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SUR LA DETERMINATION
DE LA COURBURE D'UNE LIGNE PLANE

CONSIDEREE COMME

ENVELOPPE DE SES TANGENTES

En examinant la nouvelle édition allemande de I'excellent
Repertorium-der hoh. Mathematik de M. E. Pascar, dont deux
volumes ont récemment paru, j'ai remarqué le manque de
formules répondant a la question énoncée dans le titre de
cette Note. Or on a besoin de ces formules dans plusieurs
occasions, et comme je ne les ai pas trouvées dans les traités
que j’ai examinés, je me propose de les établir. Elles offrent
une application de la théorie classique des enveloppes, et
pourraient trouver place dans toute exposition scolaire des
applications géométriques du calcul différentiel.

1. — Soit
(1) | ofu,v) =0

I'équation plickérienne d’une courbe plane quelconque T';
cela signifie que cette courbe est 'enveloppe de la droite

(2) 4 ux + vy + 1 =

les parameétres u, ¢ étant liés par 'équation (1); I’équation
cartésienne de la courbe I' est le résultat de ’élimination
de u, v entre les équations (1), (2) et
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Si donc on pose pour abréger

09 0w
7 ;
(3) W =u v -+ Vo

on aura les expressions suivantes pour les coordonnées d’un
point quelconque P de la courbe T':

1 00 1

TS Wt YT W

|-&

() ,

Y

=4

u et ¢ étant liées par la relation (1). La normale & la courbe T
au point P(x, y) a évidemment pour équation (X et Y étant
les coordonnées courantes)

(5) (X — ) —u(Y —y) =0 ;

comme «, ¢ satisfont a I'équation (1), I'enveloppe de cette
droite a pour équation le résultat de I’élimination de u, ¢
entre les équations (1), (5) et

: ox oy 09 |
L (Y — hCA
‘ vbu ( Y+ ubu ou
(6) = § .
. o 0y 09
( ) vbv Tou oy - ov

Dans cette formule x, y sont données par les équations
(3), (4) et X, Y sont les coordonnées du centre de courbure C
de la courbe T relatif au point P(z, y), cela prouve que
VX—x)?2 4 (Y —y)? est le rayon de courbure que nous
cherchons. Or I'équation (5) donne

X.—.Q?_Yf-')'* R
73 - y ——‘/}L_Z_TI:—;?’
ou bien
(7) X_x:—;]iﬁ:, Yy
: Vu? + yut 2

par suite (6) devient-

Ry Oy
—_——_—— + u _Q_. —_ p?ﬁ,‘ b_tp
‘/uz - 2 ou o ou
=0
Ru oy ’
e + 1{A .—')- — Vb—‘x- ?2
Vu ¢ oy o0 Oy
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ou bien

ox 0y 09
‘ 3 ‘ 3 . ou - ou 7

o

R u—c}-9 p -
( bu+ bv)_ dx  OF 00

2 o B I L T B

u v 0

Dans le second membre il faut substituer a x, y leurs ex-
pressions données par les équations (3), (4); le déterminant
qui en résulte peut se transformer de maniére qu’il prenne
une forme plus simple; toute réduction faite, on trouve

o d%p g
. du?  dudy du
1 R (w4 ) de Do dp
- o do \23 | Ovdu OV oy
nw— 4+ y—
du Ew) |2 )
Q Otp .

a A

ou oy

C’est la formule qui résout la question que nous nous
étions proposée.

II. — Des calculs analogues, mais plus simples, per-
mettent de résoudre la méme question lorsqu’on connait les
expressions des coordonnées plickériennes d’une tangente
a la courbe considérée en fonction d’un paramétre ¢:

w=uf(t) , v = v(I) .
Dans ce cas, combinons I'équation
ux + vy +1=20
avec sa dérivée par rapport a ¢, c’est-a-dire
W+ vr=0;

sl on pose pour abréger

w o, v w , v
A= ) on aura A e ,
u/ , vf Zt" , "
et
’ ’
o u
(8) r=—x Y=73x
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x et y étant les coordonnées d’un point quelconque P de la
courbe T' considérée. L’équation (5) représentera encore la
normale en P a la courbe I'; pour en trouver 'enveloppe,
combinons I'équation (5) avec sa dérivée

o' (X — x) — W (Y — y) = v’ — wy’
Mais, si on a recours aux équations (7), on peut écrire

uv —u'v ' ,
— = va’ — wy”;

Vlt‘ V¥
et, en remplacant x, ¥ par leurs expressions (8), on trouve,
apres quelques caleculs,

3

(1) wo A — )

(v’ — u'v)®

relation qui sert a calculer le rayon de courbure de toute
courbe déterminée par les expressions des coordonnées
pliickériennes des tangentes en fonction d’un parametre

III. — Je vais finir par une application de la formule que
je viens d’établir. Considérons la courbe T' représentée en
cordonnées orthogonales comme il suit:

x=El), y=nrlt),
et sa polaire réciproque Il par rapport au cercle
' 2t 4 y? = a? .
La courbe II est 'enveloppe de la droite
x5+ — a? =0

dont les coordonnées pliickériennes sont

Y

lé:——b(—t) Vl_—-.q(t) .

2 ’

Pour en trouver le rayon de courbure Ry, on n'a qu’a
appliquer la formule (II); on trouve de la sorte

LOI#»D

o (&4 ) (" — )
R = .
o= A (5n" — £')®
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Or le rayon de courbure Rp de la courbe dont nous
sommes partis est donné par la formule suivante

3

=72 R
R (€% 4+ ")

Py

donc on a
L 1
2 p 2
R R — g2 &+ 0% . (52 + 1"
mnr tn’ — &'y

Remarquons a présent que, si p est 'angle que la tangente
en un point P de la courbe T' fait avec le rayon vecteur OP
on a

Eq” — &' _
VE + ) % + 07

sin p. =

par conséquent, la relation précédente devient

2

; a
oy Ry Rp = o
relation trés remarquable, découverte par A. ManNHEIM ! et
rappelée récemment par M. H. WieLerrNer?: il faut seulement
observer que ces deux géométres supposent @ =1, sans le
dire explicitement, de maniére qu’il est probable que quelque
commencant trouve des diflicultés a comprendre le sens
d’'une formule qui semble échapper a la loi d’homogénéité.
On peut ajouter que la formule (I1I) est encore vraie lorsque
la conique directrice de la polarité est une des hyperboles
équilatéres suivantes :

x"—g'?::ag, ——x"-{—y‘":a?.

Génes, 27 décembre 1910. o Gino Logria.

1 Journal de Math. pures et appliquées, 1le sér., t. X1, 1866, p. 195,
2 Repertorium der hiheren Geometrie, 1. Hilfte, 1910, p. 444%.
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