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THEORIE DE LA MESURE 377

A'M, avec la perspective de Az, par Q, Q; les intersections
de A,M,, A,M; avec la perspective de A'r, on aura comme la
perspective de ¢ est a 'infini

TN TN te
A1Q. A1Q - A1Q1 A1Q1 = C

et comme les droites A,Q,, A;Q; sont paralléles, le lieu du

point M, est une conique.
G. Variron (Besancon).

SUR UNE THEORIE DE LA MESURE

A propos d’un article de M. G. ComBEBIAC.

Dans son étude sur une théorie de la mesure publiée dans 1’/fn-
seignement mathématigue du 15 mars 1910, M. G. ComBEBIAC con-
sidere les fonctions F («, y) possédant les propriétés suivantes :

1° F(z, y) est continue et croissante comme fonction de y, con-
tinue et décroissante comme fonction de x; il s’ensuit qu’elle est
encore continue comme fonction des deux variables 2 et y.

2° Les valeurs de F(x, y) et de F(x, z) déterminent la valeur
de F(y, z).

En supposant de plus que la fonction F (2, y) posséde des déri-
vées premieres continues, M. Combebiac établit qu’elle peut se
mettre sous la forme

- , ‘1){ flo) — [ |,

ou @ et f'sont des fonctions continues, croissant avec leur argu-
ment. |

Je me propose de démontrer ici, comme M. Combebiac le pré-
-sume, que ce résultat est indépendant de I'existence des dérivées
de I (z, y).

1. — Si nous ne considérons des valeurs de » que celles qui
sont comprises dans un certain intervalle 7,, et des valeurs de y
que celles qui sont comprises dans un certain intervalle i,, x est
une fonction continue de F et de y, croissante comme fonction
de y, décroissante comme fonction de F.
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En effet, si cette fonction n’était pas continue, on pourrait dé-

/"

terminer une telle suite de valeurs 2, 2", 2/, ... possédant une
. s L p
seule valeur limite x,, et une telle suite de valeurs y’, y", ", ..

possédant une seule valeur limite y,, que
lim F (™ | v™) = F(x, , y) ,

ou 2, serait une valeur différente de z,, ce qui est absurde,

pu1sque d’autre part lim F( , y ) doit étre égale a F(x, , y,.

Cette propriété établie, choisissons deux nombres arbitraires a
et 6. Il existe un intervalle 7, contenant b, tel que, le nombre g

étant arbitrairement choisi dans i,, on peut déterminer un nom-
bre a satisfaisant I’égalité

Fla,f) =F(a,b) =7 . | (1)

Soit " un nombre variable différant suffisamment peu de y, et
tendant vers y. 11 détermine un nombre g’ tendant vers 8, et un
nombre b’ tendant vers b, tels que

Fla. )= Fla,b') =1+ . 2)
Des égalités (1) et (2) nous concluons
F(E.p)=F(, b,
ou en passant a la limite
FiB,B) = Fi(b.b) .

C’est dire que le nombre arbitraire 4 est contenu dans un inter-
valle 7, , dans lequel I (x, x) est une constante. Donc F (x , z) est
une constante dans tout le continu numérique. Désignons cette
constante parj

2. — Choisissons arbitrairement deux nombres d, et d,, et dé-
terminons une série de nombres

vy deg,d_y, dy, dy. dy, ...,

se succédant dans leur succession naturelle, et satisfaisant la
relation :
Fid, . d, ) =Fd . d)=y.

Cette série, prolongée autant que possible de chaque coté, ou
d’ailleurs elle peut étre trouvée finie ou infinie, sera desmnee
par o. |
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Entre d, et d, il existe un nombre di , défini univoquement
par la relation 2 ,
F(do . dl) — F((]_l_, dl)

2 2

Les nombres d, et d; définissent une série ¢’ :
2

pxe g @ §*d—1,’d 1,610,(11, dlsd:z._,

2 2 2 2

contenant les éléments de la série o, et telle qu'on a pour chaque
dn .

2
F(d,, dyy1) = Fidy, di) =+ .

9 2 D)

Si ¢ ne posséde pas de premier élément, ¢’ n’en possede pas
non plus. Si, au contraire, ¢ posséde un premier élément, c’est ou
le premier, ou le second élément de ¢’

Si ¢ ne possede pas de dernier élément, ¢’ n’en possede pas non
plus. Si, au contraire, ¢ posséde un dernier élément, c’est ou le
dernier, ou 'avant-dernier élément de ¢’.

En opérant sur ¢’ comme sur ¢, on obtient une série ¢”:

'yd 31d«5’d-—1vd3)d1061.—_1‘761016]11(‘]1’

ry T2 4 4 2

contenant les éléments de ¢’, et telle qu'on a pour chaque d, :
b
F(d.l_f . dn 1) pum— F(C]O y dl) pum—— V" .

4 4 4

En répétant la méme opération un nombre infini de fois, on
obtient un ensemble e, composé des nombres d, appartenant a
Uensemble des séries ¢im . o

3. — L’ensemble e possédant au moins une valeur limite finie,
on peut faire tendre une suite d’'intervalles (d. , duy1) vers une

27]1 2/71

seule valeur limite finie. Par conséquent lim ") =, et toute
suite d’intervalles (. , duq1), dont chaque terme fait partie du
27}l 2/)1
terme précédent, tend vers une seule valeur limite finie.
De plus, I’ensemble e ne peut pas posséder de limite supérieure
I, puisque celle-ci entrainerait I'existence d’un nombre I/ supé-
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rieur a [ et d’un entier positif p tels que F (€, 0) = V‘P), de sorte
que [ serait, comme [ , point limite de 'ensemble e.

Donc lensemble e est partout dense dans le continu numérique.
4. — Nous définissons une fonction f(#) de la maniére suivante :
Si x est un nombre d, de 'ensemble e, f(x) sera égal & I'in-

;})IZ
. n . . , . . .
dice — . Si, au contraire, x n’appartient pas a e, toute suite de
9m ’ ’ ’

nombres appartenant a e et tendant vers 2, aura la méme valeur
pour limite des indices, et ¢’est cette valeur limite que nous assi-
gnerons a f(z).

Alors f(x) est une fonction continue et croissante de x.

Par conséquent F(x, y) est une fonction continue de fly) et de
[1x), croissante comme fonction de fly), decroissante comme fonc-
tion de f(x).

5. — Soient «,, y,, 2,, ¥y, quatre nombres arbitraires satisfai-
sant la relation

[l — flasl = flrd — [l (3)
Soient a7, 27, &7, ...y a,, 2,2y, oy, yr, Yy, ... des suites

de nombres appartenant a e, et tendant la premiere vers «,, la
seconde vers .z, , la troisieme vers 7, .

Déterminons ) de maniere que
1000 =ty = 037 — fra™ (4

Alors y!) appartient & e, et la relation (4) entraine celle-ci :

U B G4 N . | (r)
F('7(2 ’32 )_l (.1‘1 ? WI )
s ;. ’ ” m i
Comme d’autre part la série 7., 7., 7:, ... tend vers y,, on a,
en passant a la limite : :
F (s Yol = F(Ii ’ j'i) . (5)

Par conséquent 'égalité (3) entraine 1'égalité (5); c’est dire que
F (x, y) est une fonction de f(y) — f(x) seulement.

En combinant ce résultat avec la propriété déduite dans le §
précédent, nous concluons : '

F (x, y) est une fonction continue et croissante de f\y) — flz).

C.Q.F.D. L.-E.-J. Brouwer (Amsterdam).
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