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376 G. VA LIR O N

(ce qui nécessite que T. soit une hyperbole), on prendra un
plan auxiliaire II" coupant H suivant une droite D' parallèle
à une tangente à I\ et on choisira ce plan de façon que la

perspective de T sur lui soit une ellipse, en projetant cette
ellipse sur TT on aura la perspective de T qui sera bien une
conique.

II. — Méthode des projections.

7. — Le théorème I (3e partie) et le théorème correspondant

pour la parabole sont un cas particulier du théorème
connu :

Les rapports anharmoniques cles deux faisceaux de droites
ioignant deux points d'une conique à quatre autres points de

la conique sont les mêmes, théorème évident pour le cercle
et qui s'étend aux coniques par projection (théorème de

Dandelin).
En effet, en joignant le point A aux points A, M, M,, xA',

et le point A' aux mêmes points on aura, en coupant les
deux faisceaux obtenus par les tangentes en A' et A

(A, Q, Qlf oo) (oo Q', Q;, A')

d'où
ÀQ • A' Q7" ÂQ; Â^Q; - Cte

Les théorèmes inverses se déduiront comme précédemment1,

mais le théorème sur la perspective d'une conique
pourra se démontrer de la façon suivante :

Soit A l'intersection du plan n de la conique T avec le plan
parallèle à II' mené par S, et soit t un point de la droite A
extérieur à T, A et A' les points de contact des tangentes
menées par ce point, M et M' deux points quelconques de T,
on a

A'(TMM'A) A(A'MM'T)

En désignant par Ain A[, les projections de A, A',
M, M', par Q, Qt ; les points d'intersection des droites A^M,,

1 Le théorème sur le milieu des segments interceptés par une hyperbole et ses asymptotes
sur une droite peut se déduire du théorème de Pascal.
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AiMJ_ avec la perspective de At, par Q, QX les intersections
de AXMX, A/Mi avec la perspective de A'r, on aura comme la

perspective de r est à l'infini

Ä/Q • Â[Q' Â[Q[ Cte

et comme les droites A^^ A^Qi sont parallèles, le lieu du

point Mt est une conique.
G. Valiron (Besançon).

SUR UNE THÉORIE DE LA MESURE

A propos d'un article de M. G. Combebiac.

Dans son étude sur une théorie de la mesure publiée dans
VEnseignement mathématique du 15 mars 1910, M. G. Combebiac
considère les fonctions F (x, y) possédant les propriétés suivantes :

1° F (.r, y) est continue et croissante comme fonction de y,
continue et décroissante comme fonction de x ; il s'ensuit qu'elle est
encore continue comme fonction des deux variables x et y.

2° Les valeurs de ¥(x, y) et de F (.r, z) déterminent la valeur
de F(ty, z).

En supposant de plus que la fonction F (x, y) possède des dérivées

premières continues, M. Combebiac établit qu'elle peut se
mettre sous la forme

| fir)-/'(.r)

où (X> et/sont des fonctions continues, croissant avec leur
argument.

Je me propose de démontrer ici, comme AL Combebiac le
présume, que ce résultat est indépendant de l'existence des dérivées
de F (x, y).

1. — Si nous ne considérons des valeurs de x que celles qui
sont comprises dans un certain intervalle q et des valeurs de y
que celles qui sont comprises dans un certain intervalle q x est
une fonction continue de F et de y, croissante comme fonction
de y, décroissante comme fonction de F.
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