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LECERCLE DES NEUF POINTS 39

En supposant maintenant 1} > "c,ona dans le triangle ILK :

ÏK2 — ÏLS 2LK FM 2 AP AE ;

mais dans le triangle rectangle ADP, on a :

AP AE AD2

et en appelant I' le pied de la perpendiculaire abaissée de I sur
A'P et N' le milieu de A'K, on aura :

AD i(AC — AB) XA' IP

donc
ÏK2 - IL2 2 XÂT'2 XÂ/2 + ÏP2

D'où
!L2 + xa/2 — ÏK2 — ÏP2 PK2

donc
IL2 + (NX'2 + fX2) PK2 + PA'2

donc encore :

IL2 + iX'2 PK2 + IX"'2 2 PN'2 + 2 NX'2 2 IX'2 + 2 NX'2

D'un autre côté, on a dans le triangle ILA' ;

îf,2 + X'2 — 2 IN2 + 2 NX'2.

Des deux dernières égalités, on tire :

2 IN2 2 FX2.
Donc

IN I'N7 N'A7 + I7A7 NA7 q= IX

(les doubles signes correspondant, le premier au cas où I est le
cercle inscrit et le second au cas où I est un cercle exinscrit. Il en
sera de même dans la suite).

Ainsi donc la distance dii centre des neuf points et du centre
du cercle inscrit ou exinscrit étant égale à la différence ou à la
somme des rayons de ces deux cercles, on voit alors que ces deux
cercles se touchent.

5e Démonstration.

Y. — Soient D et E les pieds des perpendiculaires abaissées
respectivement des sommets A et B du triangle ABC sur leurs
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côtés opposés, 1 le centre du cercle XYZ, J et K les points de
rencontre respectifs avec les droites AJ et AC de la droite menée de
B perpendiculairement à Al, et enfin a le second point de
rencontre de la droite ËJ avec le cercle A' B'C. (Fig. 4.)

On voit sur la figure que les quatre points a, A', E, C sont sur-
la même circonférence, que le point J est le milieu de l'hypoténuse

du triangle rectangle BEK, que C'A' et AC sont parallèles
et que J est le centre du cercle exinscrit au triangle ACE comme
j'ai indiqué dans la 3e démonstration; et d'après ces quatre
conditions on doit avoir :

/\ /\ /\ /\ /\«A'J aEC' z= aEK JKE r= BJC' (1)

Donc ah! est parallèle à BK et par suite perpendiculaire à AI.
Le second point de rencontre des cercles dont les centres sont
respectivement en a et A' et qui se coupent d'abord en J est donc
sur la droite AI ; j'appelle L ce second point de rencontre.

Le parallélisme des droites C'A' et AC donne :

/\ /\ /\ /\aJA' — aEK mais aEK aA'J

d'après (1), donc :

/\ /\aJA' aA'J par suite aA' — aJ

D'ailleurs, comme le point a est le milieu de l'arc B'A'C' et
que B'C et A'D sont parallèles, ce point a est aussi le milieu de
l'arc A'D.

Il s'en suit que le cercle dont le centre est en a et ayant a] pour
rayon passe par les deux points A' et D.

Ensuite les deux longueurs A'X et A'J étant chacune égale à la
demi-différence de AC et AB sont égales entre elles.

Donc, le point X est sur la circonférence de centre A' et de

rayon A'J.
Or, dans le cercle JA'L, on a :

«ï2 — ÏÂ72 u. n,,

mais IX étant tangent au cercle JX'L,

IJ IL IX2 donc : ^I2 IX.2 + cTÄ'2 (2)

Maintenant, en désignant par N le centre du cercle A'B'C,
par I' le pied de la perpendiculaire abaissée du point I à la droite
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«N et par X' le point de rencontre de «N et de A'D, on a dans le

triangle aIN

7-r2 —2 —;2
IPs — «L\ al 2aN. (I'X' aX')

«N2 + al2 + 2aN I'X' — 2. aN aX'

?N2 + öl2zp2«N. IX — ^ÂT'2

D'après les deux égalités (2) et (3), on aura :

(3)

IN2 «N2 + IX2 + 2aX IX («N IX)2

on a donc :

IN — aN =p IX

ce qui montre que les deux cercles N, I se touchent.
Corollaire. — J est également distant des trois côtés du triangle

A'ED.

6e Démonstration.

VI. — En désignant les différents points de la figure par les
mêmes lettres que dans la 5e démonstration, menons la droite
passant par les points
X et J. (Fig. 5.)

Puisque A'J et A'X
sont égaux et que A'J
et CY sont parallèles,
les deux triangles A'XJ
et CXY sont des triangles

isocèles et équian-
gulaires ; donc XY et
XJ coïncident entre
eux.

Menons la droite qui B
passe par deux points
« et X et qui rencontre
de nouveau en L le
cercle A'B'C'.

Les deux angles «LA' et «A'X étant égaux, le cercle qui passe
par les trois points A', X, L touche la droite «A' au point A' ; donc

aX aL aA

Mais «J ak' comme on a indiqué dans la 5e démonstration,
donc :

«X. a L «J
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