Zeitschrift: L'Enseignement Mathématique

Herausgeber: Commission Internationale de l'Enseignement Mathématique

Band: 13 (1911)

Heft: 1: L'ENSEIGNEMENT MATHÉMATIQUE

Kapitel: travaux de la Section de Mathématiques et d'Astronomie de

l'Association Française pour l'Avancement des Sciences.

Nutzungsbedingungen

Die ETH-Bibliothek ist die Anbieterin der digitalisierten Zeitschriften auf E-Periodica. Sie besitzt keine Urheberrechte an den Zeitschriften und ist nicht verantwortlich für deren Inhalte. Die Rechte liegen in der Regel bei den Herausgebern beziehungsweise den externen Rechteinhabern. Das Veröffentlichen von Bildern in Print- und Online-Publikationen sowie auf Social Media-Kanälen oder Webseiten ist nur mit vorheriger Genehmigung der Rechteinhaber erlaubt. Mehr erfahren

Conditions d'utilisation

L'ETH Library est le fournisseur des revues numérisées. Elle ne détient aucun droit d'auteur sur les revues et n'est pas responsable de leur contenu. En règle générale, les droits sont détenus par les éditeurs ou les détenteurs de droits externes. La reproduction d'images dans des publications imprimées ou en ligne ainsi que sur des canaux de médias sociaux ou des sites web n'est autorisée qu'avec l'accord préalable des détenteurs des droits. En savoir plus

Terms of use

The ETH Library is the provider of the digitised journals. It does not own any copyrights to the journals and is not responsible for their content. The rights usually lie with the publishers or the external rights holders. Publishing images in print and online publications, as well as on social media channels or websites, is only permitted with the prior consent of the rights holders. Find out more

Download PDF: 14.12.2025

ETH-Bibliothek Zürich, E-Periodica, https://www.e-periodica.ch

Les travaux de la Section de Mathématiques et d'Astronomie de l'Association Française pour l'Avancement des Sciences 1.

Congrès de Dijon, 31 juillet-5 août 1911.

Les travaux de la Section de Mathématiques et d'Astronomie du Congrès de Dijon ont été organisés par le président, M. Emile Belot, ingénieur-directeur des manufactures de l'Etat, à Paris, et A. Gérardin, de Nancy, secrétaire. Les nombreuses et intéressantes communications furent réparties sur neuf séances.

1. — Sur l'Essai de Cosmogonie tourbillonnaire, par M. E. Belot.

Le président de Section, M. Belot, présente son ouvrage de cosmogonie tourbillonnaire 2, où il a développé les théories et idées précédemment résumées dans les comptes rendus des congrès de Clermont-Ferrand (1908), de Lille (1909) et de Toulouse (1910). Il rappelle qu'en admettant un dualisme originel composé d'une nébuleuse amorphe qui aurait rencontré un tourbillon gazeux dans un choc analogue à celui d'une Nova, il a pu déduire la démonstration de plusieurs lois nouvelles du système solaire, dont la loi exponentielle des distances des planètes (analogue à la loi de Bode).

M. H. Poincaré a consacré près d'une leçon de son cours à la Sorbonne (1910-1911) à la discussion de cette hypothèse qui peut orienter les recherches astronomiques dans une voie nouvelle.

2. — M. Em. Belor fait ensuite une critique des méthodes employées en cosmogonie,

et où l'hypothèse implicite est toujours cachée, à savoir que l'attraction newtonienne est la seule force permettant de rendre compte des formes observées dans le système solaire. La physique moderne, avec ses corpuscules cathodiques, nous donne un exemple de masses animées de vitesses de l'ordre de la lumière et sur lesquelles la pesanteur agit sans pouvoir, d'ailleurs, modifier leur trajectoire. Il a pu en être ainsi à l'origine du monde. Puis M. Belot répond aux objections que M. H. Poincaré a faites dans son cours à la Sorbonne 1910-1911, ayant pour objet l'étude des hypothèses cosmogoniques à partir de Laplace; il fait voir que, dans la cosmogonie tourbillonnaire, les forces d'attraction n'ont pas à intervenir, sauf au voisinage de l'écliptique et que l'hypothèse dualiste, qui est la base de sa nouvelle cosmogonie, ne permet pas de prévoir, par un calcul d'attraction, que les masses du système planétaire se meuvent dans un même plan; au contraire, il est très facile d'aboutir à ce résultat en partant des formules nouvelles qu'il a établies.

3. — Enfin, M. Belot présente une communication très intéressante intitulée :

La genèse de l'atome et la distribution des raies spectrales déduites des lois du système solaire, — Des savants éminents comme MM. LORENTZ et

² GAUTHIER-VILLARS, 1911.

¹ Nous devons ces notes à l'obligeance de M. A. GÉRARDIN (Nancy).

L'Enseignement mathém., 13° année: 1911.

J.-J. Thomson ont cherché des schémas représentatifs de l'atome en l'assimilant plus ou moins à un système solaire. Le regretté physicien Ritz, en partant d'autres hypothèses, a obtenu une loi très générale caractérisant la distribution des raies dans les spectres de lignes. M. E. Belot montre comment peuvent se concilier ces hypothèses en partie contradictoires et comment la genèse de l'atome est analogue à la genèse tourbillonnaire du système solaire et permet de trouver les lois de Balmer et de Deslandres qui sont, pour l'atome, les lois analogues aux lois de distribution des planètes directes et rétrogrades.

La section de météorologie était, pour cet objet, réunie à la première section.

- 4. Sur les Notices de la Collection des Savants du Jour, relatives à M. Paul Appell et à M. Gabriel Lippmann, publiées par M. Ernest Lebon (Paris).
- M. E. Lebon résume les Notices sur la vie et les travaux de ces deux savants, l'un mathématicien, l'autre physicien. Il parle des beaux Mémoires du premier sur l'Analyse et de son Traité de Mécanique rationnelle; il cite les deux géniales découvertes du second, l'électrocapillarité et la photographie des couleurs par la méthode interférentielle. Il cite les appréciations que M. Gaston Darboux, secrétaire perpétuel, a portées sur ces ouvrages en les présentant à l'Académie des Sciences. M. G. Darboux rappelle que Helmoltz, lors d'un de ses passages à Paris, prit plaisir à signaler à l'Académie des Sciences M. G. Lippmann, qu'il avait vu à l'œuvre dans son laboratoire, comme un de ceux qui devraient sans retard être pourvus d'un enseignement magistral à la Sorbonne.
- 5. M. Ern. Lebon présente ensuite un mémoire sur une méthode élémentaire de décomposition d'un nombre en un produit de deux facteurs.

Pour décomposer 12 761 717, M. P.-F. Teilhet a indiqué la méthode suivante (Intermédiaire des Mathématiciens, quest. 2897, 1905, p. 74 et 201). Il écrit le nombre N sous la forme

$$N = a^{2} - b$$

$$N = (a + k)^{2} - (k^{2} + 2ak + b)$$

Il reste à trouver une valeur de k telle que le trinôme $k^2 + 2ak + b$ soit un carré.

Modifiant un peu le procédé de M. Teilhet, je suis arrivé à quelques résultats intéressants. Soit N un nombre entier non carré, ρ sa racine carrée à une unité près par défaut, r le reste. Appelant u un entier positif, on peut écrire

$$N = (\rho + u)^2 - (u^2 + 2\rho u - r)$$

Si le trinôme $u^2 + 2\rho u - r$ est un carré v^2 , le nombre N est la différence des carrés de deux nombres et, par suite, N peut être décomposé en un produit de deux facteurs qui sont

$$\rho + u - v$$
 et $\rho + u + v$.

Le nombre N doit être impair.

Appliquant cette méthode au nombre 13 717 421, décomposé par M. Кватснік (Sphinx-Oedipe, mai 1911), on trouve au second essai

$$\rho = 3 703$$
, $r = 5 212$, $u = 2$, $v = 98$; $13 717 421 = 3 607 \times 3 803$

On sait aussi (voir *Sphinx-Oedipe*, 1906, p. 55) que l'on aura u=2 pour les valeurs générales suivantes de N, par exemple

$$N = h^4 + 10h^3 + 33h^2 + 40h + 11$$

$$N = 16h^4 + 128h^3 + 360h^2 + 416h + 161$$

On obtient facilement l'égalité

$$u.f = \frac{1}{2} \left[(\rho - f)^2 + r \right]$$

qui permet de trouver plus rapidement que la méthode classique si un nombre N est composé ou premier, en y faisant f égal aux nombres premiers successifs inférieurs à ρ .

6. — M. G. Tarry, du Havre, présente une intéressante communication, à suivre, sur les imaginaires de Galois.

Le nouveau symbole j, représente la racine carrée d'un non-résidu quadratique quelconque.

Je ne considère que les imaginaires du deuxième ordre, racines des équations irréductibles du deuxième degré. Ces imaginaires de Galois sont nécessairement de la forme a + bj, j ne pouvant être égal à $\sqrt{-1}$ que dans les modules de forme 4p - 1.

Généralisation du théorème de Fermat : m étant un nombre premier, a et b n'étant pas tous deux à la fois divisibles par m, on a

$$(a + bj)^{m^2-1} - 1 \equiv 0 \pmod{m}$$

Racines primitives du corps quadratique. Elles sont toutes de la forme a + bj, a et b étant différents de zéro.

Recherche de ces racines primitives au nombre de φ ($m^2 - 1$).

- 7. M. Auguste Aubry, de Dijon, présente d'abord à la section un mémoire sur les nombres de Mersenne.
- M. A. GÉRARDIN s'est voué à terminer l'examen de la célèbre énigme des Nombres de Mersenne, dont se sont tant occupés nombre de mathématiciens du plus haut mérite. Aidé des travaux de ses prédécesseurs, il a attaqué la question par plusieurs côtés, dont l'un m'a paru devoir être revu dans tous ses détails, d'autant plus qu'il s'agissait là d'un théorème empirique que j'ai reconnu être cas particulier d'un théorème donné par Fermat dans une lettre à Frénicle et, en même temps, une généralisation d'un autre théorème d'Euler.

J'expose complètement la méthode de M. A. Gérardin en démontrant ce qui était resté non prouvé et je termine par quelques réflexions sur la méthode de Fermat que j'estime tout à fait analogue à celle de M. A. GÉRARDIN.

8. — M. A. Aubry, de Dijon, présente ensuite une note intitulée *Problèmes concrets et Problèmes abstraits*.

CATALAN a dit quelque part, des problèmes concrets, que c'est l'art d'ensevelir, sous de bien inutiles complications, des choses souvent très simples. On pourrait, sans pousser l'examen bien loin, rétorquer facilement cette boutade et dire, avec d'autres éminents savants, que les problèmes sont les compléments de la science. En effet, ils l'impriment dans la mémoire, en rappellent les principes, habituent au classement des idées et en préparent les applications ultérieures théoriques ou pratiques.

Je reconnais qu'il y a déjà trop de recueils de problèmes; mais combien y en a-t-il qui ne sont que la répétition de questions déjà connues? On intéresserait davantage les élèves en multipliant les problèmes concrets.

Je donne quelques problèmes de ce genre relatifs aux combinaisons et à la théorie des nombres.

9. — M. H. Chrétien, chef du service astrophysique de l'Observatoire de Nice parle sur la photographie astronomique à l'Observatoire du Mont Wilson (Californie).

Description du télescope de 1^m50 de diamètre et de 7^m50 de foyer, construit par le prof. G.-W. RITCHEY pour l'Observatoire solaire de l'Institut Carnegie. Mode opératoire et précautions prises pour assurer un guidage précis à moins de 0^{mm},01. Présentation de 18 photographies inédites de nébuleuses et d'amas stellaires. Considérations sur l'évolution des nébuleuses déduites de la statistique. [Extrait d'un Rapport de Mission adressé à l'Université de Paris (Observatoire de Nice)].

10. — Courbure des raies spectrales produites par un train de prismes et de réseaux orientés d'une façon quelconque, note présentée par M. H. Chrétien, de Nice.

Lorsque l'on veut exprimer rigoureusement la trajectoire d'un rayon lumineux dans un spectroscope, on arrive à des expressions très compliquées. Soient O une origine prise au foyer du collimateur et Ox et Oy deux axes rectangulaires situés dans le plan focal; désignons par Ω l'image de O et par $\Omega X \Omega Y$; les images de Ox et Oy, en lumière monochromatique; X et Y sont des fonctions de x et y; si Oy est parallèle aux arêtes des prismes, on a d'ailleurs Y = -y. L'auteur fait connaître l'expression de X en fonction de x et y, pour un développement en série, dont les coefficients dépendent des pouvoirs amplifiant et dispersif du spectroscope et de leurs dérivées.

11. — M. H. Chrétien expose la meilleure position à donner aux prismes des spectroscopes pour obtenir le maximum de luminosité ou de définition.

Si l'on tient compte de l'absorption de la lumière dans la matière même des prismes, on trouve que la luminosité de l'instrument augmente un peu lorsqu'on déplace légèrement le prisme de manière à découvrir le collimateur; cette remarque a été faite par le Prof. J. Hartmann, de Potsdam. Il en est de même du pouvoir de résolution. Mais les calculs des positions optima sont très pénibles; comme cette position ne dépend que d'un paramètre, on peut dresser une petite table qui la fasse connaître immédiatement; c'est ce qui a été fait dans le présent mémoire.

12 et 13. — M. Henri Chrétien présente enfin les deux intéressantes communications suivantes :

Tables à cinq décimales des polynômes X_n de Legendre. — Propriétés principales, formules, application.

Table des racines des dix premiers polynômes.

Table complète des dix premiers polynômes de 0,01 en 0,01.

Table à cinq décimales des dix premiers polynômes de 0,001 en 0,001.

Champ magnétique d'une sphère conductrice animée d'un mouvement de rotation. — Cas où la vitesse angulaire est indépendante de la latitude : distribution de la charge. Cas où la vitesse angulaire dépend de la latitude : champ magnétique moyen du soleil.

Rotation d'une sphère fluide sans viscosité.

14 et 15. — M. Léon Aubry, de Jouy-les-Reims, adresse deux mémoires intitulés Sur les diviseurs des formes quadratiques et Démonstration du théorème de Bachet

Notre jeune collègue n'ayant malheureusement pu assister au Congrès, M. Aubry, de Dijon, a bien voulu se charger de la présentation de ces deux intéressantes notes. Il semble qu'en poursuivant dans cette voie, de curieux résultats doivent être rencontrés. Je citerai par exemple la méthode de M. Léon Aubry qui permet de décomposer en quelques lignes de calcul des nombres relativement grands en une somme de deux carrés. Ainsi

$$858\,001 = 924^2 + 65^2 .$$

Le nombre 858 001 est facteur de $2^{52} + 1$. Ceci me permet, à mon tour, de trouver en quelques minutes la décomposition en une somme de deux carrés de 308 761 441 autre facteur de $2^{52} + 1$, et enfin du nombre $2^{52} + 1$ lui-même, de plusieurs façons. Ainsi,

$$308761441 = 3055^2 + 17304^2$$
.

J'insiste sur ce point, car cette méthode permettra d'achever rapidement le tableau que j'ai presque achevé des nombres $2^{2x} + 1$ et de leurs diviseurs sous la forme $x^2 + y^2$. Je citerai, par exemple, parmi les nombres $< 2^{100} + 1$, le nombre

 $2^{64} + 1 = 18446744073709551617 = 4046.803256^2 + 1438793759^2$ nombre décomposé en 1880 par Landry en deux facteurs premiers

$$2^{64} + 1 = 274177 \times 67280421310721$$
.

Il faudra donc étudier ce travail de près.

- 16. M. Gilbert présente à la Section de mathématiques et à celle de météorologie réunies dans la salle des projections, une note intitulée Les tourbillons aériens et leur application à la prévision du temps.
- 17. M. L. Montangerand, astronome à l'Observatoire de Toulouse, présente des Suggestions sur la carte photographique internationale du ciel, et Idées nouvelles pour la découverte des étoiles variables.

Emploi de la chambre claire pour la correction des reproductions des clichés de la carte et l'examen comparatif ultérieur des originaux.

Mesure systématique des étoiles doubles des clichés de la carte.

Découverte d'étoiles variables par examen des traînées obtenues par déréglage du mouvement d'horlogerie de l'instrument photographique des cercles stellaires extra-focaux. Conditions à remplir pour la reconnaissance rapide des étoiles variables des amas globulaires sur des clichés : rapidité de pose, avec grande sensibilité des plaques. et comparaison d'images séparées par des intervalles de quelques heures et juxtaposées sur le même cliché.

- 18. M. Broca, de la Section physique, remercie la Section mathématique au sujet de la subvention que celle-ci lui a accordé pour un perfectionnement apporté aux axes des théodolites, et fait connaître le résultat de ses travaux.
- 19. Miss Craig présente un mémoire de mécanique céleste et étudie la cause du mouvement spiral dans les nébuleuses, les lois d'impulsion dans les espaces dits stellaires, et l'origine des nébuleuses.
- 20, 21 et 22. M. A. GÉRARDIN, de Nancy, présente à la Section trois communications; voici le résumé de la première :

Ayant une solution de l'une des équations indéterminées

$$ax^{2} + bxy + cy^{2} = kz^{n}$$

$$ax^{3} + bx^{2}y + cxy^{2} + dy^{3} = kz^{n}$$

$$ax^{4} + bx^{3}y + cx^{2}y^{2} + dxy^{3} + ey^{4} = kz^{n}$$

avec n = 2, 3 ou 4, il est très facile d'obtenir des solutions générales du troisième degré.

Supposons connue, par exemple, une solution

$$a\alpha^2 + b\alpha\beta + c\beta^2 = h\gamma^2$$

de

$$aX^2 + bXY + cY^2 = hZ^2.$$

Il suffit de poser

$$X = \alpha + mx$$
, $Y = \beta + my$, $Z = \gamma + mf$

pour avoir m, après division par m

$$m = \frac{2h\gamma f - 2(a\alpha x + c\beta y) - b(\alpha y + \beta x)}{ax^2 + bxy + cy^2 - hf^2}$$

et l'on en tire immédiatement

$$X = c\alpha y^{2} - (a\alpha + b\beta)x^{2} - h\alpha f^{2} - 2c\beta xy + 2h\gamma fx$$

$$Y = a\beta x^{2} - (c\beta + b\alpha)y^{2} - 2a\alpha xy - h\beta f^{2} + 2h\gamma fy$$

$$Z = a\gamma x^{2} + c\gamma y^{2} + b\gamma xy + h\gamma f^{2} - fx(2a\alpha + \beta b) - fy(2e\beta + b\alpha).$$

De nombreuses et intéressantes applications peuvent en être déduites; je n'en citerai qu'une. En faisant $\beta=1$, h=1, nous retrouvons notre condition fondamentale de la décomposition des nombres

$$aX^2 + bX + c = Z$$
.

La solution connue est

$$a\alpha^2 + b\alpha + c = \gamma^2$$

a est alors la solution maxima, et il suffira d'avoir Y = ± 1 pour trouver immédiatement les facteurs cherchés. Cette condition peut s'écrire

$$(\gamma y - f)^2 - a(x - \alpha y)^2 = \mp 1$$
.

J'ai résolu d'aussi simple façon les huit autres équations types considérées. La deuxième communication traite de la Geometria dei Tessuti, écrit par Ed. Lucas en 1880. J'ai été assez heureux pour trouver cet article rare dans la bibliothèque de M. Laisant, qui a bien voulu me le confier avec plusieurs autres, ce dont nous le remercions ici sincèrement.

Le mémoire d'Ed. Lucas dont, grâce à l'active et dévouée collaboration de M. A. Aubry, de Dijon, nous avons actuellement la traduction complète, verra prochainement le jour.

J'ai profité de cette communication pour rappeler à nos collègues que je cherche à réunir tous les articles, mémoires, tirés à part de tous les arithmologues connus et inconnus, et que je compte sur leur complaisance pour me faire parvenir, même en communication, tout ce qu'ils connaîtront sur ce sujet. Je rappelle ainsi que M. C.-A. Laisant a bien voulu me promettre les archives d'Ed. Lucas, et que M. Perrin me communiquera d'intéressants renseignements sur le même sujet; que M. le Dr Pein m'a fait parvenir plusieurs lettres de Proth, arithmologue autodidacte qui a correspondu avec Ed. Lucas. En présence de ces résultats palpables, et des renseignements que la théorie des nombres est heureuse de ne pas voir tomber dans l'oubli, je constate à regret que certaines portes restent obstinément fermées. Je signalerai ainsi les archives de M. Le Lasseur, de Nantes (mort en 1894); nous serions très reconnaissants aux personnes qui pourraient nous faire une communication sur ce sujet, ainsi que sur d'autres professionnels ou amateurs de la théorie des nombres (ils sont malheureusement assez rares).

Je rappelle en terminant que j'ai déjà publié diverses traductions, dues à M. Fitz-Patrick, d'articles anglais ou américains modernes sur la décom-

position des nombres: Lawrence, Décomposition des nombres en facteurs; Cole, Sur la décomposition des grands nombres $(2^{67}-1)$; Lawrence, Détermination de certains nombres premiers (de 7 à 12 chiffres); Carmichaël, Une table des nombres multiples parfaits; Dr Morehead, Note sur des facteurs des nombres de Fermat (nombre premier $5.27^{75}+1$); Dr Morehead et A.-E. Western, Note sur les nombres de Fermat. — J'en ai d'autres en manuscrit, ainsi que des articles rares de savants français et étrangers, et j'insérerai avec plaisir dans Sphinx OEdipe les communications qui me seront faites.

Ma dernière présentation concernait la question à l'ordre du jour.

23. — Erreurs de raisonnement de mathématiciens connus (question à l'ordre du jour). M. Belot indique la querelle des quadrateurs et des simplistes; M. A. Aubry, de Dijon, cite plusieurs erreurs historiques intéressantes; M. A. Gérardin cite, entre autres, une erreur de Viète. — Un rapport sur la question sera présenté au prochain congrès; cette question forme d'ailleurs une réponse à I. M., 2855 (voir E. M., 1940, p. 417).

24 et 25. — M. Maire présente Deux lettres de Alexandre de Humboldt à François Arago.

Ces deux lettres, dont l'une est datée du 28 janvier 1836 et l'autre sans date, témoignent, en plus de l'extrême amitié que le grand savant allemand portait à Arago, aussi de l'intérêt que prenait de Humboldt aux sciences astronomiques. Il signale, dans la lettre non datée, une Notice que Bessel, astronome à Kænigsberg, avait préparée vers 1836, mais que cet astronome n'avait pas encore publiée. Cette étude concerne tout spécialement la comète de Halley et les oscillations de la queue. Un extrait assez long de ce Mémoire figure dans cette lettre.

La seconde, celle qui porte la date du 28 janvier 1836, traite à peu près du même sujet.

Ces deux lettres, après recherches faites, paraissent inédites; néanmoins une réponse à une lettre écrite à Berlin, pourra seule confirmer cette opinion.

Puis la Bibliographie de Blaise Pascal. Partie scientifique. — Ce travail, pour la publication duquel l'Association pour l'Avancement des Sciences a bien voulu apporter son concours par une subvention, est à peu près terminé maintenant. Les Tables des matières, la préface et l'introduction restent seules à achever.

Mais il serait utile, dans l'intérêt de l'histoire de la science au XVII^e siècle et de la question Pascal en particulier, de faire des recherches précises dans les nombreux papiers de Cavalieri del Pozzo qui se trouvent en grande partie en Italie, ainsi que dans ceux de Leibniz déposés à la bibliothèque de Hanovre.

Il serait à souhaiter que l'Association française pour l'Avancement des Sciences voulût bien, par son puissant concours, favoriser ces recherches.

26. — M. Pellet présente une note Sur la série de Newton.

Soit F(x) une fonction holomorphe à coefficients réels. Posons $\frac{F(a)}{F'(a)} = u_0$,

a étant une quantité réelle, et désignons par M le module maximum de F''($a+2\theta u_0$) lorsque θ varie entre -1 et +1: M \leq | F''($a+2\theta u_0$) | . Si

(1)
$$| F'(a) |^2 - 2M | f(a) | \ge 0$$
,

l'équation F(a+h)=0 a une racine comprise entre $-2u_0$ et $+2u_0$, donnée par la série de Newton. Les termes de cette série ont des modules au plus égaux aux termes correspondants de la série de Newton qui donne la plus petite racine de l'équation du 2^e degré, dont le premier membre offre deux variations :

$$| F(a) | - | F'(a) | u + \frac{M}{2} u^2 = 0$$
.

Ainsi pour l'équation de Képler :

$$u - e \sin (m + u) = 0 ,$$

e étant compris entre 0 et 1, faisons a = 0; on a

$$F(0) = -e \sin m , \quad F'(0) = 1 - e \cos m , \quad F''(u) = e \sin (m + u) ;$$
 par suite $M \le e$. La condition (1) devient

$$(1 - e \cos m)^2 \ge 2e^2 |\sin m|$$
.

Elle est satisfaite quel que soit m si

$$1 - 2e - e^2 > 0 ,$$

$$e \le \frac{1}{2} .$$

et même si

27. — M. E.-N. Barisien présente une note Sur l'inscription dans un triangle du triangle équilatéral minimum.

La solution géométrique de ce problème est connue.

Nous présentons une solution analytique de la question, qui a l'avantage de mettre en relief (ce que ne donne pas la construction connue), une valeur curieuse de la longueur du côté du triangle équilatéral minimum A'B'C' inscrit dans un triangle ABC, par la propriété suivante : Si l'on construit du côté extérieur au triangle, le triangle équilatéral BCA1, et si $AA1 = \alpha$, le côté x du triangle équilatéral minimum est

$$x = \frac{2S}{\alpha} = \frac{ah_a}{\alpha} ,$$

S étant l'aire de ABC.

Ce qui revient à dire que : Le côté x est une quatrième proportionnelle au côté a, à la hauteur correspondante h_a et à la distance AA_1 .

28. — M. Litre envoie un mémoire sur la Trajectoire et mouvement du pendule de Foucault à chacune de ses oscillations. Dissymétrie des battements d'Est en Ouest et d'Ouest en Est.

La Section tient à remercier les dames, particulièrement M^{11e} Bulan, qui ont bien voulu assister à une partie de ses travaux, et aux excursions organisées le 3 août au Val Suzon, et le 4 août

chez MM. Marchal, filateurs à Trouhans, et chez MM. Jacob, Delafon & Cie à Belvoye et Pouilly. Nous remercions ici ces Messieurs pour leur cordiale réception.

La Section remercie à nouveau M. Balland, le sympathique bibliothécaire de l'Université, pour les facilités qu'il a bien voulu

nous accorder.

M. A. Gérardin a organisé deux séances de projections et présenté diverses collections de vues des congrès précédents, et une série de positifs colorés et en relief pris dans ses voyages en

Italie, Suisse, Belgique et autres pays.

M. E. Lebon a vivement remercié notre président M. Belot et M. A. Aubry; de plus, M. Lebon a été assez heureux pour obtenir, à l'assemblée générale, le maintien de la date habituelle. Le changement aurait été, cette année, désastreux, puisque le Ve Congrès international des Mathématiciens aura lieu à Cambridge du 22 au 28 août.

Le prochain Congrès se tiendra à Nîmes. Le président des Sections I et II sera M. Ern. Lebon; le secrétaire M. A. Gérardin.

Société mathématique suisse.

2º Réunion; Soleure, 1er août 1911.

La Société mathématique suisse a tenu sa 2° réunion ordinaire à Soleure, le 1^{er} août 1911, sous la présidence de M. le Prof. R. Fueter (Bâle), comme section de la 94° Réunion de la Société helvétique des Sciences naturelles.

Dans sa séance administrative, la Société a confirmé pour 1912 le comité actuel, composé de MM. R. Fueter (Bâle), H. Fehr (Genève) et M. Grossmann (Zurich). Sur la proposition de MM. les vérificateurs des comptes, MM. Jaccottet (Lausanne) et Meissner (Zurich), elle a approuvé le rapport du trésorier; les recettes se montent à Fr. 900,75, les dépenses à Fr. 236,25, d'où un solde créditeur de Fr. 664,50. Le nombre des membres est actuellement de 112 dont 25 membres à vie.

L'assemblée décide ensuite de tenir une réunion extraordinaire à *Berne*, en décembre 1911; puis, sur la proposition du Comité, elle confère le titre de *membre honoraire*

1° à M. le Prof. C.-F. Geiser (Zurich) qui, par son activité à l'Ecole polytechnique fédérale, par ses remarquables travaux dans le domaine des surfaces algébriques, et par ses relations très étendues avec les mathématiciens du pays et de l'étranger, a largement contribué au développement des mathématiques en Suisse;

2° à M. le Prof. H. Kinkelin (Bâle), un élève du grand mathématicien suisse Steiner, qui s'est particulièrement distingné dans les mathématiques des assurances.