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SUR LES FONCTIONS SYNECTIQUES

L'objet de cette Note est de mettre en évidence une
interprétation géométrique, ressortissant à la Géométrie réglée,
des relations qui caractérisent les fonctions synectiques.

Étant donné un système d'axes rectangulaires 0(.r, y, z), de

chaque point m de coordonnées x, y, dans le plan Oxy, est

supposée partir une droite d de cosinus directeurs pi, p*, p3 :

p± — P cos 6 -{— Q sin 6

p2 =: P sin 6 — Q cos 0

ps z= |/t — p2 - Q2 ;

P et Q, dans ces formules, sont deux fonctions, quelconques
pour l'instant, des variables x et y ; "quant à 9, c'est un
paramètre constant et quelconque.

Les droites d ainsi définies constituent, pour des fonctions

P et Q données et pour chaque valeur du paramètre 9,

une congruence de droites; lorsque 9 varie, la congruence
précédente se déforme en engendrant un complexe de droites;

ce complexe peut être défini indépendamment de la
considération des congruences : il est constitué par les génératrices

de cônes de révolution de sommets situés dans une
région du plan 0xy, d'axes parallèles à 0z, et dont les demi-
angles V aux sommets sont déterminés par la formule

sin2 V nz P2 -j- Q2

Le paramètre' 9 ayant une valeur fixée, la congruence qui
lui correspond n'est pas une congruence de normales, dans
le cas général où les fonctions P et Q sont quelconques. Pour
qu'il en soit ainsi, il faut et il suffit que l'expression

p±dx + p2 dy
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soit une différentielle exacte, ce qui entraine la condition

ô£î _ dho
öj ôx

c'est-à-dire

ôP öQ\ A /ôQ 5 P\
— _|_ — J cos 0 -j- / — j gm 0 — 0
öj ö.r J \ öj àx

Cette dernière relation est identiquement vérifiée quel que
soit 9, lorsque P et Q sont liées par les conditions
simultanées.

ôP _ öQ öP _ öQ
ÖJt* öy

'
by ö.r

et dans ce cas seulement. Il en résulte donc que la condition
nécessaire et suffisante pour que la congruence des droites d
soit une congruence de normales, pour toutes valeurs du
paramètre 9, est que P et Q soient deux fonctions synectiques.
En d'autres termes, P + doit être fonction de la variable
complexe z x + iy.

Telle est la propriété qui constitue une interprétation
géométrique des relations qui lient les fonctions synectiques.
Je terminerai cette Note par une propriété du complexe des
droites d.

Soit
P + iQ f(z) ;

le complexe peut être envisagé comme défini par les
génératrices du cône de révolution, de sommets situés dans Oxy.
d'axes parallèles à Oz, de demi-angles aux sommets déterminés

par la formule
sin Y | f[z) \ ;

le point m est assujetti à l'unique condition d'appartenir à

la région du plan Oxy pour laquelle le module de la fonction

f(z) est inférieur à l'unité. D'après ce qui précède, le

complexe est engendré par une congruence de normales
variable qui dépend d'un paramètre ; d'un théorème de

M. Darboux, il résulte donc que toutes les congruences de
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normales qui appartiennent à ce complexe, sont détermina-
bles immédiatement, sans introduction de quadratures
autres que celles qui pourraient figurer dans l'équation des
surfaces trajectoires orthogonales des droites de la

congruence associée au paramètre 9.

Quant à ces dernières surfaces, il est aisé de les
déterminer. Soit M le point d'incidence de la normale d sur une
des surfaces trajectoires, et soient X, Y, Z les coordonnées
de ce point M; en introduisant la distance 1 inconnue
et à déterminer, on a

X ~ x -|- Xpt Y — y -}- Xp2 Z — Xpz ;

en utilisant la relation

p±dX. —j— p2 d\ —j— pz drI —. 0

il vient :

— dX — (Pdx — Qdy) cos 0 -)- (Qdx -)- Pdy) sin 0 ;

de cette relation résulte l'expression de 1

^ -j Mdz + e*ff(z0)dz0 | + const

dans laquelle zQ désigne la variable complexe conjuguée
de z; la distance A est donc définie par la formule

X — partie réelle de je-'^ 9(5)] -f- const

en introduisant la nouvelle fonction de variable complexe

e~lV f[z) dz

afin de faire disparaître tout signe d'intégration dans les
formules finales.

E. Turrière (Alençon).
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