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LE CERCLE DES NEUF POINTS 39

o A o
En supposant maintenant B > C, on a dans le triangle ILK :

=2

[K? — IL°=— 2LK . FM = 2 AP . AE ;
mais dans le triangle rectangle ADP, on a :

—_—

AP . AE =AD",

et en appelant I’ le pied de la perpendiculaire abaissée de I sur
A'P et N’ le milieu de A’K, on aura :

AD = %—(AC — AB) = XA’ =1V ,
donc i
K _MMP—2. XA =Xa%?+ 11"
D’ou
> + XA = IK* — ? =TK*,
donc

donc encore :
2. A= TR 4+ A% =2. PN* 4+ 2. NA? =2 TN° + 2. NA".

D’un autre c6té, on a dans le triangle ILA’ ;

2

M2+ TA?=2. IN" 4 2. NA’
Des deux derniéres égalités, on tire :

92 N =292.TN?Z.
Donc . ' ’
IN — /N’ = N’A’ = ’A’ = NA’ = IX

(les doubles signes correspondant, le premier au cas ou I est le
cercle inscrit et le second au cas ou I est un cercle exinscrit. Il en
sera de méme dans la suite).

Ainsi donc la distance du centre des neuf points et du centre
du cercle inscrit ou exinscrit étant égale a la différence ou a la
somme des rayons de ces deux cercles, on voit alors que ces deux
cercles se touchent. |

5e Démonstration.

V. — Soient D et E les pieds des perpendiculaires abaissées
respectivement des sommets A et B du triangle ABC sur leurs

-
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cotés opposés, 1 le centre du cercle XYZ, I et K les points de ren-
contre respectifs avec les droites Al et AC de la droite menée de
B perpendiculairement a Al, et enfin & le second point de ren-
contre de la droite EJ avec le cercle A’ B’ C'. (Fig. 4.)

On voit sur la figure que les quatre points &, A’, E, C' sont sur
la méme circonférence, que le point J est le milieu de I’hypoté-
nnse du triangle rectangle BEK, que C'A’ et AC sont paralleles
et que J est le centre du cercle exinscrit au triangle AC'E comme
j’ai indiqué dans la 3¢ démonstration; et d’aprés ces quatre con-
ditions on doit avoir :

N\ N N\ AN N\
«A’) = aEC’ = «EK = JKE = BJC’ (1)

Donc A’ est paralléele a BK et par suite perpendiculaire a Al
I.e second point de rencontre des cercles dont les centres sont
respectivement en a et A’ et qui se coupent d’abord en J est done
sur la droite Al; j’appelle L. ce second point de rencontre.

Le parallélisme des droites C'A’ et AC donne:

AN A\ . A\ AN
aJA’ = «EK | mais aEK — «A’]
d’apres (1), donc:
N\ AN
«JA’ = aA’J , par suite aA’ = ol .

D’ailleurs, comme le point a est le milieu de I'arc B’A’C’ et
que B’C’ et A’D sont paralleles, ce point « est aussi le milieu de
Parc A'D.

Il s’en suit que le cercle dont le centre est en « et ayant o) pour
rayon passe par les deux points A’ et D.

Ensuite les deux longueurs A’X et A’J étant chacune egale a la
demi-différence de AC et AB sont égales entre elles.

Donc, le point X est sur la circonférence de centre A’ et de
rayon A'J.

Or, dans le cercle JA'L, on a:

P iy o & B T
mais IX étant tangent au cercle JX'L,

J.IL =1X",  dome:  al’°=IX’ + aA’® . 2)

Maintenant, en désignant par N le centre du cercle A’B'(C/,
par I’ le pied de la perpendiculaire abaissée du point I a la droite
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aN et paf X’ le point de rencontre de N et de A’D, on a dans le
triangle aIN |

IN® = «N° + i’ o¢ 2aN (I’ X’ + aX)

— aN° 4 ol = 2eN.I'X" — 2. «N . «X’
22 —2 __ - —2
= oN~ + ol IZ 2«N. IX — A" . (3)

D’apres les deux égalités (2) et (3), on aura:

WZ:&N2+R2$2«N.IX:WN11X)?,
on a donc: '
IN = aN - IX ,

ce qui montre que les deux cercles N, 1 se touchent.
Corollaire. — J est également distant des trois c6tés du triangle

A'ED.

6° Démonstration.

VI. — En désignant les différents points de la figure par les
mémes lettres que dans la 5° démonstration, menons la droite
passant par les points ‘ ‘

X etJ. (Fig. 5.) X

Puisque A’J et A’X
sont égaux et que A'J
et CY sont paralleles,
les deux triangles A’X]J
et CXY sont des trian-
gles isoceles et équian-
gulaires; donc XY et
XJ coincident entre
eux. |

Menons la droite qui
passe par deux points
a et X et qui rencontre
de nouveau en L le
cercle A'B’'C’. .

Les deux angles al.A’ et @A’ X étant égaux, le cercle qui passe
par les trois points A’, X, L touche la droite «A’ au point A’ ; donc

aX.aL:oW2.

Mais o — ¢A’ comme on a indiqué dans la 5° démonstration,
donc:

'IX.QI_J:U_Jz y
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