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SUR LA DETERMINATION

DE LA COURBURE D'UNE LIGNE PLANE
CONSIDÉRÉE COMME

ENVELOPPE DE SES TANGENTES

En examinant la nouvelle édition allemande de l'excellent
Répertoriant der höh. Mathematik de M. E. Pascal, dont deux
volumes ont récemment paru, j'ai remarqué le manque de
formules répondant à la question énoncée dans le titre de
cette Note. Or on a besoin de ces formules dans plusieurs
occasions, et comme je ne les ai pas trouvées dans les traités
que j'ai examinés, je me propose de les établir. Elles offrent
une application de la théorie classique des enveloppes, et
pourraient trouver place dans toute exposition scolaire des
applications géométriques du calcul différentiel.

I.

(L
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l'équation pliickérienne d'une courbe plane quelconque T ;

cela signifie que cette courbe est l'enveloppe de la droite

(2) ux -{- vy

les paramètres u, v étant liés par l'équation (1); l'équation
cartésienne de la courbe T est le résultat de l'élimination
de u, e entre les équations (1), (2) et

dcp
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Si donc on pose pour abréger

(3) W
Ö© Ö©

U — + ^ —
ÔM öy

on aura les expressions suivantes pour les coordonnées d'un
point quelconque P de la courbe T :

(4)
1 ô©

WÎM ' J:
1 Ö©

w

u et e étant liées par la relation (1). La normale à la courbe F
au point P(x, y) a évidemment pour équation (X et Y étant
les coordonnées courantes)

(5) u (X x) m (Y y) ~ 0 ;

comme u, v satisfont à l'équation (1), l'enveloppe de cette
droite a pour équation le résultat de l'élimination de u, v
entre les équations (1), (5) et

(6)

Dx Dy Do

_ v Y — r -f uA- ——
Du ' 7/1 ött Du

ô# ör ö©
X — x) — v u— —

ö*> Dv Dv

— 0

Dans cette formule x, y sont données par les équations
(3), (4) et X, Y sont les coordonnées du centre de courbure C
de la courbe T relatif au point P(.#, y), cela prouve que
\/(X — ^)2+(Y — y)2 est le rayon de courbure que nous
cherchons. Or l'équation (5) donne

ou bien

(7) X — x

X — x

Rm

R

I/u2 + v*

par suite (6) devient

i/«2 +

Y - y
Rr

\/ul -j- u2

R*7 ör Dx ö©
— 4- u — — v — _L

l/«2 + v2 Du Du Du

Rw by
/ -j- u —

y u2 -f y2 Du

Dx Df
Du Du
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ou bien
îy- öcp

bll '; bu bu

bx dj bf
by by by

u y 0

T? IR u — 4- v> —*
öm öv

j/m2 -f- y2

Dans le second membre il faut substituer à x, y leurs
expressions données par les équations (3), (4); le déterminant
qui en résulte peut se transformer de manière qu'il prenne
une forme plus simple; toute réduction faite, on trouve

(I)
(«* + w2)2

Ö© Ö© \3
U~~ + v —bu by J

b2cp
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bu by bu
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C'est la formule qui résout la question que nous nous
étions proposée.

II. — Des calculs analogues, mais plus simples,
permettent de résoudre la même question lorsqu'on connaît les
expressions des coordonnées plûckériennes d'une tangente
à la courbe considérée en fonction d'un paramètre t:

u — u(t) y v[i)

Dans ce cas, combinons l'équation

ux -f- yy + 1 0

avec sa dérivée par rapport à t, c'est-à-dire

uf x + yfy — 0 ;

si on pose pour abréger

A A'

et
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x et y étant les coordonnées d'un point quelconque P de la

courbe T considérée. L'équation (5) représentera encore la

normale en P à la courbe T ; pour en trouver l'enveloppe,
combinons l'équation (5) avec sa dérivée

/(X — x) — u'(Y — j) vxf — uy'

Mais, si on a recours aux équations (7), on peut écrire

uv' — u'v
U — vx — uy ;

i/iP + c*
J

et, en remplaçant x, y par leurs expressions (8), on trouve,
après quelques calculs,

3

(II) R -2 + "2)2 ("V" - "V)
| — u vy

relation qui sert cà calculer le rayon de courbure de toute
courbe déterminée par les expressions des coordonnées
plûckériennes des tangentes en fonction d'un paramètre.

III. — Je vais finir par une application de la formule que
je viens d'établir. Considérons la courbe T représentée en
cordonnées orthogonales comme il suit:

x £(*) y Tilt),

et sa polaire réciproque II par rapport au cercle

** + y2

La coifrbe II est l'enveloppe de la droite

xÇ -J- rr] — a2 0

dont les coordonnées plûckériennes sont

« a2

Pour en trouver le rayon de courbure Rn, on n'a qu'à
appliquer la formule (II); on trouve de la sorte
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Or le rayon de courbure Rr de la courbe dont nous
sommes partis est donné par la formule suivante

R _JÇ'« + n")

donc on a

* _ J(P + WMr2 +^n r - L J

Remarquons à présent que, si ^ est l'angle que la tangente
en un point P de la courbe T fait avec le rayon vecteur OP
on a

w - ^sm u. zu ;

[/(? + ri2) + V2)

par conséquent, la relation précédente devient

(III) RnRr ^-,Il 1 sm5 [j.

relation très remarquable, découverte par A. Mannheim1 et
rappelée récemment par M. H. Wieleitner2 : il faut seulement
observer que ces deux géomètres supposent a 1, sans le
dire explicitement, de manière qu'il est probable que quelque
commençant trouve des difficultés à comprendre le sens
d'une formule qui semble échapper à la loi d'homogénéité.

On peut ajouter que la formule (III) est encore vraie lorsque
la conique directrice de la polarité est une des hyperboles
équilatères suivantes :

x2 — y2 — a2 — x2 -J- f — a2

Gênes, 27 décembre 1910. Gino Loria.

1 Journal de Math, pures et appliquées, IIe sér., t. XI, 1866, p. 195.
8 Repertorium der höheren Geometrie, I. Hälfte, 1910, p. 444.
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