diviseurs de 24, .
Pour a,—1, le diviseur @,—=2 ou 1, d'ou A=—=2 et 3.
Pour a,==2, lediviseur a, =4, 2, 1, dou A =5, 6, 8.
- Jajouterai que les nombres A ont déja été rencontrés par Euler
(Cf. 'article de M. Ausry, Ens. math., 1912, p. 204, exerc. 24).
Bien ue ces résultats se déduisent tres simplement des pro-
priétés classiques des fractions continues, j’ai pensé qu’il y avait
quelque intérét a les rappeler, d’autant plus qu’ils se rattachent
au travail de M. Aubry que je viens de citer.

D. Mirivanorr (Genéve).

CHRONIQUE

Commission internationale de I’Enseignement mathématique.

[. — Riuxton pE CAMBRIDGE. 21-28 aout 1912.
PROGRAMME GENERAL.

Mercredi 21 aoit, 9 h. du matin : Séance du Comité central.

3 h. del'aprés-midi: Séance des délégues. Elle aura lieu dans
I'une des salles du Laboratoire des ingénieurs, au siege du
Congres.

Jeudi 22 aoiuit, 10 h. du matin. Séance d’ouverture du 5¢ Congres.
international des mathématiciens. Sir George GrEeNHILL, Vice-
président de la Commission, parlera des travaux de la Commission.

Vendredi 23 aotit, 9 h. du matin, 1™ sEaNcE, en commun avec la
section d’enseignement du Congres: Présentation des travaux des
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