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4 Y. SAWAYAMA

St dans la derniére égalité on met a Ta place de ZSXP*Fexpres~. .

sion donnée par le lemme précédent, on a

—2 1
31G” — £Ia® 4 2° I 4R
Donc: '

2IN? + R? 2 2Rr = %—2(12 + 2r* - 4Rr + gR“' — %Za” .

2

Dou : IN2 — (—;-R e r) , par suite IN _—_%R .

Donc les deux cercles A'B’C’ et XYZ se-touchent, c.q.f. d.

Corollaire. — En considérant le cercle inscrit dans I'angle A,
on a:
%(a2~}—b2—}—c")—|— r? + éRr:;(b—{—cia)“’.
-

Pour le voir, il suffit de comparer le résultat obtenu dans le
lemme précédent avec la formule suivante :

AR =3rt 4+ (p— b+ (p — ¢)* 4+ (p — a)? ou p?.

9¢ Démonstration.

IX. — Dans cette démonstration, nous supposons que les seg-
ments des droites AC et AB soient affectés de signes et soient
AC, AB les sens positifs des segments. ‘

Fig. 9.

Représentons respectivement par a, b, ¢ les trois cdtés BC, AC
et AB du triangle ABC; soient E le pied de la perpendiculaire
abaissée du sommet.B sur le coté opposé et, Q et R les points de
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rencontre respectifs de 'axe radical des deux cercles ABC et XYZ

avec AC et AB. (Flg 9.)
On a alors d’aprés une propriété de l'axe radlcal

QB.QE=QY" ou QB.(QB'— EB)=(QB — YB"?,

d’ou | ,
QB’. 2YB’ — EB’) = YB’*.
Par suite
QB YB "
YB’ — 9YB’ — EB’
mais
'1 y
YB = ,IF a (2)
De plus:
2. EB'  =a? —c* = (a + ¢)la —¢) =2(F a + ¢). YB’
d’ou '
YB® b
EB T Fa+tc
donc:
YB’ - b @)
2YB" —EB’ ™~ Fa-+ 20 —c’
Des relations (1), (2), (3), on tire:
1
- B’
OB/ ~_ 21) ou A
1 1
§(+a—c) §(+a+2b—c)
d’ou '
QB  Fa—c
AB" T Ta+2b —c¢
Donc: ,
AQ  AB’— QB __Fa—b ,
CQ = (QB ¥AB)— b —¢ (%)

En échangeant les segmenté de la droite AC et les segments
correspondants de la droite AB, on aura:

@_ia——c__c:‘;a J (5
BR™ ¢—b “b—c¢" )

Appelons maintenant Q' le conjugué isotomique du point Q par
rapport au cété AC du triangle ABC et R’ le conjugué isotomique
du point R par rapport aux c6tés AB du méme triangle; soit K le
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pomt ou la droite Q’R’ coupe la droite BQ; on a d’apres le théo-
reme de Ménélaiis :

BK QQ’ AR’ .,

QK "AQ "BR —

et comme

QQ" —CQ+4+ CQ' CQ -+ AQ AR’ BR

AQ’ — — CQ — CQ ' BR” — AR °

On tire des relations (4) et (5)

BK Fa—c b — ¢
QK b —¢ "IXa-+c

=1 ,
d’ou :

=

clw
= =

Donc K est le milieu du segment BQ.

De méme la droite Q'R’ rencontre le segment CR en son milieu.

Si ensuite on affecte de signes les perpendiculaires abaissées
des trois points A, B et C sur la droite Q'R’ et qu’'on les repré-
sente par L, M et N, on a en remarquant (4) et (5):

L M N
b—¢ ¢cxXa Xa—>b"
Mais
a.b—c)+b.(cFFa +¢c.(+a—b)—=0,
d’ou

+a. L 4+b.MLe. N=0.

Donc la droite Q" R’ passe par le centre moyen des sommets du
triangle ABC pour multiples == «, b, ¢, ¢’est-a-dire parle centre |
du cercle XYZ.

Donc, la droite QR est tangente au cercle XYZ, car si 'on sup-
pose que QR ne soit pas tangente au cercle XYZ et que la tan-
gente (autre que AC) menée du point Q au cercle XYZ rencontre
la droite AB en un point R”, les milieux des deux segments BQ
et CR” et le point I seront, comme on sait, en ligne droite; de
plus, puisque, comme on vient de le démontrer, le milieu du seg-
ment BQ, celui de CR et le point 1 sont aussi en ligne droite et
que le milieu du segment BQ et le point 1 ne coincident pas, ces
deux points déterminent une droite et le point | sera situé sur la
droite passant par le milieu des deux segments CR et CR”, c¢’est-
a-dire sur A’B’, ce qui est évidemment contraire a la vérité.
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Corollaire 1. — P, Q, R étant les points ou la tangente com-
mune au cercle des neuf points A’B’C’ d’un triangle ABC et au
cercle inscrit ou exinscrit XYZ, coupe les trois cOtés de ce triangle
et P/, Q’, R’ les conjugués isotomiques de P, Q, R par rapport a
ces cOtés, la droite qui passe par P’, Q’, R’ passe aussi par les
milieux des diagonales du quadrilatere complet que forment les
trois cotés du triangle et la tangente commune précédente et par
I'un des points de Nagel du triangle. .

Démonstration: On a déja démontré que la droite Q' R’ passe
par les milieux des segments BQ, CR etle centre [ du cercle XYZ;
et puisque 'anti-complémentaire du point I est un des points de
Nagel, il suffit de prouver ici que Q'R’ passe par le centre de gra-
vité G du triangle ABC.

Or, de ’
(b —c)+ (cFa)+ (Fma—b) =10,
on tire \

LA+MAN=O0.

Donc la droite Q' R’ passe par le centre moyen des sommets du
triangle ABC pour les multiples (chacun vaut 1), ¢’est-a-dire par
le point G.

Corollaire 11. — Les rapports des segments portés sur le c6té AC
du triangle ABC sont: '

QC Q' Q QA

/)~——cmc__|_a:j_—a—/2'

Y. Sawavama (Tokio).
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CGommission internationale de I'enseignement mathématique.

La prochaine réunion de la Commission aura lieu a Milan, au
commencement d’octobre 1911. La date et le programme seront
publiés dans un prochain numéro.

Etats-Unis.

La sous-commission américaine vient de pu-

blier le 3" fascicule de son Bulletin. 11 est consacré & un rapport

préparatoire concernart la préparation du corps enseignant des
colleges et des universités : N° 3. Provisional Report of the Sub-

L’Enseignement mathém., 13¢ année ; 1911. 4
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