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LES PRINCIPES DE LA GEOMETRIE DES QUINCONCES

1. On appelle quinconce 'ensemble indéfini des intersec-
tions de deux systémes de paralléles équidistantes, numéro-
tées a partir de deux d’entre elles, prises comme directrices,
elles-mémes mnuméro- |
tées zéro (fig. 1).

L’étude de cette ligure
constitue une sorte de
géométrie analytique en
nombres entiers, dans
laquelle les coordon-
nées sont, non plus des
longueurs, mais des nu-
meéros.

Un quinconce étant

défini par I'angle ¢ des directrices et les longueurs OA, OB
des dquidistances, un point quelconque du quinconce se dé-
signe par son numéro-abscisse x et son numéro-ordonnée v,
et se note (x, y).

Si les deux systéemes de paralleles sont tracés, la figure
est un réseau, divisant le plan en parallélogrammes égaux.
Le réseau s’appelle plus particulierement guadrillage, quand

les directrices sont rectangulaires et les deux équidistances
égales. ’

Fig. 1.

Un quinconce n’est donc autre que l'ensemble des inter-
sections d’un réseau. On comprend qu’a un quinconce quel-
conque correspondent une infinité de réseaux, lesquels sont
dits dans ce cas équivalents.

2. Une droite joignant deux points quelconques d’'un quin-

conce, en rencontre une infinité d'autres, qur sont équi-
distants. |
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3. Les nombres a et n étant premiers entre eux, la droite
ax — ny = 0, déterminée par l'origine et par le point (n, a)
du quinconce rencontre une infinité de points équidistants
représentés par la formule (kn, ka), k désignant les nombres
+1, =2, &+ 3, ...

Elle n'en rencontre pas d’autres; car puisque ax == ny,
et que a et n sont premiers entre eux, a doit diviser ¥y, et n
diviser x.

La droite ax — ny = af'— ng, menée par le point (f, g)
du quinconce parallelement a la droile précédente, est dans
le méme cas et rencontre le quinconce en une infinité de
points équidistants.

Soit af'— ng = b; on a ainsi graphiquement les solutions,

en nombre infini, de I'équation ax — ny = 0.
- 4. Etant donné trois points quelconques (x,y), (X', y') et
(x", y") d'un quinconce, on peut, de trois maniéres diffé-
rentes, déterminer un quatriéme point qui forme avec les
trois premiers, un parallélogramme. Tel est le point

(xl _I__ 1JI — :).I + .)j/ . 7)

2 ' 2

diagonalement opposé au point (x, y).
Il suffit de remarquer que la demi-somme des ordonnées
de deux sommets opposés est égale a celle des deux autres.

5. L’angle des directrices étant ¢; que P'on pose cos o

b T . NS
— —— el que les équidistances soient appelées /'« sur les

o

abscisses, et /¢ sur les ordonnées; le quinconce repré-

‘sentera la forme (@, b, ¢) = ax® + 2bxy + cy?®, a et ¢ élant

positifs; puisque le carré de la distance du point (v, y) a
Porigine est (x\/a@)? + (y\/¢)* + 22V ay\V/ c cos o L.

En outre, la surface de chaque parallélogramme élémen-
taire est égale a VA, A désignant la valeur de l'expression
ac — b* (Gauss).

On verra facilement qu'aux formes («, o, ¢) et (a, b, a) cor-

1 x représente le nombre des divisions de 'abscisse; y, celui des divisions de l'ordonnde;
et non des longueurs.
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respondent un quinconce rectangulaire et un autre quin-
conce formé de losanges. "
6. Les directrices étant OX, OY, on peut rapporter le
quinconce a deux autres direc-
trices OX’, OY' déterminées par Y ‘ ’
Vorigine et deux de ses points ’ .
M, N: il est alors défini par « ’ ’
langle Y'OX' et les deux équi- . ¢
distances OM, ON. - ¥ ‘
7. L'ensemble des points . :
x=ax + by, y=cx’ + dy', - ‘ :
expressions dans lesquelles . |
b, ¢, d désignent des entiers .
fixes, ' et y' tous les entiers
positifs ou négatifs, — figure

Fig. 2.

' ) , ; . . Jab
un certain quinconce (fig. 2) qu'on symbolise ainsi [cd] et

qui n'est plus rapporté a ses directrices!. En effet on a:

la(x" 4+ a) + 03" + B)] + [a(x” — o) 4+ bly" — B)] = 2(ax" + b))

[e(@” + o) + d(y’ + B)] + [e(x — a) + d(y” — B)] = 2(cax” + dy’) .

Ce quinconce représente les solutions de I'équation ax + by
= ct, ot x et y désignent des coordonnées, et { un coeffi-
cient variable. |

L'expression ad — be s’appelle la norme du quinconce et

i . . ab i
s'indique par la notation N| ~1: elle représente, comme on

s’en assurera aisément, la surface de l'un des parallélo-
grammes élémentaires.

ab
[

. . . . %
Si le quinconce [ d] contient tous les points de [a ] , on

¢ d
dit qu’il en est le multiple : de la, 'assimilation de cette re-
présentation aux nombres premiers ou composés: ainsi le

. . . ab a’' b’ aa’ 4+ be’ ab’ + bd’
produit des quinconces [ch et I_c’d’J est[ca, Lde b+ dd’]'

1 Pour plus de simplicité, la figure suppose rectangulaires les axes de coordonnées; mais
il est facile d’étendre la'théorie au cas ou les coordonnées ne se coupent plus sous un angle
droit.

x' et y' désignent les équidistances sur les axes de coordonnées, et OP, OQ celles sur les
directrices.

-
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Le quinconce est premier si sa norme est un nombre pre-
mier. |

Par le moyen des substitutions © = ax' + By’, [y — ya'
. “ab £ g s .
+ dy’, du quinconce |ZdJ , on déduit un autre quinconce

a’ b’ ., )
o lié au premier par la formule

a’ b’ ab
N[c'd’] = (ad — ‘BY)N[cd] ,

de sorte que si ad — By = 1, les deux quinconces sont iden-

liques; leur groupement seul differe, étant effectué sur des

systémes de paralleles formant deux réseaux équivalents.
Par des considérations d’un autre ordre, on arrive a.une

nouvelle interprétation analytique des quinconces. La lon-

gueur du coté OP du parallélogramme OPMQ a pour expres-

sion |

alam® 4+ 2bmy. 4 cuv?) |

en appelant am + by et VA les coordonnées rectangulaires
du point P. Cette longueur représente donc la forme (a, b, c).
au facteur a pres.

Soient appelés (x, y) et (£, %) les points P et Q; les cotés
OP, OQ peuvent étre ligurés ainsi :

t=ux 4+ i, t=E4 7.

L’expression [¢, 7] = z¢ 4 &z représentera un quinconce, qui
sera déterminé si on se donne les nombres z et ¢, et on aura:
N{t, t] = axq — &y .

Posons _
u=—oat 4+ pv, v= 1yt 4 0t ,

on obtiendra un quinconce placé généralement et qui don-

nera
Nu, v] = (a8 — By)N|¢, 1]

Cette géométrisation des formes quadratiques, — dont les
éléments sont seuls donnés ici!, — est due a M. PoINCARE

1 A citer ces deux problémes : reconnaitre si un quinconce est identique & un autre quinconce
donné, et trouver les transformations qui changent un quinconce en lui-méme ; la réduction des
formes et leur composition.
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(J. E. P., 1880); elle a été retrouvée par M. Kreix (Vorl. aber
ausgew. Kap. der Zahlentheorie, Leipzig, 1895).

8. Appelons quinconce de module n. la partie d’'un quin-
conce comprise entre les axes et les coordonnées portant le
numeéro n. '

Les nombres a et n étant premiers entre eur, et a < n, con-
sidérons sur le quinconce de module n, les points (x,y) pour
lesquels Pordonnée y est égale au reste de la division de ax
par n: ces n points sont disposés sur le quinconce sutvant
des parallélogrammes égaux (Ganp) (tig. 3). Cela résulte de
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Fig. 4.

=]

la régularité méme de la construction: en effet, le premier
point est & l'origine; sur la premiere ordonnée, on monte
de a; sur la deuxieme, on monte encore de «, et ainsi de
suite, jusqu’a ce qu'on sorte du quinconce, et alors on com-
plete 'ascension de a sur 'ordonnée suivante.

La figure 4 fournit une autre démonstration intuitive de
la proposition; car elle se réduit a la figure 3, en rabaissant
jusqu’a l'axe des x la partie située au-dessus de la droite
y = n, puis la partie au-dessus de la droite y = 2n, et
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ainsi de suite. Les diverses ascensions se trouvent reportées
dans le quinconce.inférieur, telles quelles, ou bien frag-
menlées.

L’ensemble des n points ainsi définis s’appelle un satin,
nom qu'il tire d’un tissu d’origine chinoise bien connu et
établi d’apres ce principe !. La figure 3 représente le satin 7;
correspondant aux données n =17, @ =

9. Le satin ny,_, est (e syl){étf'zfql,te, ou l'envers, du satin n,
(Ganb). ‘

10. Chaque paralléle a Uaxe des x contient un point du
satin et n’en contient qu’un (GAND). Si on avait, par exemple,
H'h = Gg (fig. 4), il s’ensuivrait? H2 = Gg, et HH' serait a
la fois'de la forme nz et de la forme aw avec z < a et w < n;
or cela est impossible.

Cette proposition n’est autre que le lemme fondamental.

11. Les équidistances sur les paralléles étant appelées d et e,
la surface de chacun des parallélogrammes formés de quatre
points voisins est égale a nde, de sorte qu’il y a dans le satin
n parallélogrammes égaux ou fragmentés (Gand). Cela dé-
coule immédiatement de ce que le quinconce a une surface
de n®de, et que les n parallélogrammes sont égaux, par suite
de la symétrie de la construction.

En général, le parallélogramme dont trois sommets sont
I'origine etles points (x, y) et (x', y'), a pour surface (dx')(ey) —
(dx)(ey'); or on aey = axd et ey’ = axd; d’ou il suit que
la surface est = 0.

Le plus souvent, les axes sont rectangulaires et les équi-
distances d et e sont égales et se représentent alors par le
nombre 1: on peut dire, dans ce cas, que la surface de
chaque parallélogramme est égale a n.

12. Le salin r, peut étre considéré par rapport au co6té OM
pris comme axe des x (fig. 3), et alors on a le symétrique
d'un satin n, tel que, pour un point quelconque (x, y) du
premier, qui estle point (— y, x) du second, on a:

ax =y , ay = x doun  aa=1.

1 Les satins 2, ot n, ont're¢u les noms particuliers de Zoile ou damier et de serge ou diago-
nale. 11 n’en sera pas question ici. :
2 On sous-entendra partout la mention « (mod ) ».
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Ainsi le salin 75, de la figure 3, devient le satin 75: 3 et 5
étant les valeurs de la premiére ordonnée dans les deux sens.

Les deux nombres a et « sont dits associés. Il est clair
que chaque entier a premier avec n, a son -associé, ¢'est-a-dire
un nombre «a tel que ao = 1. C(ette démonstration est
d’Ed. Lucas.

13. Il est facile de déterminer dans chaque cas, le nombre
de satins d’un module donné n: on cherche les valeurs de «
pour lesquelles ce nombre est premier avec n et inférieur a
sa moitié!. On les groupe par associés deux a deux et on ne
conserve que les plus petits termes dans chaque groupe. Ce
nombre n’est pas susceptible d’étre représenté par une for-

mule simple, sauf si n est premier, auquel cas il est ——

n—3
ou —— , selon que n est 4 + 1.

14. Les axes seront maintenant toujours supposés reclan-
gulaires, etles équidistances égales.

St n est la somme de deux carrés premiers entre eux,
g% et h?, il existe une valeur t de a, qui donne a® + 1 =0, et
les parallélogrammes du satin soni des carrés (Ganp). Soit
I'associé de g; de g2 4 2 = n, on tire, en multipliant par v
‘et posant Ay = f, la congruence /2 +- 1 =0. |

Le carré de la distance des deux points (x, y) et (x'. ') du
satin est égal a

(! — o + @ — 2 =+ 1) (@ - e =0

chacun des parallélogrammes a ainsi une surface égale a n.
et des cotés de la forme n\/ k&, n\/ [, ce qui ne peut avoir
lieu que si ces parallélogrammes sont des carrés.

Le tableau suivant donne les satins carrés de modules in-
férieurs a 100 :

n =75, 10, 13, 17, 25, 26, 29, 34, 37, 41, 50, 53, 98, 61, 65, 73, 74, 82,
85, 85, 89, 97 ;

f=23,54,7,512,13.6,9, 7, 23,17, 11, 8, 18, 27, 31, 9, 13, 38, 34, 22 .

; ! n . .
! Inutile de chercher les valeurs > 5 > puisque le satin n,_, estle symétrique du satin g -
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La figure 5 représente le satin carré 10s..

Cor. 1. Un satin carré reste identique a lui-méme quand

on le fait tourner d'un quart de

tour; puisque de f2= — 1, on
i tire fr =y et fy = (n — x).

/ / - II. 8¢ on appelle q et v le quo-

7 tient et le reste de la division de n

/ ~— part,on a:q®?+r?=0 et q=1f.

/ [VARE | Conséquences de la congruence

- / { fg=—r.

/~ 15. Le satin n, peut étre consi-

déré comme le lieu des points

(r. y) définis par la relation

Yy =ar.

St n = g% 4+ /1?2, ¢’est-a-dire si le satin est carré, on a

af 4+ P =a? + afa? =0 .
Le nombre g? + /2% divisant 2% 4 2, il divise aussi
{-,'2(1'2 + 3.2) _ ).2(3,2 4+ h2) = gzwz - k23~2 ;

il divise donc l'un des deux nombres A =gz + Ay, B=
gxr — hy; or il est facile de voir qu'il divise gA — ZB: il
divise donc A et B. On verra de méme qu’il divise les deux
nombres hx + gy.

Ainsi g et h désignant des entiers premiers entre eux, et n,
le nombre g? + h2, le lieu du point (x, y) défini en coordon-
nées rectangulaires par Uune ou lautre des quatre relations

gx 4+ hy =0, hxe = gy =0

est un satin carré. Il en est de méme de ceux définis par
une relation de la forme gax & iy = gl &+ hm, mais alors
I'origine des coordonnées n’est pas un point du satin.

16. Si n divise un nombre de la forme x* — 1, la valeur
a — X donne des losanges, et le satin est symétrique par rap-
port a la diagonale (GAND). De a® — 1 = 0, on tire en effet
xy = a’ry; d'ou, en posant ax =y, cette autre relation
x = ay : les points (x, y) et (y, x) du satin n, sont donc sy-
métriques par rapport a la diagonale.
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Les satins suivants soit dans ce cas:

n — 8, 12, 15, 16, 20, 21, 24, 24, 24, 28, 30, 32, 33, 35, 36 39, 40 40 40,
42, 4’,&5 48, 48 48, 52 ;

a=3 547,985 7 11,13 11,15, 10, 6, 17, 14, 9, 11, 19, 13, 21, 19,
7,17, 23, 25 .

D'autres satins forment également des losanges, mais ne
sont pas symétriques : tel est le satin 407, et en général ceux
pour lesquels la somme du quotient et du reste de la divi-
sion de n par a est égale a a® 4 1. D'autres satins, d’une
définition moins simple, sont dans le méme cas. (Voir LarsanT,
A. F., 1877.) ,

1. De/oz mons le satin n, de maniére que, la premziére or-
donnée restant a sa place, laa°, quia pour valeur o, devienne
la 2°; la «°, qui a pour valeur B, devienne la 3°; la (3°, qui a
pour valeur v, devienne la 4°; ... la k® ordonnée sera = a*, et
on aura de cette sorte le graphique des solutions de la con-
gruence a* = y. Ainsi, pour ¢ = 10, n n’étant ni pair, ni mul-
tiple de 5, la figuration sera celle de la période décimale du
quotient de 1 par n.(LarsanT). |

De méme, soit & trouver les restes de la division de a" par
n : on cherchera ceux de la division par n des nombres a,
2a, 3a, ...: le reste de a est a ; celul o de a? est le a¢ reste;
celui B de a® est le 2° reste ; ... (ARNOUX).

18. La théorie des satins a été donnée par Ganp en 1867,
dans le Bull. de la Soc. d’Amiens. L’application suivante, due
au méme auteur (le Transpositewr ou Improvisateur de tissus,
Paris 1871), montrera le parti qu'on peut en tirer dans l'in-
dustrie textile, pour obtenir des motifs nouveaux, en nombre
indéfini.

On a une bande de papier divisée en vingt-neuf carrcs
égaux, de diverses nuances (fig. 6), qu'on déplace successi-
vement de sa largeur ; mais en la montant, la premieére fois

12 2.12
de R 55 cases 1. ]a seconde fois, de R —5g- Ccases ; la troisieme

3.12 . 4.12
fois, de R —g- cases; la.quatrieme, de R —g Cases; ...: omn

le reste de la division de a par .

1 On entend par le symbole R % .
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aura ainsi un satin carré composé, de 292 cases, dont une
partie est donnée, fig. 7.

19. Si dans l'expression u? + ko, u et v désignent tous les
entiers imaginaires possibles, et %, I'imaginaire fixe o + 8¢}
cette expressmn prendra une infinité de valeurs de la forme
x + yi, quon représentera en hachurant la case (x, y), c’est-

Fig. 6.

a-dire la y° case de la x¢ colonne verticale. Si en outre, x +
yi est divisible par « 4+ (¢, la case (x, ) sera entiérement
noire. Cette représentalion a été proposee par THIELE, en
1873. (Voir A. F. 1874.) |

Si k=1 4+ ¢, on aura un damier de cases noires el de
cases grises. S1 3 =0, le dessin est encore assez simple, car
il dérive du damier. Mais dans le cas général, il présente un
ensemble de motifs élégants mais compliqués, simulant
chacun quatre spirales grises ou blanches autour de chaque
case noire : voir par exemple les fig. 8 et 9 .

1 Voir aussi (op. cit.), outre ces deux figures, et celles qui seront décrites plus loin, surtout
celles qui correspondent aux valeurs & = 8 4 5i, 8 4-7¢, 10 ¢ et 17 4 8, données par
BrocH.
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20.. On peut d’abord vérifier que les cases nowres-des des-
sins de Thiele forment le satin carré de module n = o* + [3°.
En effet, si.x + yi est divisible par « + f¢, (v 4+ yi) (¢ — £¢)

L
N
N
S RO N .
\ N
S \ NI
O ! N DNES NN
N N N N N N
NN X
‘\\ N \\ : N Q
NN
N » :
NN N
Fig. 8 _ Fig. 9.

= (ax + By) + (ay _ )i est divisible par (« + i) (¢ — (i)

— a? 4+ 8%, ce qui a lieu si les deux expressions A = ar +

By et B = oy — Bx le sont, conditions qui n’en font qu’une,
car on a :
aA + BB = nx ,

d’ou on conelut que la divisibilité de A entraine celle de B.
On a donc bien ax 4+ By = 0, ce qui caractérise un satin
carré (15). |

Les cases grises correspondantes, dans les diverses répéti-
ttons du motif, forment des satins identiques, mais placés
d’une maniere différente. Soit en effet

w—=u +ui, =y L',
i1l viendra
ax + By = au’? 4+ 2pu'v” — au"? + w/'
d’ou
a(ax + By) a?u’? 4 20Bu’n" — o?u"? = a'u'? 4 20fu’u’ 4+ [?

(a” 4 Bu")? .

il

Ainsi la case (x, y) est grise si a(ax + fy) est un résidu, ce
qui permet d’exécuter la construction assez aisément. Mais
les considérations qui suivent la rendent encore bheaucoup
plus facile. |

I’Enseignement mathém., 13¢ année; 1911 13
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Soit (£, ») une case noire, c¢’est-a-dire telle que a 4+ Bn = 0;
chaque case grise (£, ) de la méme colonne est déterminée
par la relation «(«f -+ By) = r, r désignant 'un des résidus
de n. De la, la condition «f(y — ») = r. Or de o* + 32 =
n =0, ontire (a« + B)2 = 2af3; 223 est donc résidu, et «f est
ou n'est pas résidu en méme temps que 2. Le nombre «f3
et par suite le nombre ¥ — 5, sont donc résidus si n est un
nombre premier 8 + 1 (k =4+ ¢, 5 + 4i, 8 4+ 3¢, 8 4+ 57,
47,9 + 4iy, 11 4 4¢, 12 + 74, 13 + 82, ...) et non-ré-
sidu si n est un nombre premier 8 + 5(k =2 + ¢, 3 4+ 27,
54+ 20,54+ 4, 6 4+1¢, 6+ 5, 7T+ 24, 10+ ¢, 10 + 3¢,
10 + 77, 10 + 92....). Par conséquent, les valeurs de , étant
Lor, o, " .0 la Lére la re, la 7', la /"¢, ... case située au-
dessus d’une case noire sera grise ou blanche, suivant les
deux cas qui viennent d’étre indiqués !. Ainsi

/

[ 2 rangs ;
2 1 i, ' 2, 5 rangs ;
5 1 9 les cases.gns(’es‘sont 1, 2, 4, 8 rangs ;
nour £ =1{ & Ju ; celles qui précedent | 2, 3, 8, 10, 11, 12, 14 rangs;
. ou suivent les cases 1, 2.4, 7,8.9, 11, 13, 14,
2R\ Loires de / 15,16, 18. 22, 25, 26, 28, 30,
8 + 7, 31, 32, 36, 41, 44, 49, 53,

| 96 rangs.

Les figurations de Thiele ne sont donc autres qu'une ap-
plication trés particuliéere ; — mais a la vérité trés intéres-
sante, — de la méthode de Gand, celle ou la y¢ case de I'or-
donnée mobile (fig. 6) esl grise ou blanche selon que y est
un résidu ou un non-résidu.

21. Les problémes du tissage constituent une application
des plus intéressantes de la théorie élémentaire des nom-
bres et sont tres propres a en faire saisir les méthodes. Il
semble donc que la construction des congruences concretes
ainsi réalisées est un bon exercice, a différents points de
vue, et qu’un mot sur les combinaisons de carreaux serait a
sa place dans un traité sur les nombres.

1 Dans le premier de ces deux cas, la figure ne change pas quand on la fait tourner d’'un
quart de tour ; dans le second cas, les cases grises sont changées en cases blanches et vice
versa.




GEOMETRIE DES QUINCONCES 199

La combinaison la plus simple est le damier indéfini. On
peut le généraliser en le déformant de plusieurs maniéres ;
par exemple on peut « upler les largeurs de la (£b)™ colonne
et de la (kD) rangée, k prenantlesvaleurs &= 1, = 2, =+ 3, ...
Le cas de « =— 3 et b =5 est fréquemment employé.

On aurait d'autres dérivés du damier de n? cases, n dési-
gnant un nombre impair, en meltant noire ou blanche la

xy ; a? _|_ q'2 .
case (r, y) selon que R =, ou R ——— | etc., est pair ou
n n ’

impair ; ou encore selon que xy est congru a un résidu ou
4 un non-résidu. Cette étude sera développée plus tard.

Les effets des diagonales donnent des motifs bien plus
variés 1. On peut réunir plusieurs bandes en diagonales;
les couder en zigzags; les briser; les couder et les briser,
a chaque coude ou a chaque rangée; alterner les nuances,
de & rangées en k rangées.

Mais c’est surtout avec la méthode si simple de Gand,
pour les satins (18), qu’on obtient les résultats les plus élé-
gants et les plus variés. Ainsi la fig. 6, qui par son ascension
successive de douze cases, produit la fig. 7, peut en donner
douze autres, en effectuant des ascensions de deux, trois,
(quatre cases; ces sortes de cristallisations différentes des
mémes carreaux de la fig. 6 étonneront par l'inattendu des
motifs obtenus : celles qui correspondent aux nombres 3, 7,
8, 9, 11, 13 surtout en donnent de tres jolis. Pour plus de
facilité, on ne prendra que les cases noires?2.

22. Le cas du satin dont le module n est un nombre pre-
mier réel p, mérite un examen spécial. Il ne peut y avoir
alors, que dans un seul cas, un nombre @ qui soit 'associé
de son complément, c’est-a-dire tel que @® 4+ 1 = 0. Soit en
effet b2 + 1 =0 il viendra a* — 02 = 0 ou (@ + b) (a — b)
=0, doua+b=0et b=p—a. Le groupe a,a=—7p
— a ne peut donc se présenter qu’une fois. D'un autre coté,

! Voir par exemple le Cours de tissage, de GAND, ou le Traité de BonNa, ete.

* Le moyen mécanique suivant pecmet de construire un satin composé, sans aucun calcul, a
Taide de cubes noirs et blancs. Construisons avee ces cubes & colonnes identiques; montons
de & rangs les k — 1 derniéres colonnes et replacons d’un bloc au-dessous les cubes qui
dépassent en haut; montons de méme de % rangs les k¥ — 2 derniéres colonnes et replagons
d’un bloc au bas les cubes qui dépassent au-dessus; montons de méme les k& — 3 derniéres
<olonnes et replagons au bas les cubes excédents; et ainsi de suite. ‘
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il n'y a que les nombres’l et p — 1 qui soient leurs propres.
assoclés, car lacongruence x*= 1 donne (x + 1) (x — 1) =0,
dotxr=1letxr=—1.

Si p est un nombre premier 4 + 1, les entiers 2, 3, 4,

P — groupes de quatre nombres as--

sociés ou complémentalres, et en un groupe des deux nom-
bres a, o, a4 la fois associés et complémentaires. On a ainsi
a® 4+ 1 = 0. Donc tout nombre premier & -+ 1 divise une
somme de deux carres.

Si p est un nombre premier 4 — 1, les mémes entiers se-

) — 3 . g ,
partagent en [—1—— groupes de quatre nombres complémen--

taires ou associés, et de plus distincts ; car autrement ow

‘aurait plus d’une fois x(p — x) = 1. On ne peut donc écrire

22+ 1 =0 et aucun nombre premier & — 1 ne divise une
somme de deux carrés et a fortiori ne peut étre une somme de:
deux carrés.

Ainsi les seuls nombres premiers & + 1 divisent x* + 1, et
méme y? 4 £2, en faisant w{ = y. Or dans ce cas, le salin est.
formé de carrés ayant tous p pour colé et inclinés sur les.
axes : p est donc lui-méme de la forme x% 4 y2 et on a la dé-
monstration de ce théoréme de Fermat : tout nombre premier-
4 + 1 est décomposable en une somme de deux carrés, — en.
méme temps que la décomposition de p. (Ep. Lucas).

On peut remarquer en outre que pour /) =4 — 1, les en-

p _

tiers 1, 2, 3, ... p — 1 se parlagenten groupes de quatre

termes g, y, p — g, p — 7, tels que gy = ¢, et un groupe /. et
p — htel que 2 =(ou /L (p — h) = t. Ainsi, pour p—=4 — 1,
on a, quelque scoit t, l'une ou lautre des deux congruences:
x?=1t,2°=—1t Maisdet a p — ¢, il 'y a au moins deux.
Valeurs s, s + 1, qui donnent l'une g/2 =s,22=— (s 4+ 1)y
d’ou, en additionnant, y2 + z2 4+ 1 =0, ce qui démontre

cette proposition d’EULER : le nombre premier p =4 — 1 di-

pise toujours une somme de trois carrés, dont U'un est l'unitée.

23. Désignant par 1, @, b, ... n — 1, les ¢(n) nombres plus.
petits que n et premiers avec lui; tracons dans le quinconce-
module n, les droites y = x, y = ax, y = bx, ... et notons.
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ces droites par les indications 1, a, b, ... (fig. 10 et 11);. on
aura la table de division (mod. n)?, de M. Arvoux (F. Arith.,

8 4 2 7 5 1
7 8 4 5 1 2
6 3 2 5 8 6 3 1 4 7 6 3
5 7 8 1 2 4
) 1 8 7 5
3 6 1.4 7 3 6 2 5 8 3 6
2 1 5 4 8 7
1 5 79 4 8
1 2 3 L5 6 7 8
Fig. 10

Paris 1894). Il est aisé de voir que le nombre (r, y) satisfait
a la condition x (%, y) = ¥, ce qui montre qu’il n’est autre

12 6 4 3 5 2 11 8 10 9 7 1
1 12 8 6 10 4 9 38 7 5 1 2
0 5 12 9 2 6 7 11 4 1 8 3
9 11 312 7 8 5 6 1 10 2 4
8 4 7 212 10 3 1 11 6 9 5
710 11 5 4 12 1 9- 8 2 38 6
6 3 2 8 9 41 12 4 5 11 10 7
5 9 6 11 1 3 10 12 2 A
& 2 10 1 6 5 8 7 12 3 11 9
3 8 1 4 11 7 6 2 9 12 5 10
2 1 5 7 3 9 4 10 6 8 12 11
1 7 9 10 8 11 2 5 3 4 .6 12
1 2 8 4 5 6 7 8.9 10 11 12
Fig. 11

que le quotient par x, du nombre y augmenté d'un certain
multiple de n. |

Cetle table jouit de nombreuses propriétés, dont celles-ci :

Elle donne immédiatement la solution de Uéquation ax —
nz —b.

Un terme quelconque est lassocié de son abscisse, car
x(x, 1) = 1.

Lune des diagonales ne contient que le terme 1, et U'autre,

1 Entrevue par Euler et Gand.
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le nombre n — 1. En général, dans une méme paralléle a
une diagonale, deux termes également éloignés des extrémes
sont associés, ce qui suit de ce que les relations

x(x,y) =y et yly,x)=x, xx,y) =y

et. (n—yjln—y,n—x)=n—ux
 donnent par multiplication les suivantes

(x, 7))y, 2) =1 et (x,y)(n—y,n—2x=1.

De méme, le produit de deux termes voisins dans la pa-
rallele la plus voisine de la diagonale y = x est congru au
terme de la deuxiéme paralléle compris entre ceux-ci. En
général, si on considére un carré de termes ABCD ayant le
sommet A sur cetlte diagonale, le produit des nombres situés
aux sommets B, C, est congru a celui du sommet D, c’est-a-dire
qu'on a:

(x,n —x+kx+ ki n—x)=x+k, n—x+ 4k .

24, Si on déplace les colonnes de la table de division
(mod n), de telle maniere que les nombres de la rangée in-
férieure soient a leurs places naturelles, on aura la table de
multiplication (mod n), du méme auteur, et dont un terme

121110 9 8 7 6 5 & 3 2 1
11 9 7 5 3 11210 8 6 4 2
10 7 & 111 8 5 212 9 6 3
9 5 110 6 211 7 312 8 4
87 34 31 8§ 311 6 1 9 412 7 210 5
75 18 42 71 8 2 9 310 411 512 6
63 63 63 612 511 410 3 9 2 8 1 7
o1 27 84& 510 2 712 4 9 1 611 3 8
48 72 15 4 812 3 7.11 2 610 1 5 9
36 36 36 3 6 912 2 5 811 1 4 7 10
24 81 57 2 4 6 81012 1 3 5 7 911
12345678 1 2 3 4 5 6 7 8 9101112
Fig. 12 Fig. 13.

uelconque est défini par la relation (r, ¥v) = xy. La 2° co-

q q p \ -.// J o)

lonne de la premiére table est devenue la ° de la seconde,
P 7

y étant I'associé de g (fig. 12 et 13).
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Les coordonnées du terme 1 sont des nombres associés,
puisque, dans ce cas, on a xy = 1.

Les nombres de la diagonale y = x sont les résidus de n,
et ceux de Uautre diagonale, leurs compléments a n.

25. Gauss, le premier, s’est avisé du role que peut jouer
le quinconce pour représenter les lois des nombres entiers,
quantités essentiellement discontinues auxquelles la géo-
métrie ne semble pas, a priori, pouvoir s’appliquer. Il parait
méme avoir, par ce moyen, fait quelques-unes de ses dé-
couvertes, entre autres celle de la composition des formes.

E1seNsTEIN ainsi que HErRMITE et MINKOWSKI ont également
utilisé le méme moyen et se sonl rencontrés avec (Gauss
en plusieurs points.

Bravars a employé les quinconces du plan et de l'espace,
en vue de ses études cristallographiques (/. £. P., 1850).

LEBESGUE s’en est servi pour expliquer la formation des
tables de diviseurs numériques (Tables..., 1862).

Mais c’est surtout GAND qui, par sa théorie des satins, en
a montré l'importance, tant comme figuration du lemme
fondamental, que par celle des propriétés des formes x%— 1
et x® + 1. Son objectif était simplement la régularisation des
procédés empiriques suivis jusque-la dans I'industrie textile ;
mais Ed. Lucas a repris cette théorie au point de vue ma-
thématique et avait projeté d'écrire une Géométrie du tissage,
dont on n’a que quelques apercus?.

Comme cela a été dit plus haut, la théorie générale du
quinconce a été poursuivie ces derniéres années jusque dans
les applications les plus élevées de l'arithmélique. On étu-
diera avec fruit sur ce sujet la Newere Zallentheorie de
Bacamany (Leipzig, 1907). |

L’idée de Thiele, de représenter les résidus quadratiques
imaginaires? ne parait pas avoir fixé 'attention, autant qu’elle
le méritait: toutefois ce qui en a été dit plus haut semble
suffisant pour faire connaitre ce qui pourrait en étre dit

dans un traité élémentaire.
A. Ausry (Dijon).

111 a montré aussi les rapports de cette théorie avec celle de certains carrés magiques
qu’il a appelés dizboliques. - '

2 Il a aussi montré a représenter les résidus cubiques, en employant trois directrices faisant
entre elles des angles.de 60°,
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