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LE PROBLEME DE PAPPUS

Une questioﬁ récente de 'Intermédiaire des Mathémati-
ciens (Question 3667, R-C. ArcHiBALD), ramene latlenlion
sur ce célebre probléeme :

Rhombo dato, et uno latere producto, aptare sub angulo
exleriori magnitudine datam rectam lineam, quée ad oppo-
situm angulum pertingat.

Pappus, et aprés lui un certain nombre de mathématiciens,
parmi lesquels Newton, Huygens, Gergonne, ont donné une
solution algébrique et géométrique qui dépend de la cons-
truction de deux lignes de différence et de produit connus .

Le probleme plus général : Mener par wun point donné
dans un angle une sécante de longueur donnée, a été a son
tour l'objet d'un certain nombre de recherches, auxquelles
je crois devoir apporter ici ma contribution. La solution
compléle de ce probléme général est donnée algébrique-
ment par une équation du troisieme ou du quatrieme degré,
graphiquement par 'intersection d’un cercle et d'une hyper-
bole. Outre le rhombe, il y a d’autres cas particuliers dans
lesquels le degré s’abaisse au deuxieme. Il existe également
un cas parliculier qui conduit a une trisection d'angle.

Le point donné A étant supposé placé dans 'angle XOY,
coit BAG (fig. 1), la sécante demandée de longueur /; me-
nons la sécante DAL dont A est le milieu, puis OA" équi-
pollent & AD, et OM équipollent a CB; le point M est a I'in-
tersection du cercle qui a O pour centre et / pour rayon avec
I'hyperbole qui a pour centre A’, les asymptotes paralleles a
OX et OY, et qui passe aussi par O. Le point M étant cons-
truit, il ne restera qu'a tirer la droite BAC paralléle 2 OM.

1 Consulter, par exemple, E. Pruvost, Géométrie Analyjtique, t. 1, p. 18-28.

L’Enseignement mathém., 13¢ anndée ; 1911.
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18 P. BARBARIN

Bien des méthodes s’offrent pour la recherche du point M,
car on peut prendre par exemple pour inconnues soit les
sécantes communes au cercle et 4 'hyperbole, soit un angle
fixant la direction de OM, soit encore un rapport ou une

; . CO
coordonnée homographique, telle que =

méthode vaut d’ailleurs la peine d’étre suivie, car elle révele
un fait intéressant.

, etc... Chaque

Fig. 1. Fig. 2.

Prenons les cotés de I'angle XOY = 6 pour axes de coor-
données ; en désignant par x, et y, les coordonnées de A,

x, et — y, sont celles de A’, le cercle et l’hyperbole ont res-

pectivement pour équations

(1) 2+ y? + 2xy cos 6 — 2 =0,

2 - 4 1 =20
(2) z =Y

<=2
R

Pour que la conique du faisceau linéaire
2xy + 2y, — 22,y + A(x® 4 9* + 2xy cos 6 — I¥) =0

dégénére en deux droites, il faut que A soit racine de I'équa-
tion du troisieme degré

(3) I* sin® 6A3 — 2[% cos OA? + (7(: + y: + 2xy, cos 6 — )L 4 22,5, =0,
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qui a ses trois racines réelles quand on a la condilion |

(4) ' { 3(@” sin2 0 — %) — 2 cos® O }3 + 2 { 8% cos®

— 90A” sin? 0 cos 6 — 27 .y, sin* 6 < 0.

Celte condition exprime que le point donné A est a I'inté-
rieur d'une sextique a quatre rebroussements, tangente deux
fois a chacun des axes.

Lorsque # — 90°, celte sextique n’est autre que I’hypo-
cycloide a quatre rebroussements, ou asiroide,

2 2 2

Lorsque @ est quelconque, la sextique (4) est aussi I'enve-

loppe de toute corde BAC égale a [ limitée par l'angle, en

méme temps que le lieu géomélrique de la projection H sur
cette corde du quatrieme sommet N du parallélogramme
OBNC. Mais elle jouit encore d’une autre propriété curieuse
(Joachimstal, Salmon, Merlieux, — consulter, par exemple,
Gowumes Trixeira, Traité des courbes spéciales, vol. 1. p. 332-

338).

Soient oz bissectrice de 'angle XOY, OX' el OY' les deux
droites qui font avec oz de part et d’autre des angles de 45°,
R le rayon constant du cercle circonscrit au triangle OBC;
si I'on détermine l'astroide enveloppe des cordes de lon-
gueur 2R inscriles dans I'angle droit X'OY', la sextique (4)

‘est une courbe paralléle a celte astroide, a la distance R cos 6,

les rebroussements des deux courbes se correspondant mu-
tuellement.

Pour délerminer le point M par un angle, nous cherchons
'angle XoM =g¢. En demgnant par w langle xoA’, 'équation
a résoudre est alors

sin (6 — w) sin w l

(%) sin (6~qa)+singo—OA':0'

Dans le cas particulier ou [ =20A’, elle se décompose en

2

'sin?‘;w:0, et sin[g’q)—_j——w—ﬂe]—l—sin?;mcosezﬁ.
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20 A P. BARBARIN

Par conséquent, si 'angle XOY est droit, /' étant égal a
20A"=20A, les quatre points communs au cercle et a ’hy-
perbole sont M, situé sur le prolongement de OA', M, tel que

: 1
XOM, =% — 3XOM,, et les deux autres sommets M,, M,

3
du triangle équilatéral inscrit a partir de OM,. De la les
qualre sécantes B,AC,, B,AGC,, B,C, et B,C,, dont la pre-
miére a povr milieu A (fig. 2).

. CO
Soit enfin dans la ﬁgure 1 le rapport — ( . Les coor-

CE

données du point M sont

2tx1 o 21fy1
T+ Y—=1—¢

et en les substituant dans ’équation (1) on calculera ¢ par
I’équation du quatrieme degré '
6) &) at— 1P 4y (¢ + 1P — 2ay, cos 6(2 — 1) | &
B —1)2=0 .
En y faisant

6 =2, [=2I!, A=(x —ylcosa, B=(xr +y)sina,

; _'T1+y1 =

1 TR 2 M
x =0 x, +

celle équation pourrait s’écrire sous la forme

(6') AT(E— 1) 4 BYE— 42} 2 — 12— 112 =0,
qui se préle assez bien a la discussion. On voit, par exemple,
qu’elle a'toujours au moins deux racines réelles, une posi-
tive, une négative, entre — 1 et + 1. Quand OA’ est inférieur
ou égal a /', les deux autres racines sont aussi réelles, I'une
étant inférieure a — 1 et la quatriéme supérieure a 1. Il n’y
a donc vraiment incertitude que lorsque OA’ est plus grand
que /.

Or, I'équation (6) développée a la forme

(7) Mgt L ONG L PP — 2 =0
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en posant, pour abréger,

2

M=0A" —1?7, N=j —a =— OA.OA" cos AOA’ ,

P — OA® + 212,

et si 'on calcule le résulltant A de cette équation avec I'équa-

tion dérivée,
oM + 3Nt + P =0 ,
la condition de réalité de ses quatre racines, qui s’exprime
par
A<O,

revient, tous calculs développés, a I'inéquation (4).

Il faut maintenant examiner les cas particuliers que peut
offrir ’équation (7), c’est-a-dire ceux ou elle est quadratique.

Le premier est celui, évident, on N =0, A étant silué sur la’

bissectrice interne de 'angle XOY, et A’ sur celle de I'angle
adjacent. L’équation (7) est alors bicarrée en ¢, et donne

2 solutions si I’ < OAtga
4 » si I’ > OAtqa .

Pour les conslruire aisément, tracons (fig. 3) BC =1, et le
segment capable de 'angle aigu 8 sur BG: E étant le milieu.
de I'arc mineur sous-tendu, construisons deux lignes de dif-
férence égale a OA et de produit égal a EB*; puis de E
comme centre avec chacune de ces lignes pour rayon décri-

./
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vons deux arcs de cercle; le premier coupe toujours BC
en A, le second la coupe en A si [ > 20A tg «; alors, les
droites EA, et EA rencontrant le cercle en O, et O, les lon-
gueurs OB, OC, prises sur les cotés de 'angle déja donné 6,
les longueurs O,B, O,C, prises sur les cotés de son supplé-
ment déterminent les extrémités des sécantes de longueur /
qui passent par le point donné. ,

[’équation (7) devient quadratique dans une autre circons-
tance 1ntéressante, celle ou

N — PM =0 .

Elle se décompose alors en deux équations du second
degré,

(8) N2+ Pt +U'f/P =0,

(9) N2 - Pt — )/ P =0 .

Pour fixer les idées, soit x, > y,; I'équation (8) a deux
racines réelles de signe contraire comprises entre — 1 et 4+1;
elles correspondent aux points d’'intersection réels de la
branche d’hyperbole qui passe par le centre du cercle, et
donnent, ainsi que l'indique la figure 4, les sécantes B,C,
et B,C, .
 L’équation (9) n'a de racines réelles que si I'on a

3

P’ 4UN>0

et ces deux racines, qui sont alors supérieures a 1, corres-
pondent aux deux sécantes B,C, et B,C, .

La condition de décomposition N2 — PM — 0 exprime que
le point donné A appartient a une courbe du quatrieme degré
ayant pour- équation cartésienne

(10) 4a%y? sin? O 4 1"2(x? 4+ y? — 6ay cos ) — 204+ =0 .

Cette courbe a pour axes !es bissectrices des angles XOY

et XOY', la longueur du premier étant /' cotg—g— , et celle du

] : . .
second /' tg  ; elle est donc tangente en ces points a la sex-

tique enveloppe (4); ses points de rencontre avec OX et OY
sont a la distance V2 du point O.
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peut lui donner une dé-
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Si Pangle XOY est droit, la courbe (10) a pour équation
polaire

C (YT F 8sin®* 20 — 1)1
g —

) 2 sin? 20

sa forme, aisée a construire, montre qu’elle est toute inté-
rieure a l'astroide, ainsi que sur la figure 5; donc les sécantes
qui passent par les

points de cette courbe | Y
sont toutes réelles. On

finition géométrique as-
sez simple, car si on
projette chacun de ses
points en m et m’ sur
des paralleles aux cotés ‘
de 'angle a la distance

é— . le produit Om >< Om’ ,"‘
est constant et égal a
A

Quand l'angle XOY
n’est pas droit, la courbe (10) conserve une forme analogue.

Il ne reste plus qu’a construire les quatre sécantes, en
faisant

Fig 5.

el AL
‘_.-——N—"_.‘

si z est une ligne a déterminer. de méme signe que ¢; alors,
par 'équation (8), on trouve deux lignes de différence VP

7

.. —UN 7 . ;
et de produit /% ¢ Par I'équation (9) deux lignes de somme

= . v .. —UN ;
VP et de produit T Enfin, par
o _— 7
CE — N

on fixe le point C quil n'y a plus qu'a joindre au p.oint A.

P. BarBarin (Paris).
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