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est que ce point soit le point d’intersection de la droite AC et du
cercle A'B'C’; donc les angles que fait la droite XY avec chacune
des deux droites «F et aB’ sont égaux entre eux.
Donc:
a]/) = «uJ = «A’ .

D’ou, en suivant la méme marche que dans la 6° démonstration,
on pourra prouver que les deux cercles A’B’C’ et XYZ se touchent
entre eux.

8¢ Démonstration.

VIII. — Lemme. — En désignant par a, b, ¢ les trois c6tés d'un
triangle ABC, par R le rayon du cercle circonscrit, par » et I le
rayon et le centre du cercle XYZ, on a

A_IZ—|-T3_I2 4 C1* = (a® 4+ b2 + ¢2) + 2r2 3£ 4Rr .

DOl i

(Pour cette démonstration, on pourra choisir un quelconque
des trois cercles exinscrits pour le cercle XYZ.)

Soient f, ¥ les points ou deux droites Bl et CI coupent a nou-
veau la circonférence ABC. Soient encore D, E les pieds respectifs
des perpendiculaires abaissées de § sur AC et de y sur AB; et
K, L, M les points de rencontre de gy avec AC, AB, Al (Fig.7.)

Les droites SA et yA étant respectivement égales aux droites §I
et 1, la droite fy est perpendiculaire a la droite Al et divise cette
droite en deux parties égales; donc les deux triangles SAM et AyE
sont semblables et 'on a:

__BA
7E T Ay

De plus, la similitude des deux triangles DA et AMy donne :
BD __ BA

AM T Ay

Des deux propositions précédentes, on tire*

- EE et é—M- d’ou ﬁD . 7E p A_Mz

AM <E 7

Donc, on a:

46D . 9E = AI" ) (1)

1 Quand I est le centre du cercle inscrit, cette relation (1) a déja été donnée par l'un des
mathématiciens de notre pays, nommé SHIRAISHI NAGATADA dans son ouvrage publié en 1827
sous le titre de Shamei Sampu.
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Maintenant soit « le nouveau point de rencontre de la droite Al
et du cercle ABC et appelons respectivement w, p’, p” la distance
de a a la corde BC et les distances D et yE. D’apres les résultats
précédents : |

3ATY = hzp'p” .

Donc: )
N Rp— S .
—ZAI):E 7 = 2u3—~2a52—§a2
5 [ # . A J
1 2 2 S 1 2 2 2
:Z;Za + (Zp)? — 2REp = -[;Za + (Zp — R)2 — R* .
Mais, on a:
Ip = 2R (2)
D’ou
/1 -— 2 1 S i.___. v 0 1 QP —
§E I :ZkZaJ—f—(R_+.r)3—R~:ZZa2+r‘_{_2Rr .
Done!

s 1
ALY — S3a¥ 2 4R

Cela étant, passons maintenant 4 la démonstration de notre
théoreme. | ,

Soient O le centre du cercle circonscrit au triangle ABC, N le
centre du cercle des neuf points et G le centre de gravité. (Fig. 8.)

Les trois points O, G, N sont en ligne droite et GO est égal au

double de GN. Donc :

2IN® + 0% = 3IG® + 0G® + 217@2:31_6}24_20_&.

Mais, comme on sait : A
102 = R? 3= 2Rr ,

30G% — 3A0% — 3AG? — 3R® — %2(12

3[G? = 3AT® — 3AG? — 3AT® —-%Eag .

Fig. 8.

'1 Lqrsgue rreprésente le rayon du cercle inscrit, la formule (2) est donnée dans le traité de
géométrie de Rouchii.et de CoMBEROUSSE, T¢ édition, 1re partie, p. 383. '
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St dans la derniére égalité on met a Ta place de ZSXP*Fexpres~. .

sion donnée par le lemme précédent, on a

—2 1
31G” — £Ia® 4 2° I 4R
Donc: '

2IN? + R? 2 2Rr = %—2(12 + 2r* - 4Rr + gR“' — %Za” .

2

Dou : IN2 — (—;-R e r) , par suite IN _—_%R .

Donc les deux cercles A'B’C’ et XYZ se-touchent, c.q.f. d.

Corollaire. — En considérant le cercle inscrit dans I'angle A,
on a:
%(a2~}—b2—}—c")—|— r? + éRr:;(b—{—cia)“’.
-

Pour le voir, il suffit de comparer le résultat obtenu dans le
lemme précédent avec la formule suivante :

AR =3rt 4+ (p— b+ (p — ¢)* 4+ (p — a)? ou p?.

9¢ Démonstration.

IX. — Dans cette démonstration, nous supposons que les seg-
ments des droites AC et AB soient affectés de signes et soient
AC, AB les sens positifs des segments. ‘

Fig. 9.

Représentons respectivement par a, b, ¢ les trois cdtés BC, AC
et AB du triangle ABC; soient E le pied de la perpendiculaire
abaissée du sommet.B sur le coté opposé et, Q et R les points de
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