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SUR L’ INTERPRETATION GEOMETRIQUE,
D'APRES A. MANNHEIM,

DE

L’EQUATION INTRINSEQUE D'UNE COURBE PLANE

L’équation intrinséque d’une courbe plane est suscep-
tible d’une élégante interprétation géométrique donnée par
A. MannNHEIM pour la premiere fois!: soit

léquation intrinseque d’une courbe piane (G); lorsque cette
courbe roule sans glisser sur une droite fixe Ox, le centre de
courbure correspondant au point de contact décrit la courbe
(') d’équation

y=171,

par rapport a des axes rectangulaires dont U'un est Ox.

Dans un grand nombre de cas, on peut associer ainsi des
courbes (C) et (I') remarquables. ManNuHEIM établit géométri-
quement que (T') est une droite lorsque (C) est une spirale
logarithmique, une parabole lorsque (C) est une dévelop-
pante de cercle, une circonférence lorsque (C) est une cy-
cloide, une ellipse lorsque (C) est une épicycloide ordinaire
et, enfin, une parabole lorsque (C) est une chainette. Le ré-
sultat relatif a I’épicycloide se trouve aussi dans les Nouvelles
Annales de Mathématigues de 1896 (p. 102 et 245), et celui

qui est relatif a la chainette a été étendu par Cesaro (Nou-

L Recherches géométriques relatives aw liew des positions successives des centres de courbure
d’une courbe qui roule sur une droite (Journal de Mathématiques pures ct appliquées, 2¢ série,
t. 1V, 1859, p. 93-104).
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SUR L’EQUATION INTRINSEQUE 25

velles Annales, 1886, p. 75) aux courbes d’équation intrin-
seque ‘ ‘
' — 2 2
cp = s*+ a
auxquelles il a donné le nom de courbes alysoides. Mais ce
ne sont pas la les seuls exemples dignes d'intérét. Lorsque
(C) est la clothoide

S S
x:J cos s?ds 3':fsinsgd3 ,
0 0

la courbe (T') est une hyperbole équilatére. Lorsque (C) est
la chainette d’égale résistance de Coriolis, d’équation intrin-
seque (MincHIN, Treatise on Statics, 1877)

S
p = poch o
la courbe (T') est la chainetle. Plus généralement, CiraRELLI
(Giornale di Matematiche, t. XXXVI, 1898, p. 183) a consi-
déré les courbes
S
c 2/ ]
o 1chc ,

pour lesquelles les courbes (I') sont des transformées homo-
graphiques de la chainette.

Je me suis proposé de généraliser cette inlerprétation
‘géométrique devenue classique. Si on fait rouler la courbe
(C) sur une courbe quelconque et non plus sur une droite,
le lieu (I') des centres de courbure relatifs aux points de
conlacts se compose de deux courbes distinctes (I';) et (T,),
qui correspondent aux deux positions relatives de (C) et de
la courbe sur laquelle roule (C) par rapport a la tangente de
contact. ‘

L’étude des courbes (T')) et (I'y) est, en général, compliquée

et n'offre rien de remarquable, a moins que la courbe fixe.

sur laquelle roule (C) ne soit une circonférence. Dans ce
cas, en effet, @ étant le rayon de cette circonférence, les
équations '

r—=ua -+ flab) , r—a— flab) ,

représentent respectivement, en coordonnées polaires, les

courbes (T,) et (I'y): le pole est le centre de la circonférence.
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26 E. TURRIERE

Comme exemples simples, je signalerai celui de la spirale
logarithmique pour laquelle les courbes (T')) et (I'y) sont des
spirales d’Archiméde, et celui de la courbe de Delaunay.
Considérons une courbe de Delaunay méridienne de la sur-

. r L4 N\ & 1
face de révolution a courbure moyenne constante — ¢'est-

a-dire une courbe intégrale de 'équation différentielle

-2 2 Jy—'__z ap—— . z b3
(o +b,i\/1+(z—%>+2ay_0, (b < a¥) .

De cette équation résulte l’équation inlrinseque de la courbe

de Delaunay
a(a‘-’ — 2ac cos ;ZS— + (52>

S ’
c{¢C — a cos —
a

équation intrinseque qui fut formée pour la premiere fois
par Cesaro'. La courbe de Delaunay roulant sur une circon-
férence de rayon «, les courbes (T',) et (I'y) ont pour équa-
tions polaires:

(]

— (¢ = a® — b?) .

)

: o ala® — c¢?
S ’_3a+c(c—acosﬁ}’
. a(a? — c?
(T )—_—a_c(c—acosﬁ)'

Ce sont donc deux conclioides focales de conique. Pour
a < ¢, en posant @ = ce, la courbe (I',) d'équation polaire

1 — e*

PE™ s s
1 —ecos®

-a ,

est la conchoide focale d'une ellipse de grand axe 2a et
d’excentricité e, le rayon vecteur étant diminué du demi-
grand axe: on reconnait la une courbe remarquable qui a
été étudiée par JErABEK dans Mathésis (1885, p. 110).

E. Turrikre (Alencon).

1 Nouvelles Annales, 1888, p. 219, et Lezioni di Geonetria intrinseca, 1896, p. 69.
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