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44 Y. SAWAYAMA

est que ce point soit le point d'intersection de la droite AC et du
cercle A'B' C ; donc les angles que fait la droite XY avec chacune
des deux droites aE et aBr sont égaux entre eux.

Donc :

aJ' —: aJ — aA/

D'où, en suivant la même marche que dans la 6e démonstration,
on pourra prouver que les deux cercles A'B' C et XYZ se touchent
entre eux.

8e Démonstration.

Y1I1. — Lemme. — En désignant par &, c les trois côtés d'un
triangle ABC, par R le rayon du cercle circonscrit, par r et I le
rayon et le centre du cercle XYZ, on a

AÏ2 + Bï2 + Cl2 î(a2 -f- A2 + c2) + 2r2 + 4Rr

(Pour cette démonstration, on pourra choisir un quelconque
des trois cercles exinscrits pour le cercle XYZ.)

Soient ß, y les points où deux droites BI et Cl coupent à nouveau

la circonférence ABC. Soient encore D, E les pieds respectifs
des perpendiculaires abaissées de ß sur AC et de y sur AB ; et
K, L, M les points de rencontre de ßy avec AC, AB, AI. (Fig. 7.)

Les droites ßA. et yA étant respectivement égales aux droites ßl
et yl, la droite ßy est perpendiculaire à la droite Al et divise cette
droite en deux parties égales ; donc les deux triangles ßAM et AyE
sont semblables et l'on a :

AM _ ßA
yE Ay

De plus, la similitude des deux triangles /?DA et AMy donne :

ßD _ ßA
AM Ay

Des deux propositions précédentes, on tire 1
:

ßD AM ß „ "t~Tt2
Ç— — —— d ou ßD yE AM
AM yE

Donc, on a :

4/3D.yEz=Â!2 (1)

1 Quand I est le centre du cercle inscrit, cette relation (1) a déjà été donnée par l'un des
mathématiciens de notre pays, nommé Shiraishi Nagatada dans son ouvrage publié en 1827

sous le titre de Shaméi Sampu.
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Maintenant soit a le nouveau point de rencontre de la droite AI
et du cercle ABC et appelons respectivement ^/, la distance
de a à la corde BC et les distances ßD et yE. D'après les résultats
précédents :

zlï2 42p>"
Donc :

- SAI" — (2pt)2 — I[x2 2 tx)3 — 2(aß2 —

\ïa2+ (ZpY— 2R2f* l2a2 + (2pt — R)2 — R2

Mais, on a :

Zp 2R q= r (2)

D'où

ixÂI2 ^2«2 + (R Zf rf — R2 Isa2 + 2Rn

Donc 1
:

2ÄI2 îsa2 + 2r2 q= 4Rr

Cela étant, passons maintenant à la démonstration de notre
théorème.

Soient 0 le centre du cercle circonscrit au triangle ABC, N le
centre du cercle des neuf points et G le centre de gravité. (Fig. 8.)

Les trois points 0, G, N sont en ligne droite et GO est égal au
double de GN. Donc :

2ÏN2 + iô2 3ÏG2 + ÖG2 + 2NG2 - 3ÎG2 + ?ÔG2

Mais, comme on sait :

IO2 R2 zf 2Rr

3ÖG2 2ÄÖ2 — SÄG2 3R2 — ^2«2

3ÏG2 2ÄI2 — 2ÄG2 2Ä12 — ^ 2a2

Fig. 8.

A

1 Lorsque r représente le rayon du cercle inscrit, la formule (2) est donnée dans le traité degeometrie de RoucHÉ.et de Comberousse, 7e édition, 1 partie, p. 383.
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ST dans la dernière égalité on met à Ta place de

sion donnée par le lemme précédent, on a

3ÏG2 lz«2 + 2r2 IT 4Rr
6

Done :

2ÏN2 + R2 + 2Rr ^Xa2 + 2r2 zc 4Rr + ?R2 — iz«2
b 2 6

D'où : IN2 + Par suite IN ~ h= r
Donc les deux cercles A'B'C' et XYZ se touchent, c.q.f. d.
Corollaire. — En considérant le cercle inscrit dans l'angle A,

on a :

1 1
-(a2 -|- b2 -j- c'2) l r2+ 4Rr - (b -f- c + <z)2
2à *1

Pour le voir, il suffît de comparer le. résultat obtenu dans le
lemme précédent avec la formule suivante :

SAI2 — 3r2 + (p — b)'2 (p — e)2 + (p — «)2 ou P2 •

9e Démonstration.

IX. — Dans cette démonstration, nous supposons que les
segments des droites AC et AB soient affectés de signes et soient
AC, AB les sens positifs des segments.

A

Représentons respectivement par a, b, c les trois côtés BC, AC
et AB du triangle ABC; soient E le pied de la perpendiculaire
abaissée du sommet B sur le côté opposé et, Q et R les points de
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