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SUR L'INTERPRÉTATION GÉOMÉTRIQUE,

D'APRÈS A. MANNHEIM,
DE

L'ÉQUATION INTRINSÈQUE D'UNE COURBE PLANE

L'équation intrinsèque d'une courbe plane est susceptible

d'une élégante interprétation géométrique donnée par
A. Mannheim pour la première fois 1

: soit

P /» >

l'équation intrinsèque d'une courbe ptcine (C) ; lorsque cette
courbe roule sans glisser sur une droite fixe 0.r, le centre de

courbure correspondant au point de contact décrit la courbe
(r) d'équation

y — f(*\ >

par rapport à des axes rectangulaires dont l'un est Ox.
Dans un grand nombre de cas, on peut associer ainsi des

courbes (C) et (r) remarquables. Mannheim établit géométriquement

que (r) est une droite lorsque (C) est une spirale
logarithmique, une parabole lorsque (C) est une développante

de cercle, une circonférence lorsque (C) est une cy-
cloïde, une ellipse lorsque (C) est une épicvcloïde ordinaire
et, enfin, une parabole lorsque (C) est une chaînette. Le
résultat relatif à l'épicycloïde se trouve aussi dans les Nouvelles
Annales de Mathématiques de 1896 (p. 102 et 245), et celui
qui est relatif à la chaînette a été étendu par Cesaro (Nou-

1 Recherches géométriques relatives au lieu des positions successives des centres de courbure
d'une courbe qui roule sur une droite (Journal de Mathématiques pures et appliquées, 2e série,
t. IV, 1859, p. 93-104).
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çelles Annales, 1886, p. 75) aux courbes d'équation intrinsèque

cp — s2 -f- a2

auxquelles il a donné le nom de courbes alysoldes. Mais ce

ne sont pas là les seuls exemples dignes d'intérêt. Lorsque
(C) est la clothoïde

rs rx rrr I cos s2 ds f — J sin s2 Is
Jo Jo

la courbe (r) est une hyperbole équilatère. Lorsque (G) est
la chaînette d'égale résistance de Coriolis, d'équation intrinsèque

(Minchin, Treatise on Statics, 1877)

p — p0 ch —
Po

"

la courbe (F) est la chaînette. Plus généralement, Cifarelli
(Giornale cli Matematicher t. XXXVI, 1898, p. 183) a considéré

les courbes

p =r 2/> ch -
c

pour lesquelles les courbes (r) sont des transformées homo-
graphiques de la chaînette.

Je me suis proposé de généraliser cette interprétation
géométrique devenue classique. Si on fait rouler la courbe
(C) sur une courbe quelconque et non plus sur une droite,
le lieu (r) des centres de courbure relatifs aux points de

contacts se compose de deux courbes distinctes (TJ et (T2),

qui correspondent aux deux positions relatives de (C) et de
la courbe sur laquelle roule (C) par rapport à la tangente de
contact.

L'étude des courbes (r4) et (F2) est, en général, compliquée
et n'offre rien de remarquable, à moins que la courbe fixe
sur laquelle roule (C) ne soit une circonférence. Dans ce
cas, en effet, a étant le rayon de cette circonférence, les
équations

r — a + f[aiï) r — a — f(ci%)

représentent respectivement, en coordonnées polaires, les
courbes (r^ et (r2) : le pôle est le centre de la circonférence.
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Comme exemples simples, je signalerai celui de la spirale
logarithmique pour laquelle les courbes (Ib) et (r2) sont des
spirales d'Archimède, et celui de la courbe de Delaunay.
Considérons une courbe de Delaunay méridienne de la sur«

lface de révolution à courbure moyenne constante — c'est-

à-dire une courbe intégrale de l'équation différentielle

(yt + y/1 + (^j + lay 0 ; (/,* <

De cette équation résulte l'équation intrinsèque de la courbe
de Delaunay

a a- — lac cos —
a

s
c[ c — a cos -a

(c* — a2 — b2)

équation intrinsèque qui fut formée pour la première fois

par Cesaro1. La courbe de Delaunay roulant sur une
circonférence de rayon a, les courbes (Ib) et (r2) ont pour équations

polaires :

m\ — q I
a(a'* — c

(fil r — 3«

(r a)

c (c — a cos 6

a (a2 — c'2)

c (c — a cos

Ce sont donc deux conchoïdes focales de conique. Pour
a c, en posant a ce, la courbe (r2) d'équation polaire

1 — e1
r — a - — a

1 — e cos b

est la conchoïde focale d'une ellipse de grand axe 2a et
d'excentricité c, le rayon vecteur étant diminué du demi-
grand axe : on reconnaît là une courbe remarquable qui a

été étudiée par Jerabek dans Ma thésis (1885, p. 110).

E. Turrière (Alençon).

1 Nouvelles Annales, 188B, p. 219, et Lezioni di Geometria intrinseca, 1896, p. 69.
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