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LES PRINCIPES DE LA GÉOMÉTRIE DES QUINCONCES

1. On appelle quinconce l'ensemble indéfini des intersections

de deux systèmes de parallèles équidistantes, numérotées

à partir de deux d'entre elles, prises comme directrices,
elles-mêmes numéro-
tées zéro (fig. 1). ' '

L'étude de cette figure
i

* V
constitue une sorte de „ /

i y / .i
geometrie analytique en •

y jfnombres entiers, dans • * y
laquelle les coordon- '

-y /nées sont, non plus des \ t* * * y - -

longueurs, mais des nu- /O
' G *. *

méros. Fig. t.
Un quinconce étant

défini par l'angle <p des directrices et les longueurs OA, OB
des equidistances, un point quelconque du quinconce se

désigne par son numéro-abscisse x et son numéro-ordonnée y,
et se note (x, y).

Si les deux systèmes de parallèles sont tracés, la figure
est un réseau, divisant le plan en parallélogrammes égaux.
Le réseau s'appelle plus particulièrement quadrillage, quand
les directrices sont rectangulaires et les deux équidistances
égales.

Un quinconce n'est donc autre que l'ensemble des
intersections d'un réseau. On comprend qu'à un quinconce
quelconque correspondent une infinité de réseaux, lesquels sont
dits dans ce cas équivalents.

2. Une droite joignant deux points quelconques d'un
quinconce, en rencontre une infinité d'autres, qui sont équi-
dis tants.
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3. Les nombres a ^ n étant premiers entre eux, la droite

ax — ny 0 déterminée par l'origine et par le point (n, a)

du quinconce rencontre une infinité de points équidistants
représentés par la formule (kn, ka), k désignant les nombres
-+~ 1, zh 2, zb 3,

Elle n en rencontre pas d'autres ; car puisque ctx — ny,
et que a et n sont premiers entre eux, a doit diviser ?/, et n

diviser x.
La droite ctx — ny af— ng, menée par le point (fi g)

du quinconce parallèlement à la droite précédente, est dans
le même cas et rencontre le quinconce en une infinité de

points équidistants.
Soit afi— ng — b ; on a ainsi graphiquement les solutions,

en nombre infini, de l'équation ax — ny b

4. Etant donné trois points quelconques (x, y), (x\ y') et
(x", y") d'un quinconce, on peut, de trois manières
différentes, déterminer un quatrième point qui forme avec les
trois premiers, un parallélogramme. Tel est le point

ix> + ,r y + y _ r\
V 2 ' 2 ;

diagonalement opposé au point (x, y).
Il suffit de remarquer que la demi-somme des ordonnées

de deux sommets opposés est égale à celle des deux autres.
5. L'angle des directrices étant <p ; que l'on pose cos ©

et que les équidistances soient appelées \/a sur les
y aa

abscisses, et \/c sur les ordonnées; le quinconce
représentera la forme (<a, b, c) ax2 + 2bxy + cy2, a et c étant

positifs; puisque le carré de la distance du point (x, y) à

l'origine est (x\/a)2 + (y\/c)2 + 2x\/a y\/c cos © h

En outre, la surface de chaque parallélogramme élémentaire

est égale à V/A, A désignant la valeur de l'expression
ac — b2 (Gauss).

On verra facilement qu'aux formes (a, o, c) et (a, b, a) cor-

1 x représente le nombre cles divisions de l'abscisse; y, celui des divisions de l'ordonnée;
et non des longueurs.
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Fig. 2.
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respondent un quinconce rectangulaire et un autre
quinconce formé de losanges.

6. Les directrices étant OX, OY, on peut rapporter le

quinconce à deux autres directrices

OX', OY' déterminées par
l'origine et deux de ses points
M, N : il est alors défini par
l'angle Y'OX' et les deux équi-
distances OM, ON.

7. L'ensemble des points 1

x — ax' + byr, y — ex' + dy\
expressions dans lesquelles a,
è, c, d désignent des entiers
fixes, x' et y1 tous les entiers
positifs ou négatifs, -— figure

un certain quinconce (fig. 2) qu'on symbolise ainsi

qui n'est plus rapporté à ses directrices1. En effet on a :

[a(x' -j- a) -f- b(y' -j- p)j [a (x' — a) -j- b[y' — (3)] — 2 (ax + by')

[c(x' -f a) -j- d {y' + (3)] + [c(xf — a) -j- d(y' — ß)] 2 (ex' -j- dy')

Ce quinconce représente les solutions de l'équation ax + by
et, où x et y désignent des coordonnées, et t un coefficient

variable.
L'expression ad — bc s'appelle la norme du quinconce et

s'indique par la notation N : elle représente, comme on

s'en assurera aisément, la surface de l'un des parallélogrammes

élémentaires.

Si le quinconce contient tous les points de on

dit qu'il en est le multiple : de là, l'assimilation de cette
représentation aux nombres premiers ou composés : ainsi le

produit des quinconces et est + bc' ah' -j- bd

-}-de' cb'
bd'l
dd'\'

1 Pour plus de simplicité, la figure suppose rectangulaires les axes de coordonnées; mais
il est facile d'étendre la théorie au cas où les coordonnées ne se coupent plus sous un angle
droit.

x' et y' désignent les équidistances sur les axes de coordonnées, et OP, OQ celles sur les
directrices.
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Le quinconce est premier si sa norme est un nombre
premier.

Par le moyen des substitutions x axr + ßy', [y yx'

+ iy', du quinconce |^J t on déduit un autre quinconce

lié au premier par la formule

„pj;]
de sorte que si ai — ßy 1, les deux quinconces sont
identiques; leur groupement seul diffère, étant effectué sur des

systèmes de parallèles formant deux réseaux équivalents.
Par des considérations d'un autre ordre, on arrive à une

nouvelle interprétation analytique des quinconces. La
longueur du côté OP du parallélogramme OPMQ a pour expression

a (am2 -j- -}- eu.2)

en appelant am -f- by et \j\/A les coordonnées rectangulaires
du point P. Cette longueur représente donc la forme (a, b, c),

au facteur a près.
Soient appelés (,-r, y) et (£, ri) les points P et Q ; les côtés

OP, OQ peuvent être figurés ainsi :

t z=. x + yi T Ç + rji

L'expression [£, t] zt -f- Ç- représentera un quinconce, qui
sera déterminé si on se donne les nombres £ et Ç, et on aura :

N [£ t] — xr\ — \y
Posons

il — cc£ -j- v yt -f- 8t

on obtiendra un quinconce placé généralement et qui donnera

N[« v] (aS — ßy) N [t, t]

Cette géométrisation des formes quadratiques, — dont les
éléments sont seuls donnés ici t, — est due à M. Poincaré

1 A citer ces deux problèmes : reconnaître si un quinconce est identique à un autre quinconce
donné, et trouver les transformations qui changent un quinconce en lui-même ; la réduction des
formes et leur composition.
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[J. E. P., 1880); elle a été retrouvée par M. Klkin {Vorl. über

ausgew. Kap. der Zahlentheorie, Leipzig, 1895).

8. Appelons quinconce de module n, la partie d'un
quinconce comprise entre les axes et les coordonnées portant le

numéro n.
Les nombres a et n étant premiers entre eux, et a < n,

considérons sur le quinconce de module n, les points (x, y) pour
lesquels Vordonnée y est égale au reste de la division de ax

par n : ces n points sont disposés sur le quinconce suivant

la régularité même de la construction : en effet, le premier
point est à l'origine; sur la première ordonnée, on monte
de a \ sur la deuxième, on monte encore de a, et ainsi de

suite, jusqu'à ce qu'on sorte du quinconce, et alors on complète

l'ascension de a sur l'ordonnée suivante.
La figure 4 fournit une autre démonstration intuitive de

la proposition; car elle se réduit à la figure 3, en rabaissant
jusqu'à l'axe des x la partie située au-dessus de la droite

y=n, puis la partie au-dessus de la droite y 2n, et
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ainsi de suite. Les diverses ascensions se trouvent reportées
dans le quinconce inférieur, telles quelles, ou bien
fragmentées.

L'ensemble des n points ainsi définis s'appelle un satin,
nom qu'il tire d'un tissu d'origine chinoise bien connu et
établi d'après ce principe l. La figure 3 représente le satin 7s

correspondant aux données n 7, a 3.
9. Le satin nn_a est le symétrique, ou l'envers, du satin na

(Gano).
10. Chaque parallèle a l'axe des x contient un point du

satin et n'en contient qu'un (Gand). Si on avait, par exemple,
H 'h Gg (fig. 4), il s'ensuivrait2 HA Gg, et HH' serait à

la fois de la forme nz et de la forme ciw avec z < a et w n ;

or cela est impossible.
Cette proposition n'est autre que le lemme fondamental.
11. Les equidistances sur les parallèles étant appelées d et e,

la surface de chacun des parallélogrammes formés de quatre
points voisins est égale à nde, de sorte qu'il y a dans le satin
n parallélogrammes égaux ou fragmentés (Gand). Cela
découle immédiatement de ce que le quinconce a une surface
de n2cle, et que les n parallélogrammes sont égaux, par suite
de la symétrie de la construction.

En général, le parallélogramme dont trois sommets sont
l'origine et les points (x, y) et(.r', y'), a pour surface (<dx!)[ey) —
{clx){ey')\ or on a ey cixd et eyf axd ; d'où il suit que
la surface est 0.

Le plus souvent, les axes sont rectangulaires et les équi-
distances cl et e sont égales et se représentent alors par le
nombre 1 : on peut dire, dans ce cas, que la surface de

chaque parallélogramme est égale à n.
12. Le satin na peut être considéré par rapport au côté OM

pris comme axe des x (fig. 3), et alors on a le symétrique
d'un satin //a tel que, pour un point quelconque (x, y) du

premier, qui est le point (— y, x) du second, on a :

ax EE y av EE x d'où aa EE 1

1 Les satins et nt ont reçu les noms particuliers de toile ou damier et de serge ou diagonale.

Il n'en sera pas question ici.
2 On sous-entendra partout la mention « (mod n) ».
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Ainsi le salin 73, de la figure 3, devient le satin 75: 3 et 5

étant les valeurs de la première ordonnée dans les deux sens.
Les deux nombres a et a sont dits associés. Il est clair

que chaque entier a premier avec n, a son associé, c'est-à-dire
un nombre a tel que cia 1 dette démonstration est
d'Ed. Lucas.

13. Il est facile de déterminer dans chaque cas, le nombre
de satins d'un module donné n : on cherche les valeurs de a

pour lesquelles ce nombre est premier avec n et inférieur à

sa moitié1. On les groupe par associés deux à deux et on ne
conserve que les plus petits termes dans chaque groupe. Ce
nombre n'est pas susceptible d'être représenté par une

formule simple, sauf si n est premier, auquel cas il est —

ou
n 3

selon que n est 4+1.
14. Les axes seront maintenant toujours supposés reel

angulaires, et les équidistances égales.
Si n est la somme de deux carrés premiers entre eux,

g2 et h2, il existe une valeur f de a, qui donne a2 -f- 1=0, et
les parallélogrammes du satin sont des carrés (Gand). Soit y
l'associé de-g1; de g2 -f h2 n, on tire, en multipliant par y
et posant hy /, la congruence f2 -j- 1 0.

Le carré de la distance des deux points (x, y) et y') du
satin est égal à

(/*' — fx)* + - X)3 (f2 + 1) (*' - x,3 0

chacun des parallélogrammes a ainsi une surface égale à n.
et des côtés de la forme n\/ k n\/1 ce qui ne peut avoir
lieu que si ces parallélogrammes sont des carrés.

Le tableau suivant donne les satins carrés de modules
inférieurs à 100 :

n — 5, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 58, 61, 65, 73, 74, 82,

85, 85, 89, 97 ;

f= 2, 3, 5,4, 7, 5, 12, 13. 6, 9, 7, 23, 17, 11, 8, 18, 27, 31, 9, 13, 38, 34, 22

1 Inutile de chercher les valeurs > ^ puisque le satin nn_a est le symétrique du satin »
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La figure 5 représente le satin carré 10s

Cor. I. Un satin carré reste identique à lui-même quand
on le fait tourner d'un quart de

tour; puisque de f2 — 1, on
tire fx y et fy (n — :r).

II. Si on appelle q et r le
quotient et le reste de la division de n

par f, on a : q2 + r2 0 et q rf.
Conséquences de la congruence

fi—/'•
15. Le satin na peut être considéré

comme le lieu des points
(x y) définis par la relation
y ax.

Si n g2 + A2, c'est-à-dire si le satin est carré, on a

x2 -f- T2 EE X2 -f- a2 x2 EE 0

Le nombre g2 + A2 divisant x2 + y2, il divise aussi

„2(^,2 _|_ _ y'21 o,2 h2} — „2 x2 _ y2

il divise donc l'un des deux nombres A =gx-\-hy, B

gx — hy ; or il est facile de voir qu'il divise gA — AB : il
divise donc AetB. On verra de même qu'il divise les deux
nombres hx ± gy>

Ainsi g et h désignant des entiers premiers entre eux, et n,
le nombre g2 -f- h2^ Ie Heu du point (x, y) défini en coordonnées

rectangulaires par l'une ou l'autre des quatre relations

gx ~E hy EE 0 hx H- gy — 0

est un satin carré. Il en est de même de ceux définis par
une relation de la forme gx dz hy gl ± hm mais alors
l'origine des coordonnées n'est pas un point du satin.

16. Si n divise un nombre de la forme x2 — 1 la valeur
a x donne des losanges, et le satin est symétrique par
rapport à là diagonale (Gand). De a2— 1 0, on tire en effet

xy a2xy\ d'où, en posant ax y, cette autre relation
x ay : les points (x, y) et (;y, x) du satin na sont donc
symétriques par rapport à la diagonale.
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Les satins suivants sont dans ce cas :

n 8, 12, 15, 16, 20, 21, 24, 24, 24, 28, 30, 32, 33, 35, 36, 39, 40, 40, 40,

42, 44, 45, 48, 48, 48, 52 ;

a 3, 5, 4, 7, 9, 8, 5, 7, 11, 13, 11, 15, 10, 6, 17, 14, 9, 11, 19, 13, 21, 19,

7, 17, 23, 25

D'autres satins forment également des losanges, mais ne

sont pas symétriques : tel est le satin 407, et en général ceux

pour lesquels la somme du quotient et du reste de la division

de n par a est égale à a2 + 1 D'autres satins, d'une
définition moins simple, sont dans le même cas. (Voir Laisant,
A. F, 1877.)

17. Déformons le satin na de manière que, la première
ordonnée restant à sa place, la ae, quia pour valeur a, devienne

la 2e ; la ae, qui a pour valeur ß, devienne la 3e ; la [6e, qui a

pour valeur y, devienne la 4e ; la ke ordonnée sera ak, et

on aura de cette sorte le graphique des solutions de la
congruence ax y. Ainsi, pour a 10, n n'étant ni pair, ni
multiple de 5, la figuration sera celle de la période décimale du
quotient de 1 par /?.(Laisant).

De même, soit à trouver les restes de la division de ak par
n : on cherchera ceux de la division par n des nombres a,
2a, 3a, : le reste de a est a ; celui a de a2 est le ae reste ;

celui ß de az est le Äe veste ; (Arnoijx).
18. La théorie des satins a été donnée par Gand en 1867,

dans le Bull, cle la Soc. d'Amiens. L'application suivante, due
au même auteur [le Trcinspositeur ou Improvisateur de tissus,
Paris 1871), montrera le parti qu'on peut en tirer dans
l'industrie textile, pour obtenir des motifs nouveaux, en nombre
indéfini.

On a une bande de papier divisée en vingt-neuf carrés
égaux, de diverses nuances (fig. 6), qu'on déplace successivement

de sa largeur ; mais en la montant, la première fois

de R cases 1
; la seconde fois, de R cases ; la troisième

fois, de R cases ; la-quatrième, de R cases ; : on

1 On entend par le symbole R — le reste de la division de a par b.
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aura ainsi un satin carré composé, de 292 cases, dont une
partie est donnée, fig. 7.

19. Si dans l'expression u2 + /ce, u et v désignent tous les
entiers imaginaires possibles, et k, l'imaginaire fixe a -f ßi ;

cette expression prendra une infinité de valeurs de la forme
x + yi, qu'on représentera en "hachurant la case (x, y), c'est-

Wmr18km.mm
wm m m-i

ssss

m_H H., m
«f y, mm

sss s
mia m mm

WÀ

m

ft

«p
1:

iI£
i
•

Fig. 7.

Fig. 6.

à-dire la ye case de la xe colonne verticale. Si en outre, x +
yi est divisible par a ßi, la case {x, y) sera entièrement
noire. Cette représentation a été proposée par Thiele, en
1873. (Voir A. F. 1874.)

Si k 1 4- /, on aura un damier de cases noires et de

cases grises. Si ß — 0, le dessin est encore assez simple, car
il dérive du damier. Mais dans le cas général, il présente un
ensemble de motifs élégants mais compliqués, simulant
chacun quatre spirales grises ou blanches autour de chaque
case noire : voir par exemple les fig. 8 et 9 h

1 Voir aussi (op. cit.), outre ces deux figures, et celles qui seront décrites plus loin, surtout
celles qui correspondent aux valeurs k 8 + 5i, 8 -f- 7i, 10 -j- i et 17 + 8i, données par
Broch.
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20. On peut d'abord vérifier que les cases noires des
dessins de Thiele forment le satin carré de module n +
En effet, si x+ yi est divisible par « + (a —

Fig. 8 Fig. 9.

-= {ax + ßy) + {ay — ßx)i est divisible par {a + ßi) («.— ßß
a2 + /32, ce qui a lieu si les deux expressions A ax +

ßy et B =- ocy — ßx le sont, conditions qui n'en font qu'une,
car on a :

aA ßB nx

d'où on conclut que la divisibilité de A entraîne celle de B,
On a donc bien ax + ßy 0 ce qui caractérise un satin
carré (15).

Les cases grises correspondantes, clans les diverses répéti-
tions du motif, forment des satins identiques, mais placés
d'une manière différente. Soit en effet

u uf -f u" i v + v" i ;

il viendra
clx -j- ßy au'2 -f- 2 ßu'u" — au"2 -J- uv'

d'où

a (clx -j- ßy) a2u'2 ~p 2aßufu" — a2u"2 a2u'2 -|- 2y.ßu'u" -j- ß-u"2
(alé + ßu")2

Ainsi la case (x, y) est grise si a(ax + ßy) est un résidu, ce
qui permet d'exécuter la construction assez aisément. Mais
les considérations qui suivent la rendent encore beaucoup
plus facile. ü

L'Enseignement rftathém., 13° année; 1911 13
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Soit y}) une case noire, c'est-à-dire telle que a| + ßw 0;
chaque case grise (£, y) de la même colonne est déterminée
par la relation a(a£ + ßy) /', r désignant l'un des résidus
de n. De là, la condition aß{y — y?) /'. Or de a2 + ß2

il 0, on tire (a + ß)2 fee 2aß ; 2a/3 est donc résidu, et aß est
ou n'est pas résidu en même temps que 2. Le nombre aß
et par suite le nombre y — y?, sont donc résidus si n est un
nombre premier 8 + 1 (k 4 + i% 5 + 4/, 8 4- 3G 8 + 5/,
8 + 7/, 9 + 4/, 11 + 4/, 12 + 7/, 13 + 8G et non-résidu

si /* est un nombre premier 8 + 5 (A 2 + 0 3 + 2/,
5 + 2/, 5 + 4/, 6 + / 6 + 5/, 7 + 2+ 10 + /, 10 + 3/,
10 + 7/, 10 + 9/. Par conséquent, les valeurs de/' étant
1, r, /,, la lore, la /% la /•'% la /"% case située au-
dessus d'une case noire sera grise ou blanche, suivant les
deux cas qui viennent d'être indiqués1. Ainsi

Les figurations de Thiele ne sont donc autres qu'une
application très particulière ; — mais à la vérité très intéressante,

— de la méthode de Gand, celle où la ye case de
l'ordonnée mobile (fig. 6) est grise ou blanche selon que y est
un résidu ou un non-résidu.

21. Les problèmes du tissage constituent une application
des plus intéressantes de la théorie élémentaire des nombres

et sont très propres à en faire saisir les méthodes. Il
semble donc que la construction des congruences concrètes
ainsi réalisées est un bon exercice, à différents points de

vue, et qu'un mot sur les combinaisons de carreaux serait à

sa place dans un traité sur les nombres.

1 Dans le premier de ces deux cas, la figure ne change pas quand on la lait tourner d'un
quart de tour; dans le second cas, les cases grises sont changées en cases blanches et vice
versa.
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La combinaison la plus simple est le damier indéfini. On

peut le généraliser en le déformant de plusieurs manières ;

par exemple on peut a up1er les largeurs de la (kb)me colonne
•et de la (kb)me rangée, k prenant les valeurs zh 1, zb 2, ± 3,

Le cas de a 3 et b 5 est fréquemment employé.
On aurait d'autres dérivés du damier de n2 cases, n

désignant un nombre impair, en mettant noire ou blanche la
OCY X2 •

case (.*;, y) selon que R ^ ou R —, etc., est pair ou

impair ; ou encore selon que xy est congru à un résidu ou
à un non-résidu. Cette étude sera développée plus tard.

Les effets des diagonales donnent des motifs bien plus
variés 1. On peut réunir plusieurs bandes en diagonales ;

les couder en zigzags; les briser; les couder et les briser,
à chaque coude ou à chaque rangée ; alterner les nuances,
•de k rangées en k rangées.

Mais c'est surtout avec la méthode si simple de Gand,

pour les satins (18), qu'on obtient les résultats les plus
élégants et les plus variés. Ainsi la fig. 6, qui par son ascension
successive de douze cases, produit la fig. 7, peut en donner
douze autres, en effectuant des ascensions de deux, trois,
quatre cases ; ces sortes de cristallisations différentes des
mêmes carreaux de la fig. 6 étonneront par l'inattendu des
motifs obtenus : celles qui correspondent aux nombres 3, 7,
-S, 9, 1:1, 13 surtout en donnent de très jolis. Pour plus de
facilité, on ne prendra que les cases noires2.

22. Le cas du satin dont le module n est un nombre
premier réel p, mérite un examen spécial. Il ne peut y avoir
alors, que dans un seul cas, un nombre a qui soit l'associé
de son complément, c'est-à-dire tel que a2 + 1=0. Soit en
effet b2 + 1=0; il viendra a2 — b2 0 ou (a + b) (a— b)

0 d'où a b 0 et b p — a Le groupe a, a p
— a ne peut donc se présenter qu'une fois. D'un autre côté,

1 Voir par exemple le Cours de tissage, de Gand, ou le Traité de Bonna, etc.
2 Le moyen mécanique suivant permet de construire un satin composé, sans aucun calcul, à

l'aide de cubes noirs et blancs. Construisons avec ces cubes k colonnes identiques; montons
de h rangs les k — 1 dernières colonnes et replaçons d'un bloc au-dessous les cubes qui
•dépassent en haut; montons de même de h rangs les k — 2 dernières colonnes et replaçons
d'un bloc au bas les cubes qui dépassent au-dessus; montons de même les k — 3 dernières
«colonnes et replaçons au bas les cubes excédents; et ainsi de suite.
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il n'y a que les nombres]! et p— 1 qui soient leurs propres,
associés, car la congruence x2 1 donne (x + 1) (x — 1) 0V

d'où x 1 et x — 1.

Si p est un nombre premier 4 + 1, les entiers 2, 3, 4,
•p Py

p — 3 se partagent en — groupes de quatre nombres

associés ou complémentaires, et en un groupe des deux nombres

a, a, à la fois associés et complémentaires. On a ainsi
a2 g- 1 0. Donc tout nombre premier 4 + 1 divise une
somme de deux carrés.

Si p est un nombre premier 4 — 1, les mêmes entiers se

partagent en groupes de quatre nombres complémentaires

ou associés, et de plus distincts ; car autrement on
aurait plus d'une fois x(p — x) 1. On ne peut donc écrire
x2 + 1 0 et aucun nombre premier 4 — 1 ne divise une
somme de deux carrés et à fortiori ne peut être une somme de

deux carrés.
Ainsi les seuls nombres premiers 4+1 divisent x2 + 1, et

même y2 + £2, en faisant x% y. Or dans ce cas, le satin est
formé de carrés ayant tous p pour côté et inclinés sur les
axes : p est donc lui-même de la forme x2 + y2 et on a la
démonstration de ce théorème de Fermât : tout nombre premier
4+1 est décomposcible en une somme de deux carrés, — en.
même temps que la décomposition de p. (Ed. Lucas),

On peut remarquer en outre que pour p — 4 — 1, les

entiers 1, 2, 3, p — 1 se partagent en ^ 3

groupes de quatre

termes g. y, p — g, p — y, tels que gy /, et un groupe h et

p — Atel que h2 t ou h (p — h) t. Ainsi, pour p —4 — 1,

on a, quelque soit t, Vune ou l'autre des deux congruences
x2 t, x2 — t. Mais de t à p — t, il y a au moins deux
valeurs, s, s + 1, qui donnent l'une y2 s, z2 — (s + 1);

d'où, en additionnant, y2 + z2 + 1 0, ce qui démontre
cette proposition d'EuLER : le nombre premier p 4 — 1

divise toujours une somme de trois carrés, dont run est l'unité.
23. Désignant par 1, a, ù, n — 1, les <p(/>) nombres plus

petits que n et premiers avec lui ; traçons dans le quinconce
module n, les droites y — x, y — ax, y bx, et notons.
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ces droites par les indications 1, <2, b, (fig. 10 et 11) ; on

aura la table de division {mod. n)\ de M. Arnoux [F. Arith

8 4 2 7 5 1

7 8 4 5 1 2

6 3 2 5 00 3 1 4 7 6 3

5 n
J "8 1 2 4

4 2 1 8 7 5

3 6 1. 4 7 3 6 2 5 8 3 6

2 1 5.. 4 8 7

1 5 7
^v

2 4 8

1 2 3 4 5 6 7 8

Fig. 10

Paris 1894). Il est aisé de voir que le nombre (x, y) satisfait
à la condition x[x, y) y, ce qui montre qu'il n'est autre

12 6 4 3 5 2 11 8 10 9 7 1

11 12 8 6 10 4 9 3 7 5 1 2

10 5 12 9 2 6 7 11 4 1 8 3

9 11 3 12 7 8 5 6 1 10 2 4

8 '4 7 2 12 10 3 1 11 6 9 5

7 10 11 5 4 12 1 9 8 2 3 6

6 3 2 8 9 1 12 4 5 11 10 7

5 9 6 11 1 3 10 12 2 7 4
'

8

4 2 10 1 6 5 8 7 12 3 11 9

3 8 1 4 11 7 6 2 9 12 5 10

2 1 5 7 3 9 4 10 6 8 12 11

1 7 9 10 8 11 2 5 3 4 6 12

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 11

que le quotient par x, du nombre y augmenté d'un certain
multiple de a.

Cette table jouit de nombreuses propriétés, dont celles-ci :

Elle donne immédiatement la solution de l'équation ax —
nz b.

Un terme quelconque est l'associé cle son abscisse, car
x (.r. 1) 1.

L'une des diagonales ne contient que le terme 1, et l'autre,

1 Entrevue par Euler et Grand.
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le nombre n — 1. En général, dans une même parallèle à
une diagonale9 deux termes également éloignés des extrêmes
sont associés, ce qui suit de ce que les relations

x(x y) y et y (y x) x x(x, y) y
et. (n — y) (n — y n — x) EE n — x

donnent par multiplication les suivantes

De même, le produit de deux termes voisins clans la
parallèle la plus voisine de la- diagonale y x est congru au
terme de la deuxième parallèle compris entre ceux-ci. En
général, si on considère un carré de termes A BCD ayant le
sommet A sur cette diagonale, le produit des nombres situés
aux sommets B, C, est congru à celui du sommet D, c'est-à-dire
qu'on a :

(x n — x k) (x te n — x) EE [x + te n — x -}- k)

24. Si on déplace les colonnes de la table de division
(mod n), de telle manière que les nombres de la rangée
inférieure soient à leurs places naturelles, on aura la table de

multiplication (mod «), du même auteur, et dont un terme

(x y) (y x) 1 et (x y) (n — y n — x) 1

8 7 3 4 3 1

7 5 1 8 4 2

6 3 6 3 6 3

5 1 2 7 8 4

4 8 7 2 1 5

3 6 3 6 3 6

2 4 8 1 5 7

1 2 3 4 5 6 7 8

12 11 10 9 8 7 6 5 4 3 2 1

11 9 7 5 3 1 12 10 8 6 4 2

10 741 11 852 lf 963
951 10 62 11 73 12 84
83 11 6194 12 72 10 5

7 1 8 2 9 3 10 4 11 5 12 6

6 12 5 11 4 10 3 9 2 8 U
5 10 27 12 4916 11 38
4 8 12 3 7 11 2 6 10 1 5 9

3 6 9 12 2 5 8 11 1 4 7 10

2 4 6 8 10 12 1 3 5 7 9 11

1 2 3 4 5 6 7 8 9 10 11 12

Fig. 12. Fig. 13.

quelconque est défini par la relation (x, y) =xy. La ge
colonne de la première table est devenue la ye de la seconde,

y étant l'associé de g (fig. 12 et 13).
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Les coordonnées du terme 1 sont des nombres associés,

puisque, dans ce cas, on a xy 1.

Les nombres de la diagonale y x sont les résidus de n,
et ceux de Vautre diagonale, leurs compléments à n.

25. Gauss, le premier, s'est avisé du rôle que peut jouer
le quinconce pour représenter les lois des nombres entiers,
quantités essentiellement discontinués auxquelles la
géométrie ne semble pas, à priori, pouvoir s'appliquer. Il paraît
même avoir, par ce moyen, fait quelques-unes de ses

découvertes, entre autres celle de la composition des formes.
Eisenstein ainsi que Hermite et Minkowski ont également

utilisé le même moyen et se sont rencontrés avec Gauss

en plusieurs points.
Bravais a employé les quinconces du plan et de l'espace,

en vue de ses études cristallographiques (/. E. P., 1850).
Lebesgue s'en est servi pour expliquer la formation des

tables de diviseurs numériques (Tables..., 1862).
Mais c'est surtout Gand qui, par sa théorie des satins, en

a montré l'importance, tant comme figuration du lemme
fondamental, que par celle des propriétés des formes x2— 1

et x2 + 1. Son objectif était simplement la régularisation des

procédés empiriques suivis jusque-là dans l'industrie textile;
mais Ed. Lucas a repris cette théorie au point de vue
mathématique et avait projeté d'écrire une Géométrie du tissage,
dont on n'a que quelques aperçus1.

Gomme cela a été dit plus haut, la théorie générale du
quinconce a été poursuivie ces dernières années jusque dans
les applications les plus élevées de l'arithmétique. On
étudiera avec fruit sur ce sujet la Neuere Zahlentheorie de
Bachmann (Leipzig, 1907).

L'idée de Thiele, de représenter les résidus quadratiques
imaginaires2 ne paraît pas avoir fixé l'attention, autant qu'elle
le méritait: toutefois ce qui en a été dit plus haut semble
suffisant pour faire connaître ce qui pourrait en être dit
dans un traité élémentaire.

A. Au buy (Dijon).
* Il a montré aussi los rapports do cotte théorie avec celle de certains carrés magiques

qu'il a appelés diaboliques.
2 11 a aussi montré à représenter les résidus cubiques, en employant trois directrices faisant

entre elles des angles.de 60°.
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